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ABSTRACT 
This paper presents a newly developed novel method of using 
Interactive Evolutionary Computation (IEC) for the design of 
Microelectromechanical Systems (MEMS). A key limitation of 
IEC is human fatigue. Based on the results of a study of a 
previous IEC MEMS tool, an alternate form that requires less 
human interaction is presented. The method is applied on top of a 
conventional multi-objective genetic algorithm, with the human in 
a supervisory role, providing evaluation only every nth-
generation. Human interaction is applied to the evolution process 
by means of Pareto-rank shifting, which is used for the fitness 
calculation used in selection. Results of a test of 13 users shows 
that this IEC method can produce statistically significant better 
MEMS resonators than non-interactive evolutionary synthesis.   

Categories and Subject Descriptors 
J.6 [Computer Aided Engineering]: Computer-aided design 
(CAD), Computer-aided manufacturing (CAM).  

General Terms 
Design, Reliability, Experimentation, Verification. 

Keywords 
Evolutionary Computation, Interactive Evolutionary 
Computation; IEC; MOGA; Human Interaction, CAD; MEMS; 
Micromachines. 

1. INTRODUCTION 
In this paper we present a new method of synthesis utilizing 
human interaction to augment the use of evolutionary 
computation to generate resonating microelectromechanical 
systems (MEMS). MEMS, also known as Micromachines are 
electromechanical mechanisms and transducers created using IC 
microfabrication techniques. The resonating mass structure is a 
simple MEMS example that can be extended to the design of 

MEMS-based RF filters or inertial sensors. 

An evolutionary MEMS synthesis tool has been presented in 
[1],[2].  A multiobjective genetic algorithm (MOGA)[3], as well 
as simulated annealing (SA) [4] have been used as an 
evolutionary computation method for the design of a variety of 
MEMS test applications, including the design of electrostatic 
actuators [5],[6], accelerometers and vibrating rate gyroscopes 
[7].   

 

 
Figure 1. Example of resonating micromachine design 
generated by MOGA tool that has been fabricated and 

characterized. Center mass is approximately 0.2mm wide. 
 

Interactive Evolutionary Computation (IEC) is a method for 
optimizing a system using subjective human evaluation as part of 
the optimization process.  It is well suited for optimizing systems 
whose evaluation criteria are preferential or subjective, such as 
graphics, music and design, and systems that can be evaluated 
based on expert's domain knowledge.  Fields in which this 
technology has been applied includes graphic arts and animation, 
3-D CG lighting, music, editorial design, industrial design, facial 
image generation, speech and image processing, hearing aid 
fitting, virtual reality, media database retrieval, data mining, 
control and robotics, food industry, geophysics, education, 
entertainment, social system, and others  [8]. 

In the case of MEMS simulation, tractable simulation tools can 
not predict the sensitivity of a design to fabrication uncertainty or 
and do not include the effects of certain design features on 

 

 
 



performance. A fabrication and characterization study [7] (see 
Figure 1) has shown that these sensitivities can dramatically affect 
the quality of the solutions generated. Many of these potential 
problems are clearly visible to a human user visually observing 
the design layout, but they would be difficult, if not impossible, to 
mathematically model and simulate in software and incorporate 
into a flexible MEMS synthesis program. Therefore we developed 
an IEC based MEMS design tool to allow the inclusion of this 
human knowledge. 

In [9], an initial method of using IEC to further hone designs 
generated by a MOGA was presented. In this case output from the 
automated MOGA tool was used to draw the initial designs for 
IEC.  This allowed the human user to further evolve the MOGA 
output into designs that better met their expert opinions and goals.  
A user study presented shows that the combination of the 
automated and human interactive can produce better designs than 
by simple automated evolutionary synthesis alone. 

One of the limitations of IEC that does not exist in non-interactive 
EC, is that the humans evaluating the fitness of designs suffer 
from fatigue, and therefore we would like to search out new 
methods of better matching the capabilities of the human and the 
computer to exploit their strengths and minimize their 
weaknesses. 

Based on the observations of the user study, presented in [10], we 
developed a new version of EC with human interaction. This new 

implementation differs in that the human's participation is more in 
a supervisory role, utilizing the tireless computation power of 
computer but still allowing the human to input their expert 
knowledge and visual perception of a design when desired. 

In this paper we present a description of the new interactive EC 
tool for MEMS, as well as the results from a user study to verify 
the ability of the tools to produce better output, compared to our 
original non-interactive MOGA tool. 

2. ALTERNATE IEC MEMS DESIGN 
IMPLEMENTATION 
The original IEC MEMS synthesis, presented in [9] used a 
population size of 27, evaluated up to 10 generations.  A human 
evaluated each individual each generation based on the layout as 
well as the performance prediction by a simulator tool. The score 
given ranged from 1 to 5, chosen by mouse click (see Figure 2 for 
user interface).  The human must generate a single subjective 
score based on their opinion of the shape as well as the 
performance in four objectives, in essence mentally computing a 
weighting function to generate a 1 through 5 score. 

A user study of 11 test subjects showed that IEC produced 
statistically significant better results than non-interactive 
evolutionary synthesis. But at up to 270 human evaluations 
required, human fatigue was a concern and limited the number of 
generations the evolution could continue. 

 
Figure 2. User interface of original IEC MEMS synthesis tool. 

 



In our original user study, we identified two interesting types of 
reaction from the human when scoring the individuals via IEC.  
When humans detected design features they did not like they 
generally immediately scored that design very low regardless of 
the objective performance of that individual.  This situation can 
be described as a human-applied constraint violation, or as the 
human attempting to screen the population by culling (or 'killing 
off') designs they disapprove of. 

The second type of behavior was the opposite, where a design 
feature of interest might prompt the human to score a design 
highly despite poor performance in the objective space.  In a 
normal GA, this design would not be likely to pass along its 
features to the following generations, but the human has chosen to 
give it a 'stay of execution' to a design, so that its features will be 
allowed to propagate to the future generations. 

We chose to build upon these observations and create a version of 
IEC where the human's interactions are limited to these two types 
of behavior. We developed an interface (see Figure 3) where the 
human can chose to give either a promote (positive) or demote 
(negative) reaction to each design presented.  This human 
evaluation is then used to shift the ranking of the design 
according.  Our MOGA implementation uses Pareto ranking to 
handle multiobjectives, which is then used by a roulette wheel 
function for selection for genetic operations. Therefore the human 
interaction is used to adjust the Pareto ranking of a design 
(upwards or downwards). 

In practice this means a design not on the Pareto frontier may be 
artificially promoted to the Pareto set by the human, which will 
allow it to be passed to the next generation by elitism, and make it 
much more likely to be chosen as a parent for crossover.  

Likewise a Pareto frontier design might be demoted to a lower 
rank by the human, making it less likely to pass along its traits in 
the future. 

It should be noted that as we are adjusting the Pareto ranking, 
which is used for roulette wheel (probabilistic) selection, the 
human's actions differ slightly from a simple absolute screening 
approach. It should also be noted that the human's interaction can 
be applied as little or as much as desired.  Generally we find that 
users have a strong opinion (positive or negative) only a small 
percentage of the time.  Therefore this approach requires less 
activity (through scoring via the graphical user interface (GUI)) 
than the previous IEC MEMS tool. 

Human interaction is not necessary for the function of the 
evolutionary synthesis (if the human were to not score any 
designs, the tool becomes identical to the automated MOGA, 
using the unmodified Pareto ranking). Additionally, we have 
chosen a method where the human interaction for evaluation 
occurs only every nth-generation (see Figure 4).  This automated 
evolution with occasional human 'review' combines the 
tirelessness and speed of the computer with the more 'expensive' 
(in terms of time and fatigue) opinion of the human.  

The time and attention required by the human is further reduced 
by not displaying physically invalid designs in the interactive 
phase. As much as half of the population at any given point may 
violate a validity constraint - such as the constraint that no design 
can contain legs that cross each other, as this design is not 
physically realizable in the MEMS fabrication environment.  By 
removing these designs from human consideration, they can focus 
their attention only on meaningful designs, delaying the onset of 
fatigue. 

 
Figure 3. User interface of new IEC MEMS synthesis tool. 



3. EXPERIMENT 
3.1 User Test Setup 
To verify the success of the tool, we performed a user test of 13 
student volunteers using the tool.  The design of a symmetric, four 
legged resonating mass was used as a test problem.  Four 
objectives goals are set for the synthesis: ωr(10,000Hz), area 
(minimized), lateral stiffness (100 N/m) and vertical stiffness (0.5 
N/m). The problem formulation, geometrical bounds, constraints 
and objectives are identical to those used in [7],[9],[11]. 

 
Figure 4. Schematic of interspresed human interaction in 

automated evolutionary synthesis 
 

Table 1. Settings for improved IEC user test. 

Property Setting 

Population Size 80 

Generations 80 

Interval for human 
interaction 

Every 10th generations 

Starting point for 
human interaction 

20th generation 

Total number of 
human interaction 
generations 

6 
(20,30,40, 50,60,70th 
generations) 

 

The settings and parameters for the Interactive evolutionary 
implementation used in this paper are presented in Table 1.  The 
human evaluation phase occurs 6 times over the course of the 80 
generation test. As our initial population is randomly generated 
from scratch, human interaction does not incur until the 20th 
generation to give the GA the opportunity to first converge 
towards the objective goals before the human expertise is applied. 
Each generation of human interaction, approximately five screens 
worth of designs (up to 9 designs per screen) are displayed, for a 
total of approximately ~300 designs presented to the human 
throughout the course of the synthesis, of which the human may 
only actually chose to adjust the ranking of a fraction of these.  

 

3.2 User Test Setup 
Design synthesis [12] relies on the ability to accurately predict in 
advance the performance of a proposed design.  Through a study 
of MEMS synthesis designs fabricated and characterized, we have 
found that certain types of design features lead to inaccurate 
predictions using the tractable MEMS simulation tools capable of 

being used in an evolutionary computation algorithm at the 
present time. 

The characterization test of fabricated evolutionary synthesis 
output reveals two important factors that are dramatically impact 
the accuracy of the certain designs generated [7].  When 
fabricated, these designs' performance differ dramatically from the 
predicted performance in the most critical objective, the resonant 
frequency. These designs are susceptible to one or both of two 
phenomenon - simulator deficiencies and fabrication variation. 

Finite Element Modeling (FEM) has the ability to very accurately 
predict the performance of a resonating mass, but requires a 
significant time to simulate.  We therefore use a simplified nodal 
analysis-based simulator, which also has the benefit of easier 
integration with our discretized component-based evolutionary 
encoding.  The open source simulation tool SUGAR [13] is used 
as the evaluation engine, but it lacks the ability to accurately 
model the end conditions of beam elements.  This leads to a loss 
of accuracy in certain geometrical configurations (such as thin-
thick junctions at acute angles).  

Likewise, the presence of uncharacterized process variation can 
dramatically impact the performance of a design when fabricated.  
Currently in most MEMS foundries, there is no characterization 
or prediction of the level of residual stress that exists in material 
layers.  This residual stress can dramatically impact the resonant 
frequency for certain geometrical configurations as well (such as 
designs with a very high lateral stiffness, large anchor width, etc). 

In [11] we presented a performance metric for these two 
deficiencies. The first was a 'simulation error percentage', the 
percentage difference between the frequency predicted by sugar 
and that predicted by the FEM tool ANSYS.   The second metric 
was 'fabrication error percentage', the percent change in the 
frequency with and without a typical amount of compressive 
residual stress included (a 5 MPa compressive stress was used for 
this study).  This percentage is equivalent to the sensitivity of a 
particular design to the presence of residual stress.  

In terms of the user study of our new IEC tool. We would like to 
show that IEC output has a lower amount of simulation error on 
average than that of the automated MOGA. We also would like to 
show that IEC has less sensitivity to residual stress, (which is 
generated in the fabrication process) than the automated designs. 

An analysis of variance (ANOVA) test [14] can be used to 
measure the level amount of variation between two groups and tell 
us if it is statistically significant. This test can therefore be applied 
to compare the two groups of designs for each of the two metrics.  
If ANOVA tells us there is a significant difference between the 
two methods, and the improved IEC’s results are better, then we 
can conclude it has a significant performance improvement over 
the automated tool. 

 

3.3 Results 
Using a similar testing strategy employed in [10] and [11],  we 
take the best two designs produced by each synthesis run that are 
within 500 Hz of the goal of 10 kHz.  Each of these is evaluated 
in SUGAR, and the FEM tool ANSYS.  The simulator error 
percentage and fabrication error percentage are calculated.  These 
results were compared to the results of 10 runs of the automated 

Human evaluation 

Automated evaluation 



synthesis program - identical settings and code, except no human 
interaction is used. 

 

Table 2. Comparison of results of improved IEC user test and 
automated EC for 4-objective MEMS resonator test problem. 

 Improved IEC 

(26 designs) 

Automated 
EC 

(20 designs) 

Simulator Error Percentage 

Average 0.3% 3.3% 

Std. dev 4.7% 2.7% 

ANOVA P-value P=0.016 (98% significance) 

 

Fabrication Error Percentage 

Average 58% 73% 

Std. dev 15% 23% 

ANOVA P-value P=0.014 (98% significance) 

 

The average error as well as the standard deviation is presented in 
Table 2. In the case of both metrics, the IEC results perform better 
(have less sensitivity to these factors) than the automated version. 
The standard deviation amongst the human interaction results is 
higher for the simulator error. Which can possibly be attributed to 
the difference in the quality of the interaction by the various users 
in the study. Whereas the automated synthesis tool is generally 
more consistent from run to run, despite producing worse designs.  
The results of the ANOVA test are also presented in Table 2.  
They confirm that there is a statistically significant difference in 
the quality of output for both factors. 

As user fatigue is difficult to quantify, we can not make 
conclusions about the success of this system compared to our 
previous IEC MEMS program or other implementations of IEC in 
terms of user fatigue.  However a general idea of fatigue can be 
drawn by looking at the number of actions required to execute the 
synthesis run (in this case mouse clicks on radio buttons in the 
GUI window).  

In the new IEC implementation, the user need only act 
approximately 60-90 times per synthesis run (although our 
observation is that some users actually score much more than this, 
this is their choice). Even for a user who rates more than a few 
designs per screen, this compares well against the 240-270 actions 
required in the previous IEC implementation presented in [9]. 
Similarly the average time require for one run of the IEC 
presented in this paper is shorter than the time required for the 
previous implementation, approximately 45 minutes per user 
versus one hour per user, respectively. Further testing is necessary 
before any definite conclusions can be drawn. 

4. CONCLUSIONS/FUTURE WORK 
This work presents an initial trial of this new implementation of 
human interaction for evolutionary MEMS design synthesis.  Our 
user study shows that the quality of the output is superior to the 
output of a non-interactive evolutionary design program. 

But more testing would need to be performed to directly compare 
the performance of this new IEC to the previous IEC 
implementation; this requires another user study that compares the 
performance of two methods analytically.  The challenge is to 
develop a fair test that can compare the quality of the output 
produced by the two methods when they require an equivalent 
amount of effort (fatigue) from the human, or to compare the 
amount of effort required to produce the equivalent quality 
output.   

We would also like to validate the results of this study by 
fabricating and characterizing the output produced by this 
implementation and comparing the real world performance with 
other designs generated by other interactive and non-interactive 
synthesis implementations. 

Finally, we would like to try to apply this method to the design of 
other MEMS devices, such as MEMS inertial sensors. 
Additionally it can be applied to the device or layout design in 
other engineering domains as well, such as the design of circuits, 
building structures, HVAC, etc. 
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