
Discussions on LGA with Parallel System

PENG Gang
Oita National College of

Technology
1666, Maki
Oita, Japan

peng@
oita.ac-ct.ac.jp

Takeshi NAKATSURU
Oita National College of

Technology
1666, Maki
Oita, Japan

nakatsuru@
oita.ac-ct.ac.jp

Shigeru NAKAYAMA
Kagoshima University

1-21-40,
Korimoto

Kagoshima,Japan

shignaka@
ics.kagoshima-u.ac.jp

ABSTRACT
This paper discusses a parallel genetic algorithm (PGA)
which focuses on the local operator for Traveling salesman
problem (TSP). The local operator is a simple GA named
as Local Genetic Algorithm (LGA). The LGA is combined
to another GA named as Global Genetic Algorithm (GGA).
It increases the computational time running a GA as a local
operator in another one. To solve this problem, we build a
parallel system based on our previous works for running the
LGA to speed up the process. The results show that LGA
improve the search quality significantly and it is more effi-
cient running LGA with parallel system than single CPU.

Keywords
genetic algorithm (GA), parallel GA, global GA, local GA,
object shared space, Traveling Salesman Problem

1. INTRODUCTION
Local search acts as an important role in most current al-
gorithms for optimal combinatorial problems. The local op-
erators are usually repeated many times in the search algo-
rithms. It is a key work how to design the local operators
and determine their parameters in the algorithms. For TSP,
many excellent local operators have been proposed in the
past years.

GA requires an enormous amount of calculation because
the genetic operations of selection, crossover, mutation and
the fitness calculation of each individual are processed over
many generations. The calculation time will be significantly
different with the different local operations. GA has high
parallelism because the genetic operations and the fitness
calculation can be processed simultaneously in every indi-
vidual. Various parallelization types have been proposed to
speed up the computation of GA such as single group type
and multiple group type[5].

Initialization
Global GA {

Deletion
Crossover
Mutation
Smallest Square
Complete 2-Opt
Local GA{

Selection
Crossover
Mutation

}
}

End

Initialization
Global GA {

Deletion
Crossover
Mutation
Smallest Square
Complete 2-Opt
Local GA{

Selection
Crossover
Mutation

}
}

End

Figure 1: Algorithm

Master
(Request client)

Worker
(Calculation client)

Calculation

Worker
(Calculation client)

Calculation

Worker
(Calculation client)

Calculation

Task entry

Result entry

Object-shared space
(JavaSpaces server)

Write
Take

Write

Take

Take

Take

Write

Write

Master
(Request client)

Worker
(Calculation client)

Calculation

Worker
(Calculation client)

Calculation

Worker
(Calculation client)

Calculation

Task entry

Result entry

Object-shared space
(JavaSpaces server)

Write
Take

Write

Take

Take

Take

Write

Write

Figure 2: Parallel Implementation

We presented two algorithms at conference GECCO’03[4]
and GECCO’04[3] as late-breaking papers. The first one is
a multiple heuristic search algorithm which consists of a few
local search operators such as Deletion, Best part collector
(BPC), Smallest square (SS) and Complete 2-opt (C2Opt).
Another one is combined with two simple Genetic Algo-
rithms focus on the local operation. A detailed discussion
was made on how a simple GA performs as an local oper-
ator in the second algorithm. The local operator is named
as LGA. The result has shown that it is computationally
expensive running LGA in another algorithm with a sin-
gle CPU. This paper discusses a parallel genetic algorithm
(PGA) which focuses on the local operation for TSP based
on our previous works. LGA is used as an operator in the



Figure 3: att48

Figure 4: kroc100

algorithm called as GGA. We build a parallel system for run-
ning the LGA to test its efficiency with different cases. The
implementation of parallel GA is based on a multiple group
type island model, that uses object shared space. The re-
sults show that LGA improve the search quality significantly
with parallel system than single CPU.

2. ALGORITHM
Figure 1. shows the algorithm designed for our experiment.
The LGA which consists of basic genetic operators only is
implemented to the GGA. The LGA performs as a local
search operator in the GGA. The GGA is applied to the
main tours of the TSP instances for searching the global
optimal solutions. Because both the GGA and the LGA
are complete genetic algorithms, all genetic operators for
solving the TSP are probably applicable to them. To obtain
the global optimal solutions in the process of the TSP, the
GGA may just need to improve the order of a set of cities in
the best tour with evolution of the process, especially in the
latter stages of the process. We chose a set of continuous
cities to create the sub tour in the experiment. The LGA was
applied to the sub tour for finding the local optimal solution
to replace the original part chosen from the main tour. The
genetic operations used in the experiment are as follows:
selection is elitism; crossover is two-point crossover to the
individuals chosen by the roulette wheel rule; and mutation
is one-point mutation. Other operators in the algorithm
have been described in detail at conference ’03 [4].

3. IMPLEMENTATION OF PARALLEL SYS-
TEM

The implementation for running the LGA adopts the object
shared space ”JavaSpaces” [2, 6] which is a Linda model
in the Java programming language, and employs a repli-
cated worker pattern (The Linda model enables a flexible
distributed parallel processing). Figure 2. shows the con-

Figure 5: David162

Figure 6: MPeano108

ceptual diagram of the replicated worker pattern on the ob-
ject shared space. The system consists of one master and
three workers. The master creates an main tours (main pop-
ulation) for GGA and writes the entries of sub tours to the
object shared space. The workers take the entries and create
sub tours (sub populations) for LGA. The master watches
the object shared space, and takes the entries of the elite in-
dividuals of the LGAs from the workers in each generation.
When the number of generations reached to the number of
generations defined beforehand, the parallel processing of
LGA is completed. The object shared space is also used to
temporarily store the elite individuals. In the object shared
space built in the Java programming language, it is possible
to communicate without specifying objects with an IP ad-
dress. The parallel processing of the LGA with extendibility
and generality can be achieved using this implementation.

4. RESULTS AND DISCUSSIONS
In the LGA, the sub tour is an open tour. The length of
the tour is calculated from the start city to the end city, not
including the distance between the end city and the start
city. The main tour which contains n cities c = {c0, ..., ci,
ci+1, ..., cn−1} is given and the distance between two cities
ci and ci+1 is d(ci, ci+1). A sub tour which contains m
cities from main tour is cs = {c0, ..., ck, ck+1, ..., cm−1} and
the distance between two cities ck and ck+1 is d(ck, ck+1).
Total distances of the main tour and the sub tour are Dmt

and Dst respectively:

Dmt=
n−1X

i=0

d(ci, ci+1) (1)

When i=n − 1, ci+1=c0.



Table 1: Results with Single CPU
LGA Shortest Time(s) Longest Time(s) Mean Time(s) Total Time(s) Optimums
0 25.4 25.4 25.4 3406.3 1
1 6.6 102.3 51.0 6040.6 9
5 9.5 327.4 80.1 10577.3 15
10 19.9 120.6 55.1 173078.0 15

Notation Short Time: Shortest time for obtaining the optimal solution. Long Time: Longest time for obtaining the optimal solution. Mean

Time: Mean time for obtaining the optimal solution. Total Time: Time for running the total cycle. Optimums: Number of the optimal solutions.

Table 2: Results with Parallel system
LGA Shortest Time(s) Longest Time(s) Mean Time(s) Total Time(s) Optimums
5 15.7 248.3 61.8 7675.43 14
10 18.9 176.8 40.5 10334.6 14

Notation Shortest Time: Shortest time for obtaining the optimal solution. Longest Time: Longest time for obtaining the optimal solution.

Mean Time: Mean time for obtaining the optimal solution. Total Time: Time for running the total cycle. Optimums: Number of the optimal

solutions/Number of the runs.

Dst=
m−2X

k=0

d(ck, ck+1) (2)

Here are the genetic parameters used in the experiment:
crossover is set at 75% and mutation is set at 0.5% to all
individuals in both GGA and LGA. Other parameters are
the same as our previous works. The source code is written
in the Java and the specs of computers in the experiment
are CPU Pentium III 2.40GHz and 256 MB memory with
Windows XP Operating System.

Four instances are used in the experiments. Two of them
are from TSPLIB (Figure 3. and Figure 4.) and another
two are fractal TSP instances which are generated by L-
System[1](Figure 5. and Figure 6.). On single CPU, four
cases of LGA were set in the GGA: a, 0 LGA. b, 1 LGA.
c, 5 LGAs. d, 10 LGAs. For the parallel system, 2 cases of
LGA were set in the GGA: a, 5 LGAs. b, 10 LGAs. Table 1
and table 2 show the total time for running the algorithms
and the time for reaching to the optimal solutions. The
number of optimal solutions obtained in all cases is inves-
tigated and also shown in the two tables. The data in the
tables are average values of the four instances. On single
CPU, the number of optimal solutions increased with the
increase of LGAs in the algorithm. On the other hand, the
total time for running the algorithm increased significantly,
but the time for reaching to the optimal solutions did not
increase rapidly. On the parallel system, the number of op-
timal solutions are almost the same as single CPU, but the
total time for running the algorithm decreased significantly.
It shows that the LGA is an efficient method for the parallel
system.

5. CONCLUSIONS
This paper discussed an algorithm focusing on the local op-
eration which is a simple GA named as LGA. The results
show that the LGA can improve the search quality on single
CPU and parallel system. It is more efficient running LGA
on the parallel system than on single CPU.

6. ADDITIONAL AUTHORS

Additional authors: Ichiro Iimura (Department of Admin-
istration, Faculty of Administration, Prefectural University
of Kumamoto, email: iiimura@pu-kumamoto.ac.jp).

7. REFERENCES
[1] A.Marian, P.Moscato, and M. Norman. Using

L-Systems to generate arbitrarily large instances of the
Euclidean Traveling Salesman Problem with known
optimal tours. Nov 1995.

[2] E. Freeman, S. Hupfer, and K. Arnold. Javaspaces
principles, patterns, and practice. 1999.

[3] P. Gang, I. Iimura, H. Tsurusawa, and S. Nakayama. A
local search algorithm based on genetic recombination
for traveling salesman problem. In Genetic and
Evolutionary Computation Conference
(GECCO-2004)., pages CD–ROM. GECCO, June 2004.

[4] P. Gang and S. Nakayama. Multiple heuristic search in
genetic algorithm for traveling salesman problem. pages
88–93, July 2003.

[5] N. Sannomiya, H. Kita, H. Tamaki, and T. Iwamoto.
Genetic algorithms and optimization. 1998.

[6] T. Yuizono and S. Nakayama. Trial Experiments of
Distributed Parallel Processing with JavaSpaces:
Linda-based Object Shared Space, volume 99.


