
An Incremental Approach to the Proportional GA

Han Yu
School of Computer Science
University of Central Florida

P. O. Box 162362
Orlando, FL 32816-2362, USA

hyu@cs.ucf.edu

Annie S. Wu
School of Computer Science
University of Central Florida

P. O. Box 162362
Orlando, FL 32816-2362, USA

aswu@cs.ucf.edu

ABSTRACT
The Proportional Genetic Algorithm (PGA) supports truly
location independent solution encoding. In this paper, we
propose a novel approach, called incremental building blocks,
to improve the search performance of PGA. The main idea
of this approach is to evolve low level building blocks in-
dividually in the beginning of a run and then continuously
select and combine good building blocks to form larger and
more complete ones until an optimal solution is found. Em-
pirical studies in the resource allocation domain show that
this approach is able to improve both the search quality and
efficiency of a PGA. Further analysis of experimental data
reveals that this approach is better at preserving the self-
similarity of chromosomes during evolution.

Keywords
genetic algorithm, incremental building block, proportional
genetic algorithm, resource allocation, genomic self-similarity

1. INTRODUCTION
The building block hypothesis states that solutions to a
given optimization function can be evolved with a contin-
uous process of recombining high-quality building blocks.
While theoretical study has not given sufficient proof to this
hypothesis, it is widely regarded to be the driving force for
GA search. A GA typically starts with a randomized pop-
ulation of candidate solutions. A fitness function evaluates
the quality of candidate solutions, and therefore, attempts
to identify good building blocks from the current popula-
tion. This process of building blocks identification, how-
ever, is somewhat inaccurate for two reasons. First, the
fitness function evaluates the overall quality of a candidate
solution, but is unable to measure the quality of individual
pieces of a solution. Second, the quality of a building block
may rely heavily on the context to which it belongs. Both
the location of a building block in a solution and its correla-
tion with other building blocks may affect the quality of the
building block. As a result, the fitness function, in many

cases, provides a fuzzy evaluation of the low level building
blocks.

There have been some approaches to attack the above prob-
lem. Goldberg’s messy GA [2] is one of the most well-known
approaches. A messy GA begins with a population of par-
tial solutions, or building blocks. The search for a solution is
divided into two phases: a primordial selection phase which
focuses on finding better building blocks from existing ones,
and a juxtapositional phase which attempts to recombine
building blocks to form complete solutions. Operators such
as cut and splice are introduced in the juxtapositional phase
to replace crossover. Messy GAs are shown to outperform
simple GAs in deceptive functions. The success of messy
GAs indicates that the idea of evolving and combining small
building blocks may benefit the GA search.

We propose an approach called the incremental building
blocks. This approach differs from traditional GAs in that
the search for a solution actively attempts to optimize and
combine building blocks. The search starts from a popu-
lation of small building blocks. These building blocks are
evolved over generations and good quality building blocks
are selected for combination to form larger building blocks.
We repeat this process until an optimized complete solution
is found. We apply this approach to the proportional GA
(PGA), in which the fitness is given based on the propor-
tion of each type of gene in a chromosome rather than the
gene ordering [3]. PGA has a truly location independent
representation and has been applied successfully to domains
such as resource allocation, symbolic regression, and con-
trol. To evolve low level building blocks separately, we need
to be able to accurately estimate fitness of these building
blocks. Since in PGA, building blocks are coarse represen-
tation of whole solution, the incremental building block ap-
proach should work perfectly. We evaluate the effectiveness
of the incremental building block approach by measuring the
performance of PGAs, both with and without the approach.
We present the experimental results and provide a deeper
analysis of the results.

2. ALGORITHM DESIGN
The main idea behind the incremental building block ap-
proach is to evolve low level building blocks separately and
combine them periodically during the search for an optimal
solution. This approach starts from a randomly generated
population of size M consisting of short chromosomes or low
level building blocks. In each generation, we evaluate fitness

of the chromosomes in the population, select better ones
based on fitness, and mutate selected chromosome to form a
new population of chromosomes. No recombination opera-
tor is used during the search. Chromosomes are combined in
every int generations where int is a pre-specified parameter.
The process of combination consists of four steps: 1) Ran-
domly select two chromosomes as parents from the current
population. 2) Combine the genetic code of the two chromo-
somes to form a new chromosome. We keep both the parents
and the newly combined chromosome in the population. 3)
Repeat the first two steps until we generate a population of
M chromosomes. 4) Merge the parent and offspring pop-
ulations by selecting the better chromosomes from both to
form a new population of size M . The following pseudo code
illustrates this approach.

Input - P0: initial set of M chromosomes,

- int: the interval (number of generations)

between two consecutive combination process

- Gmax: maximum number of generations

Output - The best chromosome found in a run

Begin

Pcurr = P0;

For G=1 to Gmax, do

If (G % int = 0), do

/* combine building blocks every ’int’

generations */

Set Pnew to empty;

For I = 1 to M, do

Randomly select two chromosomes Bi and

Bj from Pcurr;

Combine Bi and Bj and insert the

chromosome in Pnew;

End for.

/* combine both populations */

Pcurr = Pcurr + Pnew;

End if;

Evaluate the fitness for all chromosomes in

Pcurr;

Select M chromosomes from Pcurr and form a new

population Pnew;

Mutate chromosomes in Pnew;

Pcurr = Pnew;

End for.

Record the best chromosomes in a run as the final

solution.

End.

3. EMPIRICAL STUDY AND ANALYSIS OF
RESULTS

3.1 Environment Design
We evaluate the performance of the proportional GA on the
resource allocation function. Given a collection of resources,
the goal is to evolve an optimal distribution. In our experi-
ments, the optimal distribution is defined by a pre-specified
target solution. A solution is encoded with a string of char-
acters where each character represents a resource assigned
to a resource recipient. The fitness is based on the propor-
tion of each character in the entire string. A solution that
encodes a resource distribution that is identical to the target

Parameters Values

Population Size 400

Number of Generations 200

Crossover Rate 0.9

Mutation Rate 0.01

Selection Tournament (2)

Combination Interval 5

Table 1: Parameter settings for the experiments.

distribution receives a maximum fitness of one. Equations 1
and 2 show the fitness function for a given chromosome c.

f(c) =

∑N
n=1 Credit(n)

N
, (1)

where N is the number of resource recipients, and the func-
tion Credit(n) evaluates the partial credits assigned to re-
source recipient n.

Credit(n) =

{
optimal(n)
actual(n)

if optimal(n) ≤ actual(n)
actual(n)

optimal(n)
otherwise

(2)

where optimal(n) and actual(n) are the target and encoded
proportions, respectively.

In this paper, we focus on the following problem. Empirical
tests on variations of this problem produce consistent re-
sults. The problem consists of five recipients each expected
to receive the following proportions of the resource: Re-
cipient A: 4/47, Recipient B: 11/47, Recipient C: 18/47,
Recipient D: 7/47, and Recipient E: 7/47. An optimal so-
lution is a string of length 47 with the above proportions.
We evaluate the effectiveness of the incremental building
block approach by testing the PGA with and without this
approach incorporated. We test fifty runs in each case with
parameter settings listed in Table 1. When the incremental
building block approach is used, we combine chromosomes
every five generations. The crossover rate is only applied to
traditional PGA runs. All other parameters are set as the
same for both cases.

We set the initial size of chromosomes to be uniformly dis-
tributed between one and four for runs using incremental
building block approach, and ten for traditional PGA runs.
We do not introduce parsimony pressure specifically in the
fitness function, as previous experiments have shown that
the search performance of a PGA is very sensitive to the
amount of parsimony pressure, which is somewhat domain
dependent. Without parsimony pressure, PGA tends to
evolve long chromosomes. We limit the evolvable chromo-
some length to ten times the length of an optimal solution (in
this case, 10×47 = 470). When using the incremental build-

ing block approach, if the combination of two chromosomes
exceeds the maximum allowed length, we do not combine the
chromosomes and randomly select a parent chromosome to
be the new chromosome. In traditional PGA runs, crossover
is not allowed to occur if it produces offspring that exceed
the maximum length. In that case, parents are copied un-
changed into offspring.

3.2 Experimental Results
Table 2 gives our experimental results. Clearly, applying
the incremental building block approach improves the search
performance of PGA. Traditional PGA runs find an optimal
solution only three times out of 50 runs, while the incremen-
tal building block approach is successful in eleven runs out
of 50. Traditional PGA runs, however, produce a slightly
high average fitness in terms of the best solutions found.

We also notice that the incremental building block approach
tends to encourage GA to evolve shorter, more concise solu-
tions, as exhibited by the average length of best solutions.
Consequently, the execution time is significantly reduced.
Closer examination of the best solutions in these runs reveals
that the improvement of search efficiency is a direct result of
the improved search performance. If an optimal solution is
found in a run, it receives the highest fitness and has selec-
tion advantage over longer, less fit chromosomes. Hence the
chromosome sizes can be conveniently controlled. If, how-
ever, an optimal solution cannot be found, longer solutions,
which are capable of encoding more accurate resource pro-
portions than shorter ones, generally receive higher fitness
values and they quickly take over the whole population. In-
terestingly, we notice that all failed runs experience a sharp
increase in chromosome size until the limitation is reached,
no matter if the incremental building block approach is ap-
plied or not. Figures 1 and 2 show the changes in chro-
mosome length during typical runs (a successful run and a
failed run) of the PGA with and without the incremental
building block approach, respectively.

Interestingly, experimental results indicate that, for both
PGAs, early generations of a run is the deciding phase on
the quality of solutions. Successful runs that find an opti-
mal solution tend to find that solution within the first fifty
generations. After this period, longer chromosomes have al-
ready dominated the population and finding an optimal so-
lution (which is much shorter than the average chromosome
length) from the existing population becomes very difficult,
if not impossible. As we restrict the use of combination and
crossover between a pair of long chromosomes, neither oper-
ator has any effect on the search process once a population
has converged to near-maximum-length chromosomes. This
unexpected side effect is a direct result of the length limita-
tion and the restrictions on crossover and combination. In
Section 3.4, we address this problem by modifying the PGA
operators.

3.3 The Emergence of Self-Similarity
We attempt to give an explanation for why the incremental
building block is able to improve the performance of PGA.
We focus the study on the behavior of the emergence of
self-similarity genes and hope to get a supportive answer.

Previous studies on the PGA indicate that, for location in-

 0

 100

 200

 300

 400

 500

 0 50 100 150 200
Le

ng
th

Generation

Average Length
Length of Best Solution

(a)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

Le
ng

th

Generation

Average Length
Length of Best Solution

(b)

Figure 1: The average chromosome length and the
length of the best chromosome in the population for
an example PGA run where the incremental build-
ing block approach is applied. (a) data from a suc-
cessful run (b) data from a failed run.

Performance Metrics PGA with Incremental BB PGA

Number of Successful Runs 11 3

Fitness of Best Solutions (avg / std) 0.997 / 0.0017 0.999 / 0.0013

Length of Best Solutions (avg / std) 322.02 / 161.36 448.38 / 62.54

Execution Time in Seconds (avg / std) 29.38 / 10.15 41.80 / 0.27

Table 2: Comparison of experimental results for the two test cases.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

Le
ng

th

Generation

Average Length
Length of Best Solution

(a)

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

Le
ng

th

Generation

Average Length
Length of Best Solution

(b)

Figure 2: The average chromosome length and the
length of the best chromosome in the population for
an example PGA run where the incremental build-
ing block approach is not applied. (a) data from a
successful run (b) data from a failed run.

dependent representation where the fitness is determined by
the number of copies of genes rather than gene ordering, a
GA tends to favor chromosomes that exhibit a high degree
of self-similarity [1]. We extend this work to investigate
whether the use of the incremental building block approach
may affect the self-similarity of chromosomes.

We select the best solutions from runs in above experiments
and calculate the self-similarity for each chromosome. If
the length of a chromosome is shorter than the optimal so-
lution, l(optimal), the self-similarity value of that chromo-
some is the same as its fitness. Otherwise, the self-similarity
is calculated as the average fitness of all segments of length
l(optimal) contained in the chromosome. Clearly, a truly
self-similar chromosome has a self-similarity value of one.
The lower the value, the less likely a chromosome exhibits
self-similarity. Equation 3 shows the calculation of self-
similarity for a given chromosome c.

Sim(c) =

{
f(c) if l(c) ≤ l(optimal)∑ l(c)−l(optimal)+1

i=1 f(i)

l(c)−l(optimal)+1
otherwise

(3)

where l(c) is the length of a chromosome c and f(c) returns
the fitness of a chromosome c.

Our statistical study indicates that the incremental building
block approach enables a PGA to evolve more self-similar
chromosomes. The average self-similarity of the best so-
lutions over fifty runs is 0.901, which is much higher than
those from traditional PGA runs (0.811). We speculate that
the difference is due to the fact that the chromosomes in in-
cremental building block runs are directly combined from
shorter ones that already exhibit close resource proportions
to the target solution. On the other hand, the crossover op-
erator in PGA cannot accurately identify and combine the
portions of chromosomes that contain close resource pro-
portions between each other because the fitness function is
evaluated on the chromosome level instead of on the portions
to be combined. As a result, crossover does not guarantee
to preserve the genetic self-similarity of chromosomes.

3.4 Further Improvement
The previous experiments indicate that it is very difficult
for a PGA to find optimal solutions once the population be-
comes dominated by long chromosomes. In order to give
PGAs more opportunity in finding optimal solutions, we

modify the genetic operators. In the incremental building
block approach, we add a cutting operator. In the tradi-
tional PGA, we use truncation if crossover produces off-
spring that are too long.

Chromosome cutting is the reverse of combination and it is
applied to single chromosomes. We randomly select a chro-
mosome from the current population as the parent chromo-
some. A chromosome must contain at least two characters to
qualify for the cutting operation. If the selected chromosome
contains only one character, we randomly select another one
until a qualified chromosome is found. We randomly select
a cutting point within the parent chromosome and split the
chromosome to two offspring. The first offspring inherits all
characters to the left of the cutting point from its parent,
and the second offspring inherits all characters to the right
of the cutting point. Both the parent chromosome and its
offspring remain in the population. We repeat the above
operation until we have a population twice the size of the
original population. Half of the population consists of the
newly generated chromosomes from cutting and the other
half consists of the original parent population. We evaluate
the fitness of all chromosomes and select a new population
with the same size as the original one. We apply the cutting
operator in the same interval as the combination operator,
and the two operators are performed alternately over a PGA
run.

In the base PGA, crossover is forbidden if it produces an
offspring that exceeds the maximum length. Truncation
crossover simply truncates the excess portion beyond the
maximum length and only retains the portion of a chro-
mosome that does not exceed the limitation. Truncation
crossover broadens the use of crossover and allows this re-
combination operator to produce shorter offspring than their
parents, in spite of the size limitation imposed on the whole
population.

We redo the previous experiments, applying chromosome
cutting to the incremental building block approach and trun-
cation crossover to the traditional PGA. The results, given
in Table 3, show that both operators are very effective in
improving the search performance. The incremental build
blocks find an optimal solution in almost all runs (49 success-
ful runs out of 50). The traditional PGA runs also succeed
12 times in 50 trials, much better than the previous results.

Figure 3 plots the changes in chromosome length in an ex-
ample run of the incremental building block approach with
chromosome cutting. An optimal solution is first found in
generation 72 of this run. The average chromosome length
increases in the beginning of the run, but decreases before
reaching 300 and levels off for the rest of the run. This be-
havior contrasts with that shown in Figure 1(b) where the
average chromosome length increases until it approaches the
length limitation. Chromosome cutting is very effective in
keeping the chromosome short throughout a run. As a re-
sult, a GA has more chance of finding an optimal solution
whose length is much shorter than the length limitation.
Out of all successful runs, 37 of them find the first optimal
solution in a generation where chromosome cutting is ap-
plied. Once an optimal solution is found, it is more likely to
survive in the population over generations.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

Le
ng

th

Generation

Average Length
Length of Best Solution

Figure 3: The average chromosome length and the
length of the best chromosome in the population for
an example PGA run where the incremental build-
ing block approach is applied and chromosome cut-
ting is used.

 0

 100

 200

 300

 400

 500

 0 50 100 150 200

Le
ng

th

Generation

Average Length
Length of Best Solution

Figure 4: The average chromosome length and the
length of the best chromosome in the population for
an example PGA run where the incremental build-
ing block approach is not applied and truncation
crossover is used.

Figure 4, which plots the changes in chromosome length in
an example traditional PGA run with truncation crossover,
exhibits similar behavior. Although the average chromo-
some length is still high, a PGA is able to evolve more con-
cise and fitter solutions. In this specific run, the first optimal
solution is found as late as generation 97.

4. CONCLUSIONS
In this paper, we introduce an approach called incremental
building block to the proportional GA. With this approach,
a PGA is initialized with a population of small building
blocks and the search for a solution is a continuous process
of evolving and combining good building blocks. Our ex-
periments in a resource allocation domain show that the use
of this approach is able to improve both the search perfor-
mance and the efficiency of a PGA. This approach enables
a PGA to evolve chromosomes with a higher degree of self-
similarity. We also show that the performance of a PGA
can be further improved by eliminating the following prob-

Performance Metrics PGA with Incremental BB PGA

Number of Successful Runs 49 12

Fitness of Best Solutions (avg / std) 1.0 / 0.0 0.993 / 0.0076

Length of Best Solutions (avg / std) 48.88 / 13.16 463.02 / 186.66

Execution Time in Seconds (avg / std) 21.42 / 3.84 43.91 / 0.36

Self-Similarity of Best Solutions (avg / std) 0.998 / 0.012 0.825 / 0.049

Table 3: A list of new experimental results when cutting and truncation crossover are used.

lem. Both the original PGA crossover and the combination
operators become ineffective once a population converges to
near maximum lengths.

The current status of this research offers ample opportuni-
ties for further exploration on this topic. We intend to apply
the incremental building block approach to other domains
in which a location independent representation can be used.
We also hope to classify the domains where this approach is
beneficial to the search performance of GAs.

5. REFERENCES
[1] I. I. Garibay, A. S. Wu, and O. O. Garibay. On favoring

positive correlations between form and quality of
candidate solutions via the emergence of genomic
self-similarity. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2005.

[2] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3:493–530, 1989.

[3] A. S. Wu and I. I. Garibay. The proportional genetic
algorithm: Gene expression in a genetic algorithm.
Genetic Programming and Evolvable Machines,
3(2):157–192, 2002.

