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ABSTRACT 
In this paper, we describe an efficient Genetic Algorithm (GA) for 
solving the minimum interference frequency assignment problem 
(MI-FAP) using a new problem representation. The GA we 
present looks for the best assignment of a limited number of 
frequencies to a set of stations minimizing the total disturbance 
caused by stations operating at the same frequencies. We show 
that our problem representation based on permutation encoding 
and clustering gives better results in comparison with the existing 
problem representations in the literature. Our problem 

representation reduces the search space from nf  to  and 
improves the time complexity of the fitness function from O(n

⎡ ⎤/( !) n ff
2) 

to O(n2/f) where f  is the number of frequencies and n is the 
number of stations. We compare the performance of our algorithm 
with algorithms, which use other problem representations and 
confirm our results on a real-world problem. 
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1. INTRODUCTION 
The goal of the frequency assignment problem (FAP) or channel 
assignment problem is finding an optimal assignment of a limited 
number of available communication frequencies to a set of 
stations in a radio network, which minimizes the electro-magnetic 
disturbance caused by the re-use of frequencies. The solution of 
the FAP is classified as NP-Complete [24] as the problem can 
easily be reduced to graph coloring problem [15]. 
There has been a lot of interest to the frequency assignment 
problems from both the scientific community and the business 
community with the increasing popularity of wireless networks 
since optimizing the usage of the available frequencies means 

higher traffic capacity, more bandwidth and bigger coverage for 
the existing radio networks. As a result frequency assignment 
problems have been investigated by many researchers and a wide 
variety of models and solution techniques have been proposed 
including relaxation based [8][4][27] and heuristics based 
algorithms like Tabu Search[5][7][6] and Simulated Annealing 
[14][20][2]. Unfortunately these heuristics methods suffer from 
getting stuck to local minima or the convergence behavior is 
affected strongly from the seed used for random number 
generators, where as the application of stochastic methods like 
GAs makes it possible to explore the solution space efficiently in 
FAP and lowers the danger of dwelling on a local minimum [3]. 
GAs have been effective heuristic search methods for solving NP-
Complete problems such as the traveling salesman problem  or 
graph coloring problems [18]. Since FAP can be reduced to graph 
coloring problem GAs have been applied to FAP by many authors 
[11][12]. However, these solutions use models originating from 
the analog cellular design, which do not reflect the true nature of 
the problem [9] nor do they benefit from the problem specific 
information to reduce the search space.  
Valenzuela et al. [26] have presented a GA which uses 
permutation based representation to reduce the search space and 
have shown that it compares favorably to simulated annealing and 
tabu search algorithms. Crisan and Muhlenbein [9] presented a 
new crossover operator, which takes the problem specific 
information into account in looking for solutions to reduce search 
space. Moreover, most of the studies have been done on 
theoretical problems [23] as benchmark cases have been too 
simple [10]. 
In this paper we present a genetic algorithm tailored for MI-FAP, 
which uses a new problem representation that reduces the search 

space from nf  to  and further improves the time 
complexity of the fitness function from O(n

⎡ ⎤/( !) n ff
2) to O(n2/f), where f  

is the number of available frequencies and n is the number of 
stations.  
The paper is organized as follows. In Section 2, we present the 
MI-FAP, existing models and the representations along with the 
associated problems. In Section 3 we first introduce the 
FAPSTER approach and give an algorithm for efficient 
partitioning of the interference graph followed by a discussion of 
the generated search space. We then introduce the new problem 
representation and discuss the efficiency of the fitness function 
with regard to other problem representations.  In Section 4, we 
give the benchmarks for our GA using a real-world problem 
together with the GAs using other problem representations. We 
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then continue with a short discussion in Section 5 about the 
optimality of the partitions generated by the cluster discovery 
algorithm. In Section 6 we provide our conclusions. 

2. MI-FAP 
Although the frequency spectrum is continuous, carrier 
frequencies used for communication have to be separated from 
each other with a distance depending on the bandwidth of the 
communication link for efficiency. When two or more 
transmitters operate at the same frequency, or at frequencies that 
are not separated enough, they disturb each others 
communication. This phenomenon is known as "interference" and 
it makes the frequency spectrum a limited natural resource.  
FAP in general is the problem of optimizing the use of this natural 
resource while keeping the interference minimal. There are 
several classes  of the problem [1]; (1) MS-FAP (2) MO-FAP  (3) 
MI-FAP. In MS-FAP the aim is to reduce the span of the lowest 
and highest used frequencies, where in MO-FAP the aim is to 
reduce the number of frequencies used. In MI-FAP class the aim 
is to find the best assignment of a fixed number of frequencies to 
the stations in the network which minimizes the global 
interference. 

2.1 MI-FAP Models 
Attempts to solve the FAP mainly originate from the graph 
coloring problem [1] based on simplified models of the radio 
networks. A standard approach is to model the networks as 
hexagonal cells with each cell containing a base station in the 
center as shown in Figure 1. In this model it is assumed that there 
exists a fixed distance d between the center of the two cells where 
a frequency can be reused without any interference between the 
two base stations.  
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Figure 1 Hexagonal grid representation of a radio network. It 
is easy to convert this model to a graph by adding a vertex for 
each base station in the center of each hexagonal cell and an 
edge between the vertices in neighboring cells. After that 
graph coloring algorithms can be applied with an additional 
constraint to minimize the penalty value given in case a 
frequency has to be used within the re-use distance. 

This hexagonal grid model is then transformed into a graph where 
a vertex is placed in the center of each cell representing base 
stations and by placing an edge between centers of the 
neighboring cells. The algorithms for graph coloring can then be 
applied to find an efficient coloring of this graph with an 
additional constraint to keep given penalty minimal in case the 
same color has to be used within the re-use distance. 

A convenient model for representing interference by means of a 
graph G=(V,E) is representing each station by a vertex v∈V and 
connecting pairs of stations which may interfere with each other 
with an edge {u,w}∈E with distance δ(u,w) denoting the penalty 

values or interference between the stations u and w. This graph is 
known as the interference graph or constraint graph and usually 
penalties or interferences below a certain threshold are tolerated 
to remove some of the edges from the graph relaxing the hardness 
of the problem. 

2.2 Representations  
There are only two problem representation techniques 
encountered in the literature, which can be referred as R1 and R2 
[1] applied to MI-FAP.   
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Figure 2 - Representation R1. Each chromosome is a vector 

| |vs Z∈  where sj is the frequency assigned to station vj. 

The most common representation technique R1 [21][9] is based 
on value encoding as shown in Figure 2, where each chromosome 
is a vector | |vs Z∈  and  sj is the frequency assigned to station vj.  
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Figure 3 Representation R2. Binary string representation with 
fmax genes, each containing the stations assigned to the 
frequency f. 
Another common representation of the problem referred as 
R2[22][19] is based on binary string representation of 
chromosomes with genes S1 to Sfmax for each frequency from 1 to 
fmax and each containing a partition of vertices that are assigned to 
respective frequency as illustrated in Figure 3. 

2.3  Problems  
In fact, the models for MI-FAP discussed above are 
oversimplified. Firstly, in real life the stations are not distributed 
uniformly. They usually concentrate around certain areas, which 
are by no coincidence high population areas; city centers, 
shopping malls and so on where as the distribution in the rural 
areas and outskirts of the cities are less concentrated. The 
buildings and geographic structure also deform the regularity of 
the graph.  
Secondly, when considering the electromagnetic energy it is not 
possible to draw such exact boundaries to the cells as shown 
above. As a natural phenomenon, electromagnetic energy travels 
in the space until it is totally absorbed or reflected. Therefore, a 
change of the frequency in one station affects the other stations in 
the network. In that sense a vertex is a neighbor to every other 
vertex in the graph, which usually makes the interference graph in 
real-life a complete graph, resulting in a big search space. 
Relaxation of the constraints by removing edges in a given 
interference graph to reduce the search space may cause 
algorithms to satisfy with an approximation instead of the global 
optimum even with exhaustive search methods. 
The GAs using R1 and R2 look for the solution in the whole 
search space or reduce the search space by relaxation of the 



constraints. Furthermore, the time complexity of the fitness 
function contributes badly to the overall performance of these 
algorithms. In R2 preserving consistency of the chromosomes 
during crossover and mutation comprises a problem since only the 
fixed size subsets contain feasible solutions [22]. Otherwise, the 
search space gets bigger and consequently the computation time 
will increase.  

3.  FAPSTER APPROACH 
Our intuition comes from the observation that the most 
problematic areas are the places where the station density is high. 
In our model, we see the physical map in clusters, where each 
cluster is associated with a property called problem-level.  
The main factors that affect the problem level are the density of 
the stations in the cluster, the output power of the stations and the 
geography of the area.  

Low problem area
(suburb)

High problem area
(touristic location)

Low problem area
(small town)

High problem area
(city center)

Most influential 
station in this cluster

 
Figure 4 A real-life radio network and clusters. The station 
density or output power of stations in some areas is high 
which makes these areas more problematic than the others do.  
Problem level of a cluster can be taken as the sum of the 
measured interference between every pair of stations within a 
cluster. Considering the most influential parameters that affect the 
interference, we observe the following case as illustrated in 
Figure 4. When the density of the stations in a cluster is low, then 
the problem level is low meaning that problem of assignment is 
much easier to solve.  
Intuitively we think that it is beneficial to start the frequency 
assignment from the clusters where the problem level is high, as 
we want the interference level to be minimal in these areas. In 
fact, we want the interference level to be 0 in these clusters in the 
best case. The primary way to achieve this is to assign different 
frequencies to all stations in the same cluster. Therefore, we limit 
the maximum number of stations in a cluster to the maximum 
available frequencies. The cluster size might be adjusted for other 
variants of the FAP problems. 
Once we have achieved the minimum interference in the 
problematic clusters, we think about the effect of the assignments 
with respect to each other. We expect the problem-level between 
two neighboring clusters to be less than the problem-level within 
a cluster, otherwise we would already include the stations causing 
the problem-level to be high within another cluster. Thus if there 
are already assignments made in two clusters, the assignments 
inside the clusters can be re-organized to reduce the unwanted 
disturbance between them.  

3.1 Cluster Discovery  
Given a matrix of interferences between the stations in an MI- 
FAP, the cluster discovery algorithm returns a list of clusters 
found in the interference graph.  

Let G(E,V) be an interference graph with V stations and δ(u, v) be 
the interference between the two stations u and v. A cluster 
C V⊆ is defined as 

' '- ,   , , ,  ( , ) ( , )V V C u v C s t V u v s t= ∀ ∈ ∧ ∀ ∈ ∂ > ∂ . 

The cluster discovery algorithm given in Figure 5 starts with 
calculating the cumulative interference around each station in the 
map as if they all operate at the same frequency. This gives an 
indication of areas (clusters) where the station density is high. If 
all of the clusters are isolated (ideally), the cumulative 
interference for each station in the same cluster has to be the 
same. In practice, there might be differences because of the 
physical barriers, which weaken the links between particular 
stations (isolated incomplete graph). This leads us to create 
smaller clusters, where the graph is closer to a complete graph. 
The idea of selecting the most complete graphs as clusters is to 
increase the efficiency in the frequency distribution, since we give 
all of them a different frequency. As the graph is more complete, 
we will have more clever distributions. 

 

DISCOVER_CLUSTERS( I, M ) 
I: n×n interference matrix 
M:  maximum cluster size 
List L, S 
for each column Xi in the interference matrix I 
 SORT X in descending order i  

 r SUM( X ) i 

 INSERT PAIR(i, r) into L 
SORT L in descending order 
i 0 
CREATE cluster Ci 

for each pair p in L  
if SIZE(Ci) = MAX-CLUSTER-SIZE then   

  INSERT C in S i 

  i i+1 
  CREATE Ci

 j INDEX(p) 
 if not PROCESSED(j) = TRUE then 
   INSERT j into Ci 

   PROCESSED(j) TRUE 
return S 

Figure 5 Cluster discovery algorithm 
By sorting the cumulative interferences from biggest to smallest, 
we determine the candidate clusters. Thus beginning from the 
station that has the biggest cumulative interference, we look for 
the neighborhoods around each station with a population equal or 
less than the maximum available frequencies. We start with the 
area around the most influential station and pick the first m 
(where m is the cluster size with ) stations which are 
most affected by the current station. As we build the clusters, we 
remove the stations that we have included from the map. A station 
cannot be a member of two clusters. Preferably, a station will be 
included in a cluster, which has more relations (degrees).  

/m n f= ⎡⎢ ⎤⎥

Once a cluster reached to its population limit, it is added to the list 
of found clusters and a new cluster is created with the next most 
influential station, which remained on the map. After all of the 



clusters are discovered, the isolated stations can be removed or 
assigned to any frequency, as it does not have any effect to the 
solution of the problem. Finally, the algorithm returns the list of 
the clusters discovered on the interference map. 

3.2 Search Space Generated by Clustering 
The search space for the problem is all possible frequency 
assignments for n stations and f frequencies, which contains f n 
possible frequency assignments. With clustering, we partition the 
station into groups that contain f stations. Thus by clustering the 

stations, the search space reduces to , as there are only (f 
!) possible frequency assignments for each cluster in a total of 

 clusters.  

⎡ ⎤/( !) n ff

⎡ /n f ⎤

3.3 R* Representation 
We have reduced the number of possible solutions to look for 
drastically with our intuition for the clusters however, it is still a 
big solution space to search. Therefore, we apply the genetic 
algorithm to carry on further with the search after we encode the 
problem using the new representation which we introduce here as 
R*. This encoding will enable us to search the state-space of the 
permutations of the assignments within clusters. 
In R* representation each gene in a chromosome represents a 
cluster, which is discovered by the cluster discovery algorithm 
discussed earlier. Each locus in a gene corresponds to a frequency 
and each nucleotide contains the station to which that frequency is 
assigned as illustrated in Figure 6. The order of the frequencies is 
identical across all genes in all chromosomes.  
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Figure 6 Representation R*. A chromosome contains 

  genes C/m n f=⎡⎢ ⎤⎥ i and each gene represents a cluster with 
maximum f stations as discovered by the cluster discovery 
algorithm. Each locus k in a gene contains the station, which is 
assigned to frequency k. 
This way each nucleotide, which holds the same location across 
the chromosome, contains the stations that share the same 
frequency. Once the clusters are assigned to the genes, the 
locations and the contents of the genes are always the same across 
all of the chromosomes. Evidently, the order of the nucleotides of 
the same gene in different chromosomes may vary. For the sake 
of efficiency, all the genes are chosen to be of the same size. 

3.4 Fitness Function 
The fitness or evaluation function for the MI-FAP calculates the 
overall interference for the given individual, as the objective is to 
find the minimum for this value. Since this function has to be 
evaluated for every individual in the population during the 
execution of the genetic algorithm, it is important to minimize the 
time complexity of this function to reduce the solution time. In 
that sense any small improvement to the calculation of the fitness, 
will have a great impact on the overall performance of the 
algorithm. Although there are schemes like caching the fitness 
values to avoid unnecessary calculations, it is the problem 
representation, which determines how the evaluation function will 

look like. The representation R* used in our algorithm enables us 
to improve the time complexity of the evaluation function with 
regard to R1 and R2 representations. Our representation is 
compact and efficient since the stations are grouped by the 
frequency that they use in chromosomes. 
A typical evaluation function for  R1 as in Lai and Coghill [21] or 
Crisan and Muhlenbein  [9] is given in Figure 7. It is easy to see 
that this function has O(n2) time complexity, if we assume that the 
given interference graph is complete.  

 
Figure 7  A typical evaluation function for R1 with O(n2) 
complexity computes the interference between every pair of 
stations encoded in the chromosome.  
In representation R2 the stations are binary encoded in each gene. 
A naïve implementation of the evaluation function for this 
representation requires going through every pair of bits in the 
gene and lookup the interference value as illustrated in Figure 8. 
The evaluation time of this function is minimum f times higher 
than the function for R1. A more efficient version of this function 
needs an additional decoding step to collect the stations per each 
frequency before computing the interference between each pair.  

 
Figure 8 A typical evaluation function for R2 needs f times 
more computation time than R1 due to decoding of bits. 
In R* the evaluation function given in Figure 9 only checks for 
the interference between the stations that belong to different 
clusters as the total interference in a cluster is arranged to be 0.  

 

for each station vi  in chromosome,  i from 1 to n 
   for each station vj in chromosome, j from 0 to n   

INTERFERENCE += I(i,j) 

for each gene gi in chromosome, i from 1 to f 
for each station vj  in gene gi,  j from 1 to n-1 
   for each station vk in gene gi, k from j+1  to n   
 if vj and vk use frequency i then  
  INTERFERENCE += I(j,k) 

for each cluster Ci in chromosome, i  from 0 to -1 ⎡ ⎤/n f

   for each cluster Cj in chromosome, j=i+1 to   ⎡ ⎤/n f

for each frequency k, k=0 to f 
INTERFERENCE += I( Ci[k] Cj[k]) 

Figure 9 The evaluation function for R* with O(n2/f) 
complexity removes intra-gene interference calculations as the 
interference in a cluster is arranged to be 0. 
This improves the time complexity to O(n2/f) compared to 
evaluation functions for R1 and R2 because we only calculate the 
interference for the stations encoded in pairs of genes and remove 
unnecessary intra-gene interference calculations.  

3.5 Genetic Algorithm 
The genetic algorithm is based on the simple genetic algorithm 
given by Holland [17] with steady state defined by Syswerda 
[25]. The algorithm given in Figure 10 starts with discovering the 
clusters in the network, then the discovered clusters are encoded 
using R* where each gene represents a cluster and each locus in a 
gene represents a frequency. Initial population is created by 
assigning frequencies randomly to each station in the cluster for 
every cluster. 



  

FAPSTER(I, M) 
 t 0 
 S DISCOVER-CLUSTERS( I, M) 
 ENCODE(S) 
 INIT-POPULATION (Pt ) 
 while not STOP() 

  C  SELECT-PARENTS (Pt) 
Z RECOMBINE (C) 

  MUTATE (Z) 
  t = t + 1 ; 
  UPDATE-POPULATION (Pt, Z) 
 Z BEST( Pt) 
 return DECODE(Z);  

Figure 10 FAPSTER (FAP*) Algorithm. Starts with 
discovering the clusters in the interference graph then encodes 
this to a primordial chromosome using random assignments. 
Selection operator uses the linear ranking proposed by Goldberg 
[18]. Whitley [28] has shown that linear ranking gives better 
results than proportional selection. Our tests have confirmed that 
truncated linear ranking produces good results for the problem 
instance we have used.  
The algorithm crosses over using the best individual of the 
population with another individual selected in roulette wheel 
fashion. Although Dorne and Hao [12] states that One-point 
Crossover,  Two-point Crossover or Uniform-crossover don't 
perform well in FAP, our empirical studies have shown that One-
point Crossover gives better results than Uniform-crossover or 
Two-point Crossover in this encoding. In order to preserve the 
consistency of the chromosomes without adding too much 
computational burden, we let the crossover operate only at gene 
level in our GA. 
Mutation is simply achieved by swapping contents of two loci in 
two different genes in the chromosome. Since the crossover only 
recombines the genes not alleles, mutation operator has a crucial 
role to provide variety in the population. Therefore, additional 
parameters for controlling the probability and the impact of the 
mutation are included in the algorithm. The parameter mutation 
impact determines the number of mutations to happen on a gene 
and the mutation factor determines how many genes are affected 
from the mutation. A mutation probability of %52 has given good 
results with the test cases in our algorithm. After the mutation a 
new population is created by replacing the weakest individuals in 
the previous population.  
The algorithm stops when the predefined condition (e.g. 
achieving a target fitness value or reaching to a number of 
generations) is satisfied and the contents of the best individual in 
the current population is decoded and returned as the solution of 
the encoded MI-FAP instance. 

4. BENCHMARKS 
We have used a real-life problem for benchmarking obtained from 
the measurements of a GSM network operator in Belgium with 
500 base stations and 60 available frequencies. We have applied 
genetic algorithms GA1 using representation R1, GA2 using R2 
and FAP* using R* to the problem and observed the fitness 
evaluation over generations. The results of the three algorithms 
are plotted on a graph as shown in Figure 11 and compared. 
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Figure 11 Comparison of genetic algorithms using R1, R2 and 
R*. Algorithm FAP* starts already with a good assignment 
due to the clustering and converges to the solution (-3552) 
with relatively less generations. 
Given enough iterations all of the three algorithms converge to 
the same predetermined fitness value (-3552) obtained by 
applying another local search algorithm to the problem. However 
we have observed that FAP* algorithm starts with a very good 
assignment due to the clustering and furthermore takes relatively 
less generations to reach the solution in comparison to the other 
algorithms. 
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Figure 12 Comparison of evaluation speeds. FAP* algorithm 
computes 33 times more generations than GA2 and 19 times 
more generations than GA1 during the same amount of time 
thanks to the improvement in time complexity of the fitness 
function. 
We have also compared the evaluation speeds of each algorithm 
in terms of generations as shown in Figure 12. The results have 
confirmed that the fitness calculation function for R* speeds up 
the evaluation up to 33 times thanks to the improvement in time 
complexity of the fitness function by removing intra-gene 
interference calculations. 

5. DISCUSSION 
We would like to show that the partitioning generated by the 
Cluster Discovery Algorithm presented in Section 3.1 is optimal. 
Our intuition for the clustering have been empirically given good 
results and also reduced the time for computing the fitness of the 
individuals. It is our aim to motivate the idea of clustering 
formally using the graph theoretical notions. There has been many 



studies in solving graph coloring problems by partitioning so that 
the ideas presented here may be quite obvious to some readers or 
may have already been proven by other authors. 
Let Ci and Cj be two clusters obtained by the cluster discovery 
algorithm in V with  then  ( , ) ( , )

, ,
u v s t

u v C s t Ci j
∑ ∑∂ > ∂
∈ ∈

, , , ( , ) ( ,u v C s C u v u si j∀ ∈ ∀ ∈ ∂ > ∂ ) . 

This simply states that if the sum of the internal interferences in a 
cluster is bigger than the other one, then the interference between 
the stations of the two can never be bigger than the interference 
between the stations of the bigger cluster. Proof follows from the 
definition of cluster and the algorithm. The algorithm starts with 
discovering the stations, which has the biggest interference 
between them, and then it discards the found stations from the list 
of the stations. Assuming that there exist two stations, which have 
the biggest interference between them and not included in the first 
cluster, contradicts with the way the clusters are built by the 
algorithm. 
We would like to confirm that given f frequencies there's no other 
partitioning other than clustering that minimizes the total 
interference. If we start with two available frequencies, we see 
that assigning the stations, which have the higher interference 
between them, minimizes the total interference. Considering this 
with the clustering algorithm, it is the case where the cluster size 
is two and the first cluster contains the two stations that have the 
highest interference. Therefore, the members of the first cluster 
have to be assigned different frequencies. We can extend this idea 
inductively to f frequencies and observe that assigning the 
members of the first cluster minimizes the total interference. 
Similarly, if the assignment in the first cluster is optimal we can 
consider the second cluster with the highest interference level and 
so on. This way we see that assigning different frequencies to the 
members of the cluster minimizes the total interference. In our 
algorithm, we achieve this by making the maximum cluster size f. 
Since for every cluster Ci and |Ci|≤f the interference for each 
cluster is minimal.  

6. CONCLUSIONS 
We have introduced a genetic algorithm using a new problem 
representation for the MI-FAP and shown empirically that it 
obtains better results than the algorithms based on previous 
problem representations referenced as R1 and R2 in the literature. 
We have also presented an algorithm for efficient partitioning of a 
given interference graph for a smaller search space in comparison 
to the conventional graph coloring based GAs for FAP. Our 
representation of the problem enables us to reduce the search 

space from nf  to . Furthermore, it improves the time 
complexity of the fitness calculation from O(n

⎡ ⎤/( !) n ff
2) to O(n2/f) with 

regard to the other problem representations which results up to 
consumption of 33 times less time for the same amount of 
population generations. 
In this paper we have used a real-life MI-FAP instance obtained 
from the measurements of a network operator in Belgium for 
benchmarking, however, the performance and the efficiency of 
the algorithm needs further to be explored with the standard 
benchmarking instances like CALMA or Philadelphia for 
comparison with the other algorithms proposed. 

The algorithm presented here uses one-point crossover and may 
further be improved with other crossover strategies for 
permutation encodings such as Order Crossover or Partially 
Matched Crossover and it has been proposed by Valenzuela et al. 
[26] that the Cycle Crossover gives good results in their 
permutation encoding based algorithm for MS-FAP. 
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