
Evolutionary Algorithms for Optimal Error-Correcting
Codes

Wolfgang Haas
Brock University

500 Glenridge Avenue
St. Catharines, Ontario Canada

905 688 5550

haas.wolfgang@gmail.com

Sheridan Houghten
Brock University

500 Glenridge Avenue
St. Catharines, Ontario Canada

905 688 5550

houghten@brocku.ca

ABSTRACT
The maximum possible number of codewords in a q-ary code of
length n and minimum distance d is denoted Aq(n,d). It is a
fundamental problem in coding theory to determine this value for
given parameters q, n and d. Codes that attain the maximum are
said to be optimal. Unfortunately, for many different values of
these parameters, the maximum number of codewords is currently
unknown: instead we have a known upper bound and a known
lower bound for this value.

In this paper, we investigate the use of different evolutionary
algorithms for improving lower bounds for given parameters. We
relate this problem to the well-known Maximum Clique Problem.
We compare the performance of the evolutionary algorithms to
Hill Climbing, Beam Search, Simulated Annealing, and greedy
methods. We found that the GAs outperformed all other
algorithms in general; furthermore, the difference in performance
became more significant when considering harder test cases.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: combinatorial algorithms.

G.2.2 [Graph Theory]: graph algorithms.

I.2.8 [Problem Solving, Control Methods and Search]: graph
and tree search strategies, heuristic methods.

General Terms
Algorithms, Performance, Design, Theory.

Keywords
Evolutionary Algorithms, Simulated Annealing, Optimal Codes,
Maximum Clique Problem.

1. INTRODUCTION
In this section, we briefly introduce the basic concepts from
coding theory, only to the extent required to understand our
research. There are several excellent books on coding theory for
those readers interested in learning more about the subject; these
include, for example [9] and [12].

When data is transmitted or stored, errors can occur for a variety
of reasons such as noise in the transmission or dirt on the storage
media. In the case of binary data, this has the effect of changing
the value in a single bit, from 0 to 1 or vice-versa. It is possible to
detect and correct such errors if we store data according to a
certain format, namely, by using error-correcting codes.

An (n,M,d)q code is a set of M codewords, each of length n, and
in which each symbol is chosen from a possible alphabet of q
symbols. Furthermore, if we compare any pair of codewords, they
must differ in at least d positions; the value d is referred to as the
minimum distance of the code and this determines the number of
errors that may be corrected. When q=2, the set of possible
symbols is {0,1} and the code is called binary. Codes with q=3
are called ternary; in the general case, the code is called q-ary.

There are several (often conflicting) desirable properties in a
code. One such property is the number of codewords, as this
determines the number of different pieces of information that may
be represented by the code. In our research, we consider the
problem of finding (n,M,d)q codes where n, d and q are fixed, and
with a large value of M. While the maximum value of M is
exactly known for some parameter sets, for many others, it is
known only to be within a given range; we consider both types of
parameter sets. Tables containing this information for many
parameters may be found at [2] for the binary case and [3] for the
ternary case.

In this paper we compare several techniques for finding error-
correcting codes that have a larger number of codewords than the
best currently known for given parameters.

We have several goals in this research. First, we wish to evaluate
which techniques are most suitable for finding codes that are
optimal. For those parameter sets for which the exact number of
codewords in an optimal code is known, we wish to find codes
that are optimal, or at least near-optimal. For those codes for
which the maximum number of codewords is known only to be
within a given range, we would like to eventually improve upon
the lower bound for this value.

Figure 1. Example Compatibility Matrix

2. PROBLEM SET-UP
In this section we discuss several issues relating to the problem at
hand. Understanding these issues enables us to define a good
strategy for attacking the problem.

2.1 Precomputation
Every time the program looks at a possible solution, it needs to
calculate the distance between each pair of codewords, in order to
determine the minimum distance of the code. It is beneficial to
pre-compute the distances between all possible codewords to save
computation during the run. Note that one can always assume the
existence of the all-zero vector in the code since any code not
containing the all-zero vector is equivalent to one that does
contain it, according to the definition of equivalence of codes.

Hence we generate all possible codewords of length n and
distance at least d from the all-zero vector. We store the results in
a compatibility matrix, a square matrix in which entry (i,j) = 1 if
codeword i and codeword j meet the minimum distance
requirement, and 0 otherwise. It follows from the definition that
this matrix is symmetric. Since the program has to find a set of
codewords such that the distance between any two is at least d,
the corresponding entries in the compatibility matrix must all be
equal to 1.

2.2 Maximum Clique Problem
In fact, the problem we are considering is equivalent to the well-
known problem of finding the maximum clique in a graph.

A graph G = (V,E) is defined by a set of vertices V and a set of
edges E. A clique C is a subset of V such that each vertex in C is
connected to all other vertices in C by an edge. The maximum
clique problem asks for the largest subset MC of V such that MC
is a clique.

To convert an instance of the coding theory problem into an
instance of the maximum clique problem, we label the vertices
with the possible codewords, and connect two vertices by an edge
if they meet the minimum distance requirement.

Example: Suppose that we wish to find the maximum number of
codewords in a binary code with length 4 and minimum distance
2. In general, we could consider all binary vectors of length 4.
However, in the interests of keeping this example manageable, we
shall further suppose that the following vectors are the only
possible candidate codewords: {0000, 0011, 1010, 1011, 1110,
1111}.

 0000 0011 1010 1011 1110 1111

0000 0 1 1 1 1 1

0011 1 0 1 0 1 1

0011 1 1 0 0 0 1

1010 1 0 0 0 1 0

1011 1 1 0 1 0 0

1110 1 1 1 0 0 0

0011 1010

 0000

Figure 2. Example Graph for Maximum Clique Problem

This results in the compatibility matrix given in Fig.1, which in
turn corresponds to the adjacency matrix of the graph given in
Fig.2.

The size of the maximum clique is 4, and the vertices in this
maximum clique should be {0000,0011,1010,1111}. Therefore
the maximum number of codewords is 4, and the codewords in
this optimal code should be {0000,0011,1010,1111}.

2.3 Relationships between Sets of Parameters
Several relationships exist between sets of parameters. We
combine the following to reduce the search space for binary
codes.

Let C be a binary (n,M,2r-1) code. By adding an overall parity
check, we get an (n+1,M,2r) code, thus A2(n,2r-1) ≤ A2(n+1,2r).
Note: An overall parity check adds a bit at the end of every
codeword. This bit is a 1 if the remaining part of the codeword
has an odd number of 1’s, and 0 otherwise. As a consequence in
the resulting code, every codeword has an even number of 1’s and
the distance between every pair of codewords is even.

Let C be a binary (n+1,M,2r) code. By deleting any single
coordinate, we get an (n,M,d) code with d ≥ 2r-1. Therefore we
have A2(n,2r-1) ≥ A2(n+1,2r).

Because A2(n,2r-1) ≤ A2(n+1,2r) and A2(n,2r-1) ≥ A2(n+1,2r),
they must be equal. Since a code of length n and minimum
distance 2r-1 has fewer possible codewords than a code of length
n+1 and minimum distance 2r, it reduces the search space while
still guaranteeing the same optimal value. For further information,
see [9], p.43.

Example: A2(10,4) = A2(9,3) = 40. There are 848 vectors of
length 10 that are at distance at least 4 from the all-zero vector
and that thus are candidates for codewords in a (10,40,4) code.
Meanwhile, there are only 466 codewords of length 9 that are at
distance at least 3 from the all-zero vector. In each case, if
attempting to find an optimal code, we need to find 40 compatible
codewords; clearly, this would be much simpler in the smaller set.

3. RELATED WORK
In this section we briefly review several papers that consider the
use of evolutionary algorithms to solve the Maximum Clique
Problem. Many of the algorithms have been run on DIMACS
graphs in order to allow for a good comparison between the

1110 1011

1111

different methods. Since finding optimal error-correcting codes
can be reduced to finding a maximum clique, all these strategies
are also applicable to our problem. However, when finding error-
correcting codes we deal with the problem at a much larger scale.
For example, in considering binary error-correcting codes, we see
that the smallest parameter values for which the maximum
number of codewords is currently unknown are {n=17, d=4}.
There are 130,238 possible codewords for this case; in
comparison, the largest DIMACS graph has approximately 6,000
vertices.

Bui and Eppley [4] created a hybrid genetic algorithm that uses a
local optimizer during each generation. Their fitness value was
based on the number of vertices selected by the chromosome and
a measure of how close this set was to being a clique. At the time
of publication (1995) their genetic algorithm tied the best known
results.

Murthy and Parthasarthy [11] used a similar approach without
any local optimizing strategy. However, their test cases were
small graphs. Since our graphs are very large, it is difficult to say
whether this approach will perform well.

Carter and Park [5] implemented two different genetic algorithms
for the maximum clique problem: a simple genetic algorithm with
a binary string chromosome and a multi-phased annealed
approach. The latter very slightly outperformed the simple one
and had a tendency of getting stuck in local optima. Later, in [6],
they reported that Simulated Annealing worked much better than
genetic algorithms, because crossover didn’t work for the
problem at all. They found that running the algorithm without
crossover gave better results.

Jagota and Sanchis [8] used Neural Nets to find the maximum
clique of a graph. To have a higher chance of getting larger
cliques, they pre-sorted all vertices by their degree and found that
doing this actually resulted in worse performance.

Marchiori [10]] obtained very good results by allowing non-
cliques to remain in the population. During each generation, local
optimization techniques extracted a clique from the selected set of
vertices and then tried to maximize the size by adding more
vertices.

Finally, Ashlock, Guo and Qui [1] use a genetic algorithm to
develop an error-correcting code for DNA constructs using the
edit distance as a similarity measure. Each chromosome contained
3 selected codewords and Conway’s Lexicode Algorithm (see
section 4.4) was applied until the maximal number of codewords
was reached.

4. THE ALGORITHMS
In our research we compare the performance of Hill Climbing,
Beam Search, Simulated Annealing, greedy methods and several
varieties of genetic algorithms. In this section we briefly
summarize the parameters used for each algorithm, as well as
other technical information.

Hill Climbing, Beam Search and Simulated Annealing all use the
same representation for a candidate solution: a sequence of
integers, where the first integer represents the first codeword to be
chosen, the second integer represents the second codeword to be
chosen, etc. However, in order to keep the search space at a

minimum, we have to make sure that all candidate solutions are
actually cliques. We achieve this by treating all integers as
offsets.

4.1 Hill Climbing
We evaluate the performance of Hill climbing using 100
iterations.

4.2 Beam Search
We evaluate the performance of Beam Search with a Beam Size
of 5 and using 100 iterations.

4.3 Simulated Annealing
Simulated annealing has been used very successfully in many
different types of combinatorial optimization problems and
should perform reasonably well for finding optimal error-
correcting codes. We evaluate the performance of Simulated
Annealing using the parameters given in Table 1.

Table 1. Parameters for Simulated Annealing

Initial Temperature c0 2

Number of Transitions for
each value of c

100

Rule for changing c ck+1 = ck * 0.8

Termination Criterion No Change of Best for 1 Iteration

4.4 Conway’s Lexicode Algorithm
Conway’s Lexicode algorithm, described in [7], is a greedy
algorithm that can be used for creating an error-correcting code
with given minimum distance. We first sort the candidate
codewords lexicographically and initialize an empty set C of
codewords. We then consider, in turn, each candidate in sorted
order, and add it to C if the distance to all codewords already in C
is at least d.

It should be noted that in the binary case, a linear code is
generated when the words are considered in lexicographic order.
For many parameter sets, the best-known code is linear; hence by
using this algorithm we may reach the lower bound on the
maximum number of codewords, but we will be unable to
improve upon it.

4.5 Randomized Greedy Algorithm
This is a variation of Conway’s Lexicode Algorithm, in which the
codewords are considered in a random order. By doing so, we
may find non-linear codes and thus improve upon the lower
bound. This approach is used in [4] to initialize the population.

4.6 Genetic Algorithms
We evaluate the performance of several varieties of genetic
algorithms. We use the parameters summarized in Table 2 for all
of these varieties.

4.6.1 Indirect
The chromosome representation of this approach is the same as
the one used for Hill Climbing, Beam Search and Simulated

Annealing. The chromosome size must be large enough to be able
to represent the largest set of codewords possible. Consequently,
the number of integers in the chromosome equals the upper bound
of the particular code. As a result, the execution speed mostly
depends on the currently known upper bound and this algorithm
might not be feasible for a set of parameters when the maximal
number of codewords of the corresponding error-correcting code
is very large.

Note that while a direct representation is possible, we chose not to
use it since applying either crossover or mutation almost always
creates “illegal” chromosomes that must then be corrected. As a
result, the most important aspect of the GA is in fact the method
chosen to correct illegal chromosomes. We decided to choose a
representation that would not allow this to happen, to ensure that
we are focusing on the GAs themselves.

4.6.2 Indirect Seed – Lexicode Finish
This approach combines the indirect chromosome representation
with Conway’s Lexicode algorithm as seen in [1]. The
chromosome representation is the same as in the indirect
approach, however, its size is limited by the parameter seed_size.
Any compatible codewords that have not been selected by the
chromosome itself will be chosen by Conway’s algorithm. The
advantage of this approach is that it should be possible to attack
even very large codes, since most of the codewords are selected
by a greedy algorithm.

4.6.3 Lexicode Seed – Indirect Finish
This strategy also combines the indirect chromosome
representation with Conway’s Lexicode algorithm. The main
difference to the last approach is that it works in the opposite
direction: Conway’s algorithm is used to pre-select a set of
codewords and the chromosome defines the codewords selected
after this. To make this work, we must stop Conway’s algorithm
before it has selected all the codewords, and hence the parameter
Conway_limit specifies when this is done.

4.6.4 Indirect Seed – Randomized Greedy Finish
This approach combines the indirect chromosome representation
with the randomized greedy algorithm (see section 4.5) and works
very much like 4.6.2. The only difference is that the randomized
greedy technique is used to select the remaining codewords rather

Table 2. Parameters for Genetic Algorithms

Population Size 500

Number of Generations 100

Number of Runs 10

Selection Strategy Tournament of Size 3

Crossover Probability 85%

Mutation Probability 15%

than Conway’s algorithm. Similarly, the chromosome size is
limited by the parameter seed_size as in 4.6.2.

5. THE TEST CASES
One of the advantages of translating the problem of finding an
optimal error-correcting code into the maximum clique problem is
that it works the same way regardless of alphabet size q. The
reason is that the compatibility matrix is always a binary matrix.

We evaluated the performance of the algorithms on different
parameter sets for both binary and ternary codes. It is important to
note that the different test cases might generate graphs with very
different properties. For example, even though the number of
candidate codewords (i.e. vertices) might be similar, the number
compatible with each other (i.e. edges) could be very different.
Consequently, the performance of the algorithms may vary across
test cases.

We summarize the binary test cases in Table 3. The first two
cases are relatively small and thus most of our algorithms should
perform fairly well. In comparison, the other two cases are
difficult, and in fact are cases for which the exact number of
codewords in an optimal code is unknown. These latter two cases
will thus provide an interesting comparison of which algorithms
are most useful when trying to improve on the best codes
currently known.

Table 3. Binary Test Cases

n d #Codewords in
Optimal Code

#Candidate
Codewords

for (n,d)

#Candidate
Codewords
for (n-1,d-1)

12 6 24 2 510 1 486

13 6 32 5 812 3 302

17 6 256-340 121 670 63 019

17 4 2720-3276 130 238 65 399

We summarize the ternary test cases in Table 4. The test cases
were chosen with the same goal as for the binary case: namely, to
provide a comparison of the performance of the algorithms on
cases that range in difficulty from easy to hard. In particular, the
first test case should be considered easy while the last two should
be considered very hard.

Table 4. Ternary Test Cases

n d #Codewords in
Optimal Code

#Candidate
Codewords for

(n,d)

5 3 18 192

6 3 38 656

7 3 99-111 2 088

8 3 243-333 6 432

Table 5. Summary of Results for all Algorithms

 A2(12,6) A2(13,6) A2(17,6) A2(17,4) A3(5,3) A3(6,3) A3(7,3) A3(8,3)

Best known 24 32 256 2720 18 38 99 243

Best 16(1/10) 22(1/10) 134(1/10) 1721(1/10) 14(9/10) 33(2/10) 76(1/10) 183(1/10)
Hill climbing

Ave. 14.0 20.7 130.6 1706.4 13.9 31.6 74.0 180.7

Best 19(1/10) 23(1/10) 136(3/10) 1728(1/10) 18(2/10) 34(2/10) 78(1/10) 186(1/10)
Beam search

Ave. 15.7 21.6 133.8 1716.0 15.0 33.0 76.1 182.8

Best 16(6/10) 22(7/10) 136(1/10) 1729(1/10) 18(3/10) 34(1/10) 79(1/10) 185(1/10)
Simulated
Annealing

Ave. 15.5 21.7 133.4 1719.3 15.8 32.7 77.3 183.4

Conway
Lexicode Best 16 16 256 2048 15 32 76 200

Best 13(2/10) 20(1/10) 129(1/10) 1693(1/10) 13(2/10) 30(2/10) 71(1/10) 176(1/10)
Randomized

Greedy
Ave. 11.8 18.6 124.9 1678.5 11.9 28.4 68.4 170.4

Best 24(5/10) 26(1/10) 140(1/10) N/A 18(10/10) 36(1/10) 83(1/10) 194(1/10)
GA:

Indirect Ave. 21.1 23.6 137.3 N/A 18.0 34.6 80.7 189.8

Best 24(10/10) 32 (2/10) 256(7/10) 2238(1/5) 18(10/10) 36(10/10) 88(2/10) 219(1/10) GA:
Indirect Seed -

Lexicode Finish Ave. 24.0 28.8 253.9 2214.8 18.0 36.0 87.2 216.1

Best 19(7/10) 26(10/10) 256(10/10) N/A 15(10/10) 36(9/10) 84(2/10) 206(3/10) GA:
Lexicode Seed –
Indirect Finish Ave. 18.1 26.0 256.0 N/A 15.0 35.9 83.0 205.0

Best 24(8/10) 24(4/10) 139(1/10) N/A 18(9/10) 34(5/10) 80(2/10) 192(1/10) GA:
Indirect Seed –

Randomized
Greedy Finish

Ave. 23.0 23.4 133.9 N/A 17.7 33.5 78.8 188.3

6. RESULTS
The results for all of the above test cases, and for all of the
described algorithms, are summarized in Table 5. In this table,
the shaded entries highlight the best overall results found for
each test case. Furthermore, the numbers in brackets identify the
number of times a best result was obtained, out of the total
number of runs. Thus, for example, we see that the Indirect GA
obtained a best result of 24 for A2(12,6), five times out of ten
runs; furthermore, this was one of three algorithms that obtained
the best overall result for that case.
Notice that the genetic algorithms outperformed all of the other
algorithms in general. This is particularly noticeable when we
consider the difficult test cases, in which the Indirect Seed –
Lexicode Finish GA significantly outperformed all other
algorithms. It is interesting to note that Simulated Annealing
(often considered by many to be the most suitable choice for

combinatorial problems of this type) only achieved the best
overall result in the easiest case.
Since this strategy requires a parameter seed_size (see section
4.6.2), it is interesting to compare the performance of this
strategy with different values for this parameter.

From the easy test cases we deduced that the smaller the value
of this parameter, the better the algorithm performed. Even for
the hardest case, A2(17,4), where 65,399 codewords result in a
currently best known code with 2,720 codewords, values
between 6 and 9 worked best. These numbers are very small
compared to the large set of codewords and as a consequence
most of the words are actually selected by the greedy algorithm.
At this point we do not know whether this limits the search
space in such a way that this approach cannot actually get to the
global maximum for hard test cases. It is possible that larger
values for this parameter actually perform better when running

this algorithm for a very large number of generations, because
the search space is not as restricted.
Since A2(17,4) is a very difficult case with a very large search
space, it is computationally very expensive to run the GAs. As a
result, we chose to run only the most promising GA, namely the
Indirect Seed – Lexicode Finish GA.

7. CONCLUSION AND FURTHER WORK
Although we have not been able to find an error-correcting code
that contains more codewords than the currently best known, we
have been successful in showing that genetic algorithms can be
applied to this particular problem. In fact, when you consider all
the test cases we have experimented with, our genetic
algorithms performed better than all of the three standard search
techniques.

Since we have only tied current best known codes, our goal
remains to find an error-correcting code with a larger set of
codewords than the currently best known. It is possible that one
of the algorithms described in this project is already able to do
that for certain parameters values. It would be interesting to see
how the different GAs perform on different parameter values.

We decided to use an indirect chromosome representation for all
our genetic algorithms, because this guarantees that all our
chromosomes represent cliques. Most of the papers described in
section 3 use a binary representation and apply different
techniques to handle chromosomes that do not form a clique. A
different idea to deal with this issue is to create a multi-
objective genetic algorithm, where one objective is to have a
large set of vertices, while the other objective is for that set to be
a clique. At the end of the run we would most likely get a lot of
candidate solutions which are not cliques, but since the vertices
in these solutions are just a small subset of all possible
codewords, it should be relatively easy to extract the maximum
cliques.

8. ACKNOWLEDGMENTS
This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada, as well as a Brock
Undergraduate Student Research Award.
The authors gratefully acknowledge the valuable comments and
assistance provided by Prof. Dan Ashlock of the University of
Guelph as well as by Prof. Brian Ross of Brock University.

9. REFERENCES
[1] Ashlock, D., Guo, L. and Qui, F., Greedy Closure Genetic

Algorithms, In Proceedings of the 2002 Congress on
Evolutionary Computation, 1296-1301.

[2] Brouwer, A.E., Small binary codes: Table of general binary
codes, web-site at:
http://www.win.tue.nl/~aeb/codes/binary-1.html

[3] Brouwer, A.E., Small binary codes: Table of general
ternary codes, web-site at:
http://www.win.tue.nl/~aeb/codes/ternary-1.html

[4] Bui. T. and Eppley, P., A Hybrid Genetic Algorithm for the
Maximum Clique Problem, In Proceedings of the Sixth
International Conference on Genetic Algorithms (ICGA6),
July 1995, 478-484

[5] Carter, R. and Park, K., How good are genetic algorithms
at finding large cliques: an experimental study, Boston
University Technical Report BU-CS-93-015, 1993.

[6] Carter, R. and Park, K., On the Effectiveness of Genetic
Search in Combinatorial Optimization, In Proceedings of
the 10th ACM Symposium on Applied Computing,1995,
329-336.

[7] Conway, J.H. and Sloane, N.J.A., Lexicographic codes:
Error correcting codes from game theory, IEEE
Transactions on Information Theory, Vol. IT-32, No.3
(1986), 337-348.

[8] Jagota, A. and Sanchis, L., Adaptive, Restart, Randomized
Greedy Heuristics for Maximum Clique, Journal of
Heuristics 7 (2001), 565-585.

[9] MacWilliams, F.J. and Sloane, N.J.A., The Theory of
Error-Correcting Codes, North-Holland Publishing
Company, Amsterdam, 1977.

[10] Marchiori, E., A Simple Heuristic Based Genetic
Algorithm for the Maximum Clique Problem, In
Proceedings of the 1998 ACM Symposium on Applied
Computing, 366-373.

[11] Murthy, A.S. and Parthasarathy, G. and Sastry, V.U.K.,
Clique Finding – A Genetic Approach, In Proceedings of
the 1st IEEE Conference on Evolutionary Computation,
1994, 18-21.

[12] Pless, V. Introduction to the Theory of Error-Correcting
Codes, 3rd edition, John Wiley & Sons, New York, 1998.

	INTRODUCTION
	PROBLEM SET-UP
	Precomputation
	Maximum Clique Problem
	Relationships between Sets of Parameters

	RELATED WORK
	THE ALGORITHMS
	Hill Climbing
	Beam Search
	Simulated Annealing
	Conway’s Lexicode Algorithm
	Randomized Greedy Algorithm
	Genetic Algorithms
	Indirect
	Indirect Seed – Lexicode Finish
	Lexicode Seed – Indirect Finish
	Indirect Seed – Randomized Greedy Finish

	THE TEST CASES
	RESULTS
	CONCLUSION AND FURTHER WORK
	ACKNOWLEDGMENTS
	REFERENCES

