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ABSTRACT 
Groundwater long-term monitoring (LTM) is required to assess 
the performance of groundwater remediation and human being 
health risk at post-closure sites where groundwater contaminants 
are still present. The large number of sampling locations, number 
of constituents to be monitored, and the frequency of the sampling 
make the LTM costly, especially since LTM may be required 
over several decades.  An optimization algorithm based on the ant 
colony optimization (ACO) paradigm for solving the traveling 
salesman problem (TSP) is proposed to reduce the number of 
monitoring wells while minimizing the overall data loss due to 
fewer sampling locations.  The ACO method is inspired by the 
ability of ant colony to identify the shortest route between their 
nest and a food source. Ants depositing pheromones along their 
paths act as a form of indirect communication.  The developed 
ACO-LTM algorithm is applied to a field site with an existing 30-
well LTM network.   Optimal LTM networks with 27 to 21 wells, 
which represent a 10% to 30% reduction in sampling locations, 
resulted in overall data losses ranging from 0.383 to 1.74.  Results 
from developed ACO-LTM algorithm provide a proof-of-concept 
for the application of the general ACO analogy to the 
groundwater LTM sampling location optimization problem.  

Categories and Subject Descriptors 
J.2 [Computer Applications]: Physical Sciences and Engineering 
– Earth and atmospheric sciences, Engineering.  

General Terms 
Algorithms, Management, Design, Economics.  

Keywords 
Optimization, Ant Colony Optimization, Sampling Network, 
Groundwater Monitoring.  

1. INTRODUCTION 
Long-term monitoring (LTM) of contaminated groundwater sites 
is an increasingly important issue in environmental remediation.  
LTM has become more important in recent years as active 
remediation concludes and the use of monitored natural 
attenuation has increased.  LTM is required to assess human 
health and environmental risk of residual contaminants after 
active groundwater remediation activities are completed. 
However, LTM can be costly given the large number of sampling 
locations, and number of constituents monitored at a given site. 
For example, the U.S. Department of Energy (DOE) estimates 
that for sites where DOE has been mandated to conduct long term 
stewardship, total costs may be up to $100 million per year [17].  
Thus the optimization of LTM networks may provide significant 
cost savings.   

The objective of this work is to demonstrate a proof-of-concept of 
the application of the ant colony optimization (ACO) paradigm to 
solving the long-term groundwater monitoring sampling network 
optimization problem.  Background information on LTM 
optimization and ACO are briefly described.  Then the specific 
LTM problem addressed in this work is presented.  An ACO 
algorithm developed to solve this LTM optimization problem is 
described.  Results of the application of the developed ACO-LTM 
algorithm to a field site are presented and discussed.   

2. BACKGROUND 
2.1 Long-term Groundwater Monitoring 
The overall goal of LTM optimization is to reduce the monitoring 
costs while still capturing sufficient information about the 
contaminant plume.  An existing monitoring network typically 
has more than necessary sampling locations for the purpose of 
LTM.  Thus LTM costs may be reduced by identifying redundant 
sampling locations.   

In previous works, approaches for LTM network optimization 
include heuristic decision support tools and mathematical 
optimization.  These approaches are combined with numerical 
groundwater flow and contaminant transport simulation models, 
estimation methods, and/or statistical analysis to predict or 
interpolate groundwater contaminant concentrations.  Through 
these estimations, monitoring wells may be eliminated from the 
LTM network.   
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Heuristic decision support tools identify improvements to an 
existing LTM network but do not use mathematical optimization 
techniques.  For example, Azia et al. [2] developed the monitoring 

 



and remediation optimization system (MAROS), which reduces 
the number of spatial sampling locations using a set of heuristics 
with the Delaunay interpolation method.  Cameron et al. [5] 
proposed the Geostatistical Temporal/ Spatial (GTS) Optimization 
algorithm, which is a site specific statistical method for reducing 
large monitoring networks.  GTS uses kriging, which is a 
geostatistical interpolation method.  However, since both 
MAROS and GTS are decision support tools, they use manual 
iterative procedures rather than automatic optimization, and 
therefore no global optimal search and sensitivity analysis under 
different constraints are included.  

In general, LTM optimization is a non-linear combinatorial 
problem and therefore well-suited for heuristic optimization 
methods.  For example, stochastic search methods including 
genetic algorithms (GAs) and simulated annealing have been used 
to solve LTM problems. Cieniawski et al. [7] optimized ground-
water monitoring networks using GAs combined with Monte 
Carlo simulation.  Nunes et al. [14] used simulated annealing with 
statistical methods to reduce temporal redundancy and increase 
spatial accuracy of LTM networks.  Some simulation-
optimization works also included geostatistical interpolation 
methods.  Reed et al. [15] optimized sampling networks using 
inverse distance weighting (IDW) and ordinary kriging with GAs 
and simulation models.  Wu et al. [20] improved the work of [15] 
by introducing new constraints with spatial moment to increase 
the accuracy of interpolation estimates. The problem with using 
numerical simulation models is that it often is difficult and time-
consuming to calibrate model parameters.  Since the evaluation of 
the objective function and constraints are dependent the 
predictions of the simulation models, uncertainty in simulation 
model parameters is propagated to the optimal solution, leading 
potential reliability issues.  

2.2 Ant Colony Optimization 
Ant colony optimization (ACO) is an evolutionary optimization 
method based on ants’ collective problem-solving ability.  This 
global search method is inspired by the ability of an ant colony to 
identify the shortest route between their nest and a food source 
[3].  A single ant randomly chooses one path to visit from all the 
possible routes from the nest to food source. Individual ants 
contribute information to the colony by dropping chemical 
markers, or pheromones as they traverse a path. In addition, the 
pheromone decreases over time at a given evaporation rate.  Thus 
a shorter path means higher pheromone density, and may make it 
more likely to be chosen by other ants [3]. Through indirect 
communication to other ants via pheromones and foraging 
behavior, a colony of ants can establish the shortest path between 
the nest and the food source over time. This shortest path 
represents the global optimal solution, and all the possible paths 
represent feasible region.  

The first ant colony simulation algorithm was developed by 
Dorigo [8] to solve the classic traveling salesman problem (TSP), 
which is an NP-hard problem. In the TSP, the goal is to obtain a 
shortest path that connects all the cities while visiting each city 
only once.  Bonabeau et al. [4] compared ACO with other 
stochastic searching algorithms, including the GAs, evolutionary 
programming, and simulated annealing, by solving the TSP with 
50, 75 and 100 cities.  Results showed that ACO identified the 
best solution for each TSP case. Ant colony simulation algorithms 

also have been developed for other classical optimization 
problems, including the quadratic assignment problem, job-shop 
scheduling problem, vehicle routing problem, and graph-coloring 
problem [4]. 

Gutjahr [9] proved that under certain conditions, solutions from 
ant-based optimization converge with a probability. More 
recently, ACO algorithms have been applied to solve a wide range 
of engineering and science problems such as random number 
generators [10], autonomous decentralized shop floor routing [6], 
bandwidth minimization problem in a large scale power 
transmissions system [12], redundancy apportionment problem in 
electrical and mechanical systems [21], and capacitated minimum 
spanning tree problems, which is applied to telecommunication 
networks [16]. To date, ACO has not been applied to groundwater 
management and design optimization problems, with the 
exception of Li et al. [11], which developed an ACO for LTM 
based on the approached used in [1].  The only related works 
include Maier et al. [13], which used ACO to optimize water 
distribution systems designs, Abbaspour et al. [1], which used 
ACO to solve an inverse modeling problem, unsaturated soil 
parameters, and Wegley et al. [19], which used particle swarm 
optimization to determine pump speeds to minimize the total costs 
in water distribution systems. 

3. LTM OPTIMIZATION 
An optimization model is formulated to describe the LTM 
problem studied in this work.  The goal is to identify the optimal 
reduced set of monitoring wells from an existing monitoring 
network that retains sufficient measured data such that the 
removed wells may be estimated with minimal error.  The 
objective of the LTM optimization problem is to minimize the 
overall data loss of the reduced network (Equation 1) given a 
fixed number of monitoring wells (Equation 2).  
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 s.t.  s = Smax (2) 
where m = the number of removed monitoring wells (sampling 
locations), Ci = the measured concentration of removed well i, 
Cest,i= the estimated concentration of removed well i based on the 
remaining wells, s = the number of remaining wells, and Smax = 
desired number of remaining wells, which may be predetermined 
according to available budget.  

In this work, concentrations are estimated using IDW 
interpolation.  To estimate a value at any unsampled location, 
IDW uses the measured values from surrounding locations 
(Equations 3-4). IDW assumes that each measured point has a 
local influence that diminishes with distance between unsampled 
and measured locations.  Points closer to the estimated location 
have more influence (i.e., weight) to the estimation location than 
those farther away.  
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C0 = estimated concentration at location (x0, y0); Ci = measured 
concentration at location (xi, yi); di0 = the distance between (x0, y0) 
and (xi,yi); p = power of distance parameter (typically p=2); and n 
= number of neighbors around location (x0, y0) are included in the 
estimation. 

In particular, this optimization formulation is applied to a field 
site in the Upper Aquifer at the Fort Lewis Logistics Center in 
Pierce County, Washington, USA [18].  The existing LTM 
network consists of 30 monitoring wells (Figure 1).  The 
contaminant of concern is trichloroethylene (TCE), which was 
used as a degreasing agent at the site until the 1970s.  Regular 
monitoring was conducted during the period between November 
1995 and October 2001.  Data from the September 2000 
monitoring period is used in this work (Figure 1). 

 
Figure 1.  Concentration contours of TCE (in mg/L) based on 
data from the original LTM network of 30 monitoring wells. 

4. ACO DEVELOPMENT 
An ACO algorithm for solving the groundwater LTM spatial 
optimization problem is presented in this work.  The developed 
ACO-LTM algorithm is analogous to the ACO paradigm for the 
classic traveling salesman problem (TSP) developed in [4].  In the 
ACO-TSP paradigm, each ant at city i is an agent who places 
pheromone on a visited path, and then chooses to visit the next 
city j with a probability that is a function of the distance between 
cities i and j (dij) and the pheromone density on this path.  In the 
TSP, the distance between cities and the order in which they are 
visited are significant and affect the solution quality (i.e., total 

path length).  However in the ACO optimization problem, the 
distance between wells and the order in which they are visited are 
not explicitly relevant to the objective function and constraints.  
Nevertheless, distance between wells is significant in 
concentration estimation (Equations 3-4).  In the ACO-LTM 
paradigm, ants select wells to include in the reduced LTM 
network based on the relative importance of a monitoring well to 
its neighboring wells.  An ant at well i may choose from multiple 
wells not already selected to visit at each step along its path 
(Figure 2) based on a local error resulting from removing next 
well j (ηij) and the pheromone density along path ij.  A summary 
of the developed ACO-LTM algorithm is described below.  

1. An ant’s starting point (i.e., first selected well) is randomly 
chosen. The order in which an ant visits the wells is 
stochastically determined, depending on the pheromone density 
and relative error value. Each individual ant will visit only the 
specified number of wells (Smax), which become the remaining 
wells of the reduced LTM network.   

2. The set of neighboring wells L around an ant’s current location 
are identified.  These neighbors are candidate wells for an ant 
to visit next. Only wells not yet visited are included in the 
candidate list (Figure 2).  The number of neighboring wells 
considered increases over the iterations to prevent an ant from 
being limited in path choices.  

 
Figure 2.  Representation of the ACO paradigm for the LTM 
network optimization problem.  An ant’s path of identifies the 

selected wells (solid circles) from among a subset of 8 
neighboring monitoring wells. 

3. In this step, the ant decides which well will be selected among 
the candidates.  A set of relative errors ηij is calculated for 
current well i and its neighbors. Calculate the error one by one 
as follows. Suppose well j is one well in the candidate list and 
well i is the center well where the ant is currently located 
(Figure 3).  The concentration at well i is estimated through 
IDW interpolation several times; each time, one of the 
candidate wells is excluded from the interpolation.  For 
example, Cest,ij is the estimated concentration of center well i 
when well j is excluded.  The relative error from eliminating 
candidate well j when at well i (ηij) is characterized by  
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where Ci = measured concentration of well i.  A high ηij value 
indicates that the estimated error without well j is very high, 
which implies that candidate well j is important to the well i. 

 
Figure 3.  Neighboring wells around an ant’s current location 

at well i.   Relative error ηij at well i due to excluding 
information from well j is calculated to quantify the relative 

importance of well j to well i.  

4. The next monitoring well j in the reduced LTM network is 
selected from among the candidate list stochastically based on 
the above relative error (ηij) and pheromone deposited in the 
individual path ij (τij). The probability well j is chosen when an 
ant currently is at well i (pij) is defined by  

 
( ) ( )
( ) ( )∑

∈

=

Ll
ilil

ijij
ijp

βα

βα

ητ

ητ
 (6) 

where α and b are parameters (α = 1 and β = 1). 

5. After a well among the candidates list is selected, the well is 
marked as a remaining well. Then this well becomes the current 
well for this ant. 

6. Repeat steps 2 through 5, until the number of visited wells is 
equal to the predetermined number of remaining wells 
(Equation 2). 

7. After an ant has visited the prespecified number of wells (Smax), 
the overall data loss of the reduced LTM network is 
determined.  The data loss is due to estimating the 
concentrations at the eliminated wells based on information 
from the remaining wells.  The overall goal of the LTM 
optimization is to reduce this overall loss, which is quantified 
by the root mean square error (RMSE) of the estimated 
concentrations of removed wells.  The RMSE is given by  
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where m = number of removed wells, Ci = measured concentra-
tion of well i, and Cest,i = estimated concentration of well i 
based on data from the remaining wells.    

8. The pheromone for each segment τij of an ant’s path is updated 
for iteration t+1 by the following rule:  

  (8) ije
ijijij ett τττρτ ∆+∆+−=+ )()1()1(

where ρ = pheromone evaporation rate; τij(t) = the pheromone 
density for path ij during current iteration t; and ∆τ = Q/RMSE, 
in which Q is a parameter (Q = 100), and the goal is to 
minimize the RMSE value. The idea here is that after an ant 
finishes a tour, if the total data loss RMSE value is low, then the 
pheromone density of the path of the ant will be high. Lower 
total data loss means higher density of pheromone, which will 
attract more ants to follow the same path. The term e∆τe 
includes elitism to the ACO search, where e is a parameter that 
is the number of elitist ants in an iteration; and ∆τe is the 
pheromone density of the recent elitist ant. The elitist ant is the 
ant which has obtained the best solution so far. An old elitist 
ant’s pheromone will be replaced by an ant with a lower RMSE 
value.  

9. Return to step 2 to implement the next iteration. The procedure 
terminates after a specified number of iterations. 

In this work, each ant colony is comprised of 30 ants, and the 
ACO search is continued over 100 iterations.  By solving the 
LTM optimization problem with varying desired number of 
remaining wells (Smax) using this ACO-LTM algorithm, different 
optimal reduced LTM networks are identified.   

5. RESULTS 
The results of solving the LTM optimization problem described 
by Equations 1-2 with different desired number of remaining 
wells (Smax) using the developed ACO-LTM algorithm are shown 
in Figures 4 through 6.  In particular, optimal LTM networks with 
27, 23, and 21 remaining wells are presented, which represents 
10%, 23%, and 30% reductions in monitoring wells, respectively.  
Since the majority of LTM costs results from sampling the 
reduction in the number of monitoring wells reflects a similar 
reduction in monitoring costs.  The results presented here are 
from replicate runs of the ACO-LTM.  As expected the resulting 
RMSE increases as the number of remaining wells in the LTM 
network decreases.  The resulting overall RMSE for 27, 23, and 
21 remaining wells are 0.383, 0.976, and 1.745, respectively.  
Although the locations of the removed wells for the cases with 21 
and 23 remaining wells are similar, the resulting overall RMSE 
values are quite different.  The RMSE increased from 0.976 to 
1.745 (79% increase) when the number of remaining wells 
decreased from 23 to 21 (8.7% decrease). This indicates that a 
non-linear relationship between number of remaining wells and 
RMSE values exists, with a greater rate of RMSE increase when at 
lower numbers of remaining wells (Figures 5 and 6).  

Additionally, the solutions identified by the ACO are evaluated 
by comparing the resulting concentration contours (Figures 4 
through 6) with the original contours from the existing LTM 
network of 30 wells (Figure 1) at several isopleths (for example 
0.05 and 0.15 mg/L).   The contours for the 27-well LTM network 
(Figure 4) are almost identical to the contours based on the data of 

(well j excluded) 

j 

i 



30 wells (Figure 1), with the exception of the small region near 
the leftmost well selected for removal.  The most significant 
difference is for the 0.15 mg/L isopleths based on the 21-well and 
30-well LTM network (Figures 1 and 6).  

 
Figure 4.  Concentration contours (mg/L) based on data from 

the optimal LTM network of 27 wells (RMSE = 0.383). 

 
Figure 5.  Concentration contours (mg/L) based on data from 

the optimal LTM network of 23 wells (RMSE = 0.976). 

6. CONCLUSIONS 
This paper presents an ACO-LTM algorithm developed based on 
the ACO paradigm for solving the TSP.  Based on similarities 
between the TSP and LTM problems, analogies are made.  An ant 
acts as an agent identifying the most significant sampling 
locations as it travels around the existing LTM network. An ant’s 
path is based on the local importance of a well on estimating the 
contaminant concentration at a neighboring well.  The developed 

ACO-LTM algorithm is applied to a field site with an existing 30-
well LTM network.   Optimal LTM networks with 27 to 21 wells, 
which represent a 10% to 30% reduction in sampling locations, 
resulted in overall data losses ranging from 0.383 to 1.74.  Results 
from developed ACO-LTM algorithm provide a proof-of-concept 
for the application of the general ACO analogy to the 
groundwater LTM sampling location optimization problem.  
Future work includes the implementation of additional features to 
the ACO search algorithm to improve the search efficiency and 
solution quality.  Additionally, the ACO-LTM algorithm will be 
applied to additional field sites and expanded to include temporal 
optimization of LTM.  

 
Figure 6.  Concentration contours (mg/L) based on data from 

the optimal LTM network of 21 wells (RMSE = 1.745). 
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