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ABSTRACT 
This paper considers an application of evolutionary computation 
(EC) to classification and pattern discovery.  In particular we 
present a genetic algorithm (GA) utilized to discriminate cases of 
potential financial statement fraud.  Of key interest to us is the 
ability to distinguish multidimensional patterns over time.   The 
GA evolves strings over a pattern definition language to define 
class boundaries and to select classification features.  The 
language defined allows for 1) the integration of data across time 
and across a number of variables 2) the integration of quantitative 
as well as qualitative data 3) the direct evolution by genetic 
algorithm and 4) easy interpretation by human experts.  The data 
and method are described and results presented.  Results offer a 
63% true positive rate with a false positive rate of 5%.  These 
results compare favorably with other published results on 
comparable data. Our technique captures behaviors not evident 
from traditional data analysis methods.   The output from our 
system has the additional benefit of being easily understood and 
utilized by experts and practitioners in the field.   This makes our 
approach more desirable than other black-box solutions. These 
techniques provide a foundation for multidimensional behavior 
analysis of data from a variety of domains including, financial, 
biological, manufacturing and clinical.  

Categor ies and Subject Descr iptors 
I.5.4-Applications;  I.5.2-Design Methodology; I.5.1-Models; 
F.2.2 Nonnumerical Algorithms and Problems. 

General Terms 
Algorithms, Measurement, Performance, Design, 
Experimentation. 

Keywords 
Genetic Algorithms, Classifier Systems, Pattern Discovery, 
Financial statement fraud 

1. INTRODUCTION 
Genetic algorithms have commonly been applied to the task of 
classification and machine learning[4][10] in a variety of 
domains.  GA’s have also been applied to a vast number of time-
series related problems including prediction and feature detection.  
Some applications have even performed pattern elucidation and 
classification[1][2]. We applied a genetic algorithm to the task of 
classifying instances of financial statement fraud. 

Exposure to fraudulent corporate behavior is a significant source 
of risk for stakeholders.   In an effort to decrease the risk and 
exposure to fraud we sought to discover a means by which to 
classify corporations with respect to known cases of financial 
statement fraud.  Detecting a single case of financial statement 
fraud prior to public accusation of fraud can produce large bottom 
line savings. 

Companies engaging in fraudulent behavior do so in order to 
control specific information.  The most common form of fraud is 
termed “aggressive revenue recognition.”   This is done under a 
few different conditions, but always with the same goal in mind:  
to show an inflated picture of revenue than what is actually 
happening in the company.   

In most cases this means that the company has recorded revenue 
prematurely or has recognized fictional revenue. For example, a 
company that is about to file for an initial public offering (IPO) 
may inflate their revenues in order to appear more attractive prior 
to the actual offering of shares.  In other cases a company may 
simply be attempting to match analyst or market expectations for 
earnings.  Missing an earnings target can often cost significant 
losses in share price for the company. 

It is expected that certain types of fraud should be recognizable 
based on its effects on standard financial filings.  Fraud relating to 
improper revenue recognition is a good candidate.   

There are several key challenges in this problem domain.  The 
training set for fraud is very small and unbalanced given the rarity 
of occurrence. Others have estimated prior probabilities between 
1-2%[11].  As a result, sample sizes for training models are 
necessarily small. 

There are a large number of financial metrics that can be utilized 
in discriminating positive and negative cases.  This data is 
publicly available or can be calculated from public data.  The GA 
can efficiently navigate this highly non-linear search space and 
perform feature selection. 
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There are models that have been previously published. Most fraud 
detection models take the form of logistic regression models 
[8][11] and neural networks [3][7]. Aside from these, many fraud 
detection techniques based on expert opinion are qualitative or 
rely on information that is not known by the outside world[13].   

We feel that the genetic algorithm approach offers many benefits 
over the other approaches that have typically been employed in 
this domain.  For instance, the purely statistical methods have 
limitations in dealing with temporal data across many variables 
unless the data is pre-processed to create other intermediate 
factors such as slopes and moving averages.  This information 
could be calculated on every piece of raw data, but you would 
quickly experience an explosion of data.  Our method also 
provides unique ways of integrating time-based data that would be 
difficult to represent in a logistic model.  

While statistical methods do not fully meet our criteria for the 
final output of our system, they do provide valuable insight that is 
useful in directing the GA and reducing the overall size of the 
search space.  In particular, we have used CART and Logistical 
methods to down-select our list of candidate independent 
variables prior to running the GA. 

Perhaps a more significant factor in choosing the GA was the high 
rate of missing data.  Using a GA, we are able to explicitly handle 
missing data in our final solution rather than being required to 
remove even more data from our data set to balance out the effects 
of this missing data as would be required for other methods.  
Removing data is undesirable given the small sample set. 

2. THE DATA 
As with most projects of this type one significant hurdle is the 
acquisition of data. Our raw data came from commercial sources 
including Mergent[9] and Reuters[12].  These organizations 
process the SEC filings of public companies and provide that data 
in a distilled format as a service.  This data is provided in 
quarterly or annual intervals depending on the filing schedule for 
a particular company.  Within any corpus of companies, you may 
find companies with only annual data, but no data for the 
intermediate quarters.  Typically our financial metric data is 
organized by company, year, and quarter with data for each metric 
available, at most, at each time point. 

2.1 Raw &  Calculated Financial Metr ics 
Along with the raw financials, the data providers sometimes 
provide other financial metrics that are derived from the raw 
financials.  On top of those, the problem domain or the analysts 
involved may dictate additional metrics be calculated from the 
raw data.  Table 1 contains a list of the typical metrics that were 
utilized in deriving our models. 

2.2 Modified Z-Scores 
This project builds on previous work in deriving more 
information from a cohort of peered companies and their raw 
metrics [15].  The new values that are derived are called 
“modified z-scores.”   These scores, while similar in concept, are 
notably different from typical z-scores in the way that they are 
calculated. This is done in such a way as to make them more 
relevant in cases involving very small cohorts of data.  
Regardless, there is enough similarity between the types of scores 
for us to use the terminology somewhat interchangeably. These 
scores give a quarter-by-quarter measure of distances from 

Table 1.  Raw and calculated financial metr ics and ratios. 

Metr ic Descr iption 

AGE Number of years since first filing available from data 
provider 

AR Accounts Receivable 

AR_ADJ AR/TOTA 

AR_GROWTH (AR - AR_PRIOR ) / ABS( AR_PRIOR ), where 
AR_PRIOR is the AR value in the prior fiscal year/quarter 

AR_TOTCA AR / TOTCA 

AR_WO_TOTR AR_ZW – TOTR_ZW for Zw, similar for Zb 

ASSET_Q 1 – (( TOTCA + PPEN) / TOTA ) 

CCE Cash and Cash Equivalents 

CCE_ADJ CCE / TOTA 

CFFF Cash Flow from Financing 

CFFI Cash Flow from Investing 

CFFO Cash Flow from Operations 

CFFO_ADJ CFFO / TOTA 

CFFO_WO_NI CFFO – NI 

CFFO_WO_NI_TOTR ( CFFO – NI ) / TOTR 

CFFO_WO_TOTR TOTR_ZW – CFFO_ZW for Zw, similar for Zb 

COG Cost of Goods Sold 

DAYS_SALES_OUT Days Sales Outstanding (( QUARTER *  90 ) *  AR) / 
TOTR 

NI Net Income 

NI_ADJ NI/TOTA 

NI_TOTR Net Profit Margin: NI/TOTR 

OPEXP Operating Expenses 

OPEXP_ADJ OPEXP/TOTA 

OPINC Operating Income: Earnings before taxes + Other Income 

OPINC_TOTR Gross Profit Margin: OPINC/TOTR 

PPEN Plant Property and Equipment Net 

PPEN_ADJ PPEN/TOTA 

PROFIT_CFFO_2YRS The number of the prior fourth quarters where CFFO > 0 
for the preceding two years / the number of prior fourth 
quarters where CFFO is not missing for the preceding two 
years 

PROFIT_NI_2YRS Similar to PROFIT_CFFO_2YRS 

PROFIT_OPINC_2YRS Similar to PROFIT_CFFO_2YRS 

SIZE_ASSETS The average of the 4th quarter TOTA values for the prior 3 
years 

SIZE_REVENUE The average of the 4th quarter TOTR values for the prior 3 
years 

TOTA Total Assets 

TOTA_GROWTH (TOTA – TOTA_PRIOR)/ABS(TOTA_PRIOR) where 
TOTA_PRIOR is the TOTA value in the prior fiscal 
year/quarter 

TOTCA Total Current Assets 

TOTE Total Equity 

TOTE_ADJ TOTE/TOTA 

TOTL Total Liabilities 

TOTL_ADJ TOTL/TOTA 

TOTL_ADJ_INTAN TOTL/(TOTA – Gross Intangibles) 

TOTR Total Revenue 

TOTR_ADJ TOTR/TOTA 

TOTR_GROWTH (TOTR – TOTR_PRIOR) / ABS( TOTR_PRIOR), where 
TOTR_PRIOR is the TOTR value in the prior fiscal 
year/quarter 

WC_ADJ WORKING_CAPITAL / TOTA 

WORKING_CAPITAL TOTCL - TOTCA 



derived “normal”  values.  They are calculated in two dimensions.  
The first dimension, called a z-between (Zb), incorporates data 
from a cohort of the company’s peers.  The Zb’ s for a financial 
metric for a company provide a measure of how different a 
company is from its peers.  Our second dimension is a z-within 
(Zw).  The Zw’ s provide similar information, but rather than 
comparing the current quarter with a company’s peers, the Zw’ s 
provide a comparison to the company’s past. Negative values for 
either Zb or Zw indicate variations in an undesirable direction, 
such as “unusually low or decreasing net income.”   Our previous 
list of metrics as shown in Table 1 is doubled as we calculate Zb 
and Zw variations of each of those metrics. 

2.3 Flags 
Once the z-scores were compiled, the data was further abstracted  
in two different ways.  First, the data was converted into “ flags.”   
Secondly, the z-scores were partitioned into buckets. 

 The flags were simple thresholds placed on the z-scores for 
certain metrics of interest.  When a z-score passed a threshold, the 
flag was marked as “ true”  for a given quarter. If the z-score did 
not meet the condition of the flag then it would be marked “ false”  
for that quarter.  In this instance these thresholds were set 
statistically to indicate the significance of the variance of a 
particular value.  As such, the raw data was converted to a series 
of true/false values depending on whether or not the z-score 
crossed those thresholds.  These thresholds were set to indicate 
where a metric had strayed significantly into the negative range.  
In this regard the GA would be attempting to combine patterns of 
flags on various metrics to indicate some differentiable behavior. 

2.4 Buckets 
The second abstraction of the z-scores consists of partitioning the 
scores into “buckets.”   These buckets were set up in such a way 
that z-scores falling into a certain range would be assigned to an 
appropriate bucket.  Thus, the bucket method captures a greater 
amount of information than does the threshold approach (which is 
essentially a two-bucket system), but still less than using the raw 
data itself.  The perceived benefit of using a discretized version of 
the data was to increase the overall robustness of the patterns. 

Determining the number of buckets and appropriate ranges can 
also be challenging.  These factors directly impact the overall 
capability of the system. We utilized some simple measures in 
setting our bucket sizes.  Our primary goal in setting up these 
buckets was to provide the GA with discriminatory data. To that 

end more buckets, of narrower widths, were utilized in important 
discriminatory regions.   

Figure 1 shows a histogram of the number of data residing in each 
bucket.  The x-axis indicates the bucket, and the y-axis gives the 
count of data in that bucket.  The light line shows the contents of 
the buckets if equally spaced buckets were used while the dark 
line show the final bucket spacing which utilizes variable width 
buckets. 

 

Figure 1. Bucket histogram. 

The buckets covering the center of the distribution cover a much 
smaller range of values than those buckets covering the tails of the 
distribution.  This scheme gives the GA greater power of 
discrimination than if the buckets were of equal width.  This 
scheme provided significant improvement in the GA’s results. 

 
2.5 Integrating Qualitative and Quantitative 
Data 
This background work provided us with a solid corpus of data for 
developing our methods.  At the same time, we wanted to make 
sure we could later integrate more qualitative data.  Qualitative 
data might include analyst estimates, or event data such as change 
of leadership at the corporation.  While we were unable to collect 
enough of this type of data to draw any interesting conclusions, it 
is our supposition that the methods described below are equally 
capable of operating on qualitative data as they are on quantitative 
data. 

2.6 Missing Data 
One of the primary challenges presented by our data set was the 
rate of missing data.  In order to achieve our performance goals 
we would need our methods to be robust to missing data.  A 

% Populated Z-Within Z-Between Overall % Populated Z-Within Z-Between Overall
<5% 0.0% 0.0% 0.0% <5% 1.2% 1.2% 0.0%

<15% 7.8% 2.0% 0.0% <15% 3.5% 2.4% 0.3%
<25% 21.6% 2.0% 2.0% <25% 7.1% 3.2% 0.3%
<35% 23.5% 3.9% 2.0% <35% 15.0% 3.2% 0.9%
<45% 33.3% 5.9% 5.9% <45% 22.7% 3.2% 4.7%
<55% 41.2% 7.8% 19.6% <55% 26.8% 3.8% 10.6%
<65% 47.1% 7.8% 29.4% <65% 31.9% 5.3% 22.7%
<75% 49.0% 7.8% 41.2% <75% 36.9% 8.6% 33.3%
<85% 58.8% 11.8% 49.0% <85% 46.0% 22.4% 41.3%
<95% 78.4% 33.3% 76.5% <95% 59.6% 53.4% 67.8%

<=100% 100.0% 100.0% 100.0% <=100% 100.0% 100.0% 100.0%

Target Companies (N=51) Peer Companies (N=339)

Figure 2. M issing data rates. 



down-selection of the available metrics was made to remove the 
metrics with excessively high missing rates.  This missing data 
leads to higher rates of missing on our calculated z-scores as they 
require a certain number of observations in order to calculate a 
score. Figure 2 displays the resulting missing rates for the various 
z-scores. It is a natural conclusion that any pattern description 
would need to take missing data into account. 

3. COMPANIES OF INTEREST 
The list of companies selected for use, as positive cases, in our 
experimentation were acquired from the SEC’s Auditing and 
Accounting Enforcement Releases[14].  These documents were 
used as the gold standard for our set of positive cases.  It is 
important to note that companies listed in these document have 
been charged with various fraudulent schemes, but not all end up 
with a definable guilty verdict.  Some of the companies choose to 
settle the charges and others move through full litigation 
proceedings, and not all towards guilty verdicts.  It is plausible 
that a company in our positive set has not committed fraud. 
Likewise, it is conceivable that a company in our negative set has 
committed fraud.  

3.1 AAER’s 
Collating data from these filings is a typical approach as seen 
elsewhere in literature[3][8][6].  A selection of these documents 
was retrieved from the SEC[14] and processed by hand for 
content.  In particular there were a few pieces of information we 
sought to retain from these documents. 

1. Identities of Accused Companies 

2. Activity Period: The range of time during which the 
SEC charged that the alleged fraud activity was 
occurring at the target company i.e. “ first quarter fiscal 
year 2004 to fourth quarter fiscal year 2005.”  

3. Type of fraud: A simple classification of the alleged 
dominant type of fraud being acted out.  It was not 
uncommon for a company to be charged with engaging 
in multiple types of fraud during the same period. 

In our final training set we limit the data for our positive cases to 
the filings from the identified activity period and the preceding 
year.  This way we do not obscure the positive data with supposed 
negative data from the same companies. 

3.2 Selecting Negative Cases 
We included in our training corpus a peer class consisting of up to 
8 peer companies for each positive company.  These were the 
same peers that were used in calculating the z-between measures.  
The peers were selected based on those closest in size to the 
positive company as measured by total revenue.  Peers must also 
be in the same Standard Industry Classification (SIC) code.   

3.3 The Data Sets 
Our experimentation progressed across a number of datasets. Each 
subsequent dataset contained a larger corpus of positive and 
negative cases.  Each subsequent dataset was typically a super set 
containing the prior smaller datasets as a subset.  Each set of 
companies comprises a larger set of companies, more variation in 
fraud method and a larger peer cohort.   

1. Channel Stuffers Flags:  This data set included a very 
small sample of 10 positive companies and 17 negative 

companies. The 10 positive companies had been 
indicted by the SEC on charges of a specific type of 
fraud, channel stuffing.  The data in this set was not 
continuous z-score values, but rather Boolean flags 
which had been derived from the z-score data.   This 
dataset enabled a proof of concept that gave us the 
confidence to move to the subsequent data sets. 

2. Channel Stuffers Z-Scores:  This dataset utilized the 
same set of positive companies as the channel stuffers 
flags dataset while increasing significantly the number 
of peer companies.  The data in this set utilized the 
bucketed z-score values. 

3. Revenue Recognition:  This data set was a much larger 
set of positive and negative companies and also utilized 
the bucketed z-score values. The companies in this 
corpus had been charged by the SEC under the broader 
umbrella of fraudulent revenue recognition.  

4. All Fraud:  This data set was still larger.  This set of 
companies included companies that had been charged 
with a variety of methods of financial statement fraud.  

4. THE GENETIC ALGORITHM 
We developed a genetic algorithm to derive patterns of a specific 
form to segregate positive and negative cases.  The GA addresses 
many of the significant issues in the data as described above. 

4.1 Representation 
Over the life of the project we utilized two different representation 
schemes.  Rather than unique approaches to the same problem, 
these representations addressed a progression of the problem. 

Our representation was intended to serve multiple needs. We had 
three primary desires as we developed a representation.   

1. The representation must allow the integration of data 
across time and across a number of variables.  It is our 
contention that the behavior we are attempting to detect 
is not visible easily through a specific metric, but rather 
the behavior is evident in the interactions between a 
number of metrics and indicators. 

2. The integration of quantitative as well as qualitative 
data.  For future use we desired the ability to apply the 
GA to a mix of data types in addition to the continuous 
z-scores, and the discrete flags.  

3. The derived patterns must be easily interpreted by 
human experts.  Given the sensitive nature of fraud 
allegations, it is important that the information 
encapsulated in the pattern be transparent to decision 
makers.   The patterns should be described in terms that 
make sense to these consumers. 

4.1.1 Regular Expressions For Flags 
Our first attempt at working with the data utilized an integer 
representation to build simple regular expressions to match 
patterns of flags.  This instance of the problem was run against 
data from 17 metric-derived flags across the “Channel Stuffers 
Flags”  dataset. 

The goal was to derive simple regular expressions that would be 
applied to the quarterly data from the companies.  The genome for 
this attempt was of length # of flags *  desired length of pattern in 



quarters.  For a desired pattern length of 5 quarters and 17 flags, 
the genome was 5 * 17 = 85 integers long.   

Each allele could take a value of –1, 1, 0 or *.  A -1 value 
indicated that the data for that quarter was explicitly missing or 
incalculable.  A value of 1, indicated that the flag “ fired”  for the 
given quarter.  A zero value indicated that the flag did not “ fire”  
for that quarter.  Finally, a * indicated that it didn’ t matter what 
the value of the flag was for a given quarter.   

The GA evolved, in each single genome, one pattern per metric.  
See figure 3 for a sample individual pattern.  This representation 
meets some of our criteria but not all.  It did provide us a starting 
point to give us a rough idea of whether or not simple patterns 
could be used to discriminate between fraudulent and non-
fraudulent data.  This representation, while relatively easy to 
understand, is hard to interpret. Also, the specific implementation 
did little to integrate across multiple metrics as each metric was 
primarily considered independently.  While each (pattern, metric) 
pair contributed to the fitness of the overall genome, these 
patterns were difficult to consider in an integrated method.  Even 
so, this representation was a necessary step in the evolution of our 
thinking and provided useful insights and even interesting results. 

4.1.2 “ n-out-of-m”  Patterns 
Our second representation utilized a different structure for 
defining patterns and more closely matched our ideals. These 
patterns seek to aggregate data across a number of time periods as 
well as across a number of metrics.  These patterns are also easily 
expressed as English sentences.  Figure 4 provides an example of 
the English form of one of these patterns.   

These patterns are comprised of a number of clauses that fit the 
template of “n out of m quarters of metric i are operator than 
threshold.”  This number of clauses is decided before running the 
GA.   

Each clause contributes five alleles to the overall genome.  The 
first two (n and m) are integers that must be in the range 0 to q 
where q is the maximum number of quarters that a pattern may 
operate on.  The third integer allele (i) identifies the metric that 
the pattern operates on.  Thus, the value for that allele is in the 
integer range [1, I] where I is the number of metrics and each 
value in the range identifies a unique metric.   

The fourth allele value (operator) determines a comparison 
operator to be used.  This will be one of two values indicating 
“ less than”  or “greater than.”   This set of comparisons can be 
expanded to include “equal to”  but it was determined that this 

allowed the GA to develop patterns which were too explicit to be 
useful. 

The fifth and final allele (threshold) for a given clause indicates 
the threshold to be applied.  When this method is applied to 
discretized z-scores, the value of this allele must be in the range 
[min, max] where min is the minimal bucket value and max is the 
maximal bucket value.  In our final runs we utilized 67 buckets 
ranging from –33 to 33 inclusive. 

Again, the desired number of clauses determines the number of 
alleles in the genome.  The final number of variables being 
determined by the GA is five times the number of clauses.  

Figure 5 demonstrates how a match is determined for this type of 
pattern.  The data shown in figure 5 is being compared against the 
pattern represented in figure 4.  In this case the pattern matches at 
time tn.  The data represents quarterly observations of each metric.  
The hashed boxes indicate missing data.  

4.2 Fitness 
As is typical for pattern recognition and classification problems 
the goal of the fitness function is to reward patterns with 
significant precision and recall.  A simplified version of this goal 
is to increase the ratio of positive matches (instances where the 
pattern matches a positive case) to negative matches (instances 
where the pattern matches a negative case).  

In both of our approaches the pattern represented by each genome 
was evaluated against each company in our corpus.  The resulting 
match or non-match was reported accordingly as a true positive, 
true negative, false positive, or false negative.  This information 
was used to calculate the raw objective score for the genome in 
question.  

4.2.1 Flag-Based Approach 
The objective score for the flag-based genomes integrates the 
performance of each individual pattern (n) represented by the 
genome using a simple average.  As shown in equation 1 each 
pattern in the genome contributes in a weighted fashion to the 
overall fitness of the genome.  The weight for a specific pattern is 
based on the count of explicit factors in the pattern.  Thus a 
pattern containing all 1’s and 0’s will have a greater weight than a 
pattern containing a portion of –1’s or *’s. 

In equation 1 weight(i) indicates the weight of the i th pattern 
contained in the genome, where n is the total number of patterns 

2, 3, A, >, 10, 1, 4, B, <, -5, 5, 5, C, > 1 

2 out of 3 quarters of metric (A) are greater than 10 and 

1 out of 4 quarters of metric (B) is less than –5 and 

5 out of 5 quarters of metric (C) are greater than 1 

Figure 4. Sample genome and corresponding English 
pattern to be applied to bucketed z-scores. 

Figure 5. Determining a pattern match. 

( -1 0 1 0 * ) 

Figure 3. Sample pattern to be applied to flag data. 
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Equation 1. Flag based fitness function. 



in the genome being evaluated and posmatch(i) and negmatch(i) 
indicate the number of positive and negative cases matched by the 
i th pattern in the genome respectively. 

4.2.2  “ n-out-of-m”  Patterns 
Several iterations were made on the fitness score for this 
approach.  Finally we settled on a fitness function that induced 
some non-linear factors into the relationship between true 
positives and false positives.  We found that a linear relationship  
was insufficient to motivate the GA to move to more valuable 
regions of the search space. Figure 2 displays the fitness surface 
relative to the percentage of possible true positives vs. the 
percentage of possible false positives matched by a particular 
pattern (genome).  
 

 
Figure 6. n-out-of-m fitness sur face. 

 

The surfaces displayed in figure 6 are generated from a fitness 
function as shown in equation 2.  While the non-linear factors are 
somewhat expensive to compute, their value far outweighs this 
cost. Equation 2 shows the actual fitness calculations. In equation 
2, tp and to indicate the number of true positives and the total 
number of positive cases respectively. Likewise fp and fo 
represent the number of false positives and false cases.  

4.3 Mechanics 
The GA’s employed are relatively straightforward in nature.  As 
already shown, the representations are simple arrays of integers 

with constraints applied to specific allele positions. 

4.3.1 Flag-Based Approach 
This approach utilized a simple genetic algorithm with a 
population size of 500 individuals and typically ran for 100 
generations.  Single-point crossover with a P(crossover) of 0.5 
was utilized effectively within the confines of the simple GA with 
a tournament selection method.  This GA also utilized a 
P(mutation) of 0.1. Given the rapid convergence rates we 
encountered with this approach, little time was spent in tuning this 
GA. 

4.3.2 “ n-out-of-m”  Approach 
We spent a significant amount of time tuning this approach as we 
moved to the larger datasets.  Operational runs continue to 
experience fine-tuning of the run parameters.  Our most consistent 
results emerged from an elitist-steady-state GA utilizing uniform 
crossover and tournament selection with a P(crossover) of 0.5 and 
a P(mutation) of 0.05. 

5. RESULTS 
Our approach shows promising results on the data employed.  The 
GA has been able to make distinctions in the data at each step in 
the process from the flag-based patterns to each instance of the 
“n-out-of-m” patterns.  Anecdotally, the derived patterns have 

Equation 2. Fitness function for  n-out-of-m patterns. 

Figure 7. Sample output from flag-based representation. 
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Company: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27 | TP:FP   Pattern 
Flag  0:  , x,  ,  ,  ,  , x,  ,  ,  ,  , x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   | 3:0   ( -1 0 * 0 -1)  

flag  1:  ,  , o, o,  ,  ,  , o, o,  , o, o, o,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , o,   | 7:1   ( 0 0 0 0 *)  

flag  2:  ,  , o,  ,  ,  , o, o, o,  , o, o, o,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , o,   | 7:1   ( * * 0 0 *)  

flag  3:  ,  , o,  ,  , o,  ,  , o,  ,  ,  , o,  ,  ,  ,  ,  ,  , o,  ,  , o,  ,  ,  , o,   | 4:3   ( 0 0 0 * 0)  

flag  4:  ,  ,  ,  ,  ,  , x, x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   | 2:0   ( -1 1 * 0 0)  

flag  5:  ,  , o,  ,  ,  ,  ,  , o,  ,  , o, o,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , o,   | 4:1   ( 0 0 0 0 *)  

flag  6:  ,  , o, o, o, o, o,  , o,  ,  ,  , o, o,  ,  ,  ,  ,  , o,  ,  , o,  ,  ,  ,  ,   | 8:2   ( 0 0 0 * *)  

flag  7:  ,  , o, o,  , o, o,  , o,  , o, o, o,  ,  ,  ,  ,  ,  , o,  ,  ,  ,  ,  ,  , o,   | 8:2   ( * * * 0 *)  

flag  8:  , x,  ,  ,  , x, x, x,  , x,  , x,  ,  ,  , x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   | 6:1   ( 1 * -1 * *)  

flag  9:  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   | 1:0   ( * 0 * * 1)  

flag 10:  ,  , o, o,  , o, o,  , o,  ,  , o, o, o,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , o,   | 8:1   ( -1 * * 0 0)  

flag 11: o,  , o,  ,  , o,  , o, o,  ,  ,  , o,  ,  ,  ,  ,  ,  ,  ,  ,  , o,  ,  ,  ,  ,   | 6:1   ( 0 0 * * -1)  

flag 12:  ,  , o, o, o,  ,  ,  , o,  ,  , o, o,  ,  ,  ,  ,  ,  , o,  ,  , o,  ,  ,  ,  ,   | 6:2   ( 0 0 * 0 0)  

flag 13:  ,  , x, x,  ,  ,  , x,  ,  ,  , x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   | 4:0   ( -1 * 1 * *)  

flag 14: o, o, o, o, o, o, o, o, o, o, o, o, o, o,  , o,  , o, o, o, o, o, o, o, o, o, o, o | 14:12 ( 0 0 1 1 1)  

flag 15: x, x,  ,  , x,  ,  ,  ,  ,  ,  , x,  , x,  ,  ,  ,  ,  ,  , x,  ,  ,  ,  ,  ,  ,   | 5:1   ( 0 0 1 0 *)  

flag 16:  ,  ,  , x,  , x,  , x,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  , x | 3:1   ( 0 1 1 * 1)  

totals:  3, 4,11, 8, 4, 8, 8, 8,10, 2, 4,11,10, 5, 0, 2, 0, 1, 1, 5, 2, 1, 5, 1, 1, 1, 7, 2 | 



successfully directed attention in case studies for both financial 
statement fraud detection as well as marketing applications. 

While the results are more meaningful in the case of the “n-out-
of-m” patterns, it is still useful to note the progression of 
capabilities and data starting with the original approach. The 
‘ flag-based’  approach gives us insight into benefits that we may 
reap by adding more explicit time relationships into the “n-out-of-
m” method of aggregating, or accumulating, observations. The 
approach, using Boolean flag data, may also find applicability 
outside this problem space. In particular it may find a viable home 
in a biological domain.  

5.1 Flag-Based Approach 
The GA demonstrated rapid convergence on the small dataset with 
significant results. It is important to note that the dataset was very 
small and neatly balanced.  This approach did not successfully 
scale to larger datasets with more variables and less variation 
between positive and negative cases.  A sample output can be 
found in figure 7.  This chart shows, by column, the companies 
and, by row, the flags. A mark, an ‘x’  or an ‘o,’  indicates that the 
pattern shown to the right of the row successfully matched the 
metric(flag) shown at the left of the row for the company 
indicated at the top of the column. The column labeled “TP:FP” 
indicates how many true positives and false positives were 
accrued for the pattern in that row.  

Note that during evaluation those patterns which matched more 
negative cases than positive cases were inverted and then scored 
appropriately. The patterns that have been negated are displayed 
using ‘o’  to mark negated matches while matches from patterns 
which have not been negated are marked using an ‘x.’  

5.2 “ n-out-of-m”  Approach 
In this approach we maintained a randomly selected set of 
companies to hold out for testing the robustness of the patterns.  
This hold-out set represents no more than 30% of the total corpus.  
Table 2. shows classification rates for positive and negative cases 
referred to as “Fraud”  and “Peer”  respectively.  These rates are 
also provided for each portion of the corpus. As shown in table 2 
the classification rates for a single pattern indicate that we can 
correctly classify up to 44% of the in-sample positive cases while 
misclassifying only 3% of the in-sample false cases. 

Target Peer Target Peer Target Peer
Pattern1 39% 97% 44% 97% 27% 98%
Pattern2 37% 97% 42% 97% 27% 96%
Pattern3 27% 99% 32% 98% 13% 100%
Combined 63% 95%

Overall Training Set Hold-out set

 

5.3 Combining Patterns 
More significant results were deduced by combining patterns 
across multiple runs of the GA.  As the GA was run the patterns 
produced were stored in a database and then post-processed to 
find combinations with significant increases in overall 
performance. This is also shown in Table 2.  The bottom row 
indicates the classification rates for combinations of patterns.  
This shows that a combination of the three chosen patterns results 
in correctly classifying 63% of the companies while only 
misclassifying 5% of the negative cases overall. 

5.3.1 Histograms 
Another useful means of combining patterns from multiple runs of 
the GA was via a histogram.  Figure 8 shows the discrimination of 
companies based on the number of final patterns matched.  To 
construct this chart the final patterns were recorded over 
approximately 65 runs of the GA.  A count of the number of 
matches was compiled for each company in the corpus. You can 
then read from the chart that roughly 35% of positive cases (TP’s) 
are matched by at least 20 of those 65 patterns while only 6% of 
negative companies are matched by at least 20 patterns. 
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Figure 8. A sample histogram of matches per  % of companies 

5.4 Compar ison to Pr ior  Work 
The combined performance of the patterns compares favorably to 
the classification rates published by Lee et al.[8]. To better 
understand the comparative capability of the two models, we 
implemented an approximation of the Lee[8] to test on our data.  
The approximated model correctly classified 43% of the allegedly 
fraudulent companies and misclassified 21% of the peers at the 
20% probability cut-off.  At the 40% probability cutoff the 
approximated model achieved 22% correct classification of 
alleged fraud companies and misclassified 5% of the peers.   

Kaminski et al. [6] performed an exploratory study examining the 
ability of financial ratios to detect fraud.  Results of their 
discriminant analysis using cross-validation correctly classified 
between 2% and 42% of the fraud firms, while misclassifying 
between 10% and 16% of the non-fraud firms. They conclude that 
financial ratios have limited ability to detect fraudulent financial 
reporting. 

6. ONGOING EXPLORATION 
We continue to develop this approach on various sets of data 
relating to other aspects of the financial domain and see broader 
applicability of the general method for other domains as well.  
These techniques may yield important insights into marketing and 
prospecting as well as fault detection or optimization of 
operational settings for power generation equipment.  These 
techniques may also be enhanced by integrating techniques 
developed for biological applications, such as Smith-Waterman 
scoring as applied to genetic similarity tests[16][5]. 

As is typical with genetic algorithms, the methods shown here 
only help us develop a picture of the dominant solutions in the 
space.  In actuality we are equally interested in the non-dominant 
solutions as well.  We would like to apply a variety of niching, 

Table 2. Classification rates for  "n-out-of-m" approach. 



sharing, crowding and multi-objective techniques to this data to 
build a more complete perspective on the various “species”  of 
fraud.  

It may also be beneficial to extend the representation to include 
other “operators”  and time relationships.  Aside from simple 
aggregation methods, the repertoire of methods could include 
concepts such as slope and variance.  Current patterns assume that 
each feature is happening concurrently. These techniques may 
also be able to leverage explicit representation of time 
relationships such as “before”  and “after”  in addition to the 
current implied “during.”    

Another issue that we continue to struggle with is the sensitivity 
of the method to the specific data used in training.  As we move 
forward we will be looking for ways to quantify and improve the 
applicability of the end models to other datasets. 
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