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ABSTRACT
The success (and, importantly, potential success) of randomised 
population-based algorithms and their hybrids on ever more 
difficult optimisation problems has  led to an explosion in the 
number of algorithms and variants proposed. It  is difficult to 
definitively compare the range of algorithms proposed, and 
therefore to advance the field.

In this paper we discuss the difficulties of providing widely 
available benchmarking, and present a solution that addresses 
these difficulties. Our solution uses automatically generated 
fractal landscapes, and allows user’s  algorithms written in any 
language and run on any platform to be “plugged into” the 
benchmarking software via the web.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization – global optimization; 
G.4 [Mathematics of Computing]: Mathematical Software -   
certification and testing, efficiency; 
I.2.8 [Computing Methodologies]: Artificial Intelligence -  
Problem Solving, Control Methods, and Search; 
I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling - curve, surface, solid and object representations.

General Terms
Algorithms, Measurement, Performance, Standardization.

Keywords
Benchmarking, test suite, search, optimisation, evolutionary 
algorithms, particle swarm optimisation, memetic algorithms, 
hybrid algorithms, fractal landscapes.

1. INTRODUCTION
The success of population-based optimisation algorithms, such as  
genetic and evolutionary algorithms, swarm algorithms and ant 
colony optimisation, along with the steady increase in accessible 

computing power, has allowed previously impractical search and 
optimisation  problems to be addressed across  many application 
domains. This  has led to an explosion in the number of 
algorithms, or variants of algorithms, proposed by researchers. In 
addition there has been renewed interest  in (stochastic or non-
stochastic versions of) more traditional algorithms, such as hill-
climbing and best-first searches, as well  as so-called memetic 
algorithms which combine the distributed and traditional 
approaches.

Effective means of comparing the multitude of proposed 
algorithms are limited. This in turn makes it  difficult for the field 
to  progress, since it is difficult to evaluate the relative merits of 
proposed algorithms and modifications. 

In this paper we discuss the difficulties of providing widely 
available benchmarking, and present a solution that addresses 
these difficulties. Our solution uses automatically generated 
fractal landscapes, and allows user’s  algorithms written in any 
language and run on any platform to be “plugged into” the 
benchmarking software via the web.

In Section 2 we discuss some of the difficulties that have inhibited  
the broad adoption of benchmarking techniques for evolutionary 
and related algorithms, and begin to motivate our solution. 
Section 3 discusses the problem domain used in our 
benchmarking suite, and the design decisions that  enabled its 
implementation. Section 4 describes the architecture that is used 
to  overcome the practical  issues of a widely available 
benchmarking server. Section 5 concludes the paper.

A test  version of the benchmarking system is available at  the time 
of writing at http://karri.csse.uwa.edu.au/cara/huygens/.

2. DIFFICULTIES IN UNIVERSAL 
BENCHMARKING

2.1 Practical Issues
There are a number of practical  issues that inhibit the 
development and adoption of universal benchmarking facilities. 
We now discuss some of these and how we approach them.

• Programming Languages and Architectures
Researchers develop implementations for testing their algorithms 
in  programming languages that they are familiar with, and perhaps 
have existing tools that they can build on. Problem sets to test the 
algorithms tend to be developed in the same language, and where 
they are not, specific interfaces are built to  bridge the two. Where 
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other researchers use different languages or interfaces, it often 
requires many hours of programming and testing, and in many 
cases rewriting in a new language, in order to compare algorithms 
on  the same problems. This is made more difficult  by the fact  that 
researchers often do not have the resources to extensively 
document their code.

Similar problems exist for different hardware platforms and 
associated operating systems. This is particularly true when 
executables are written for proprietary systems.

In this paper we present  a novel approach to  this problem that uses 
XML-RPC to separate the benchmarking code and its  platform 
from the user’s code and platform. This allows the user to develop 
in  the language and architecture of their choice. This solution is 
detailed in Section 4.

• Choice  of Problem Domains
Optimisation algorithms are developed and themselves optimised 
for a huge range of problem domains. Many of these are not well 
known or understood, and in some cases they are proprietary and 
cannot be released. In order for benchmarking problems to be 
widely accepted they must be readily familiarised.

Various attempts  have been made to adopt standard problem sets 
by  common use. Well-known examples are those by  De Jong [1] 
and Schaffer [5]. These are typically mathematically described 
problems that  are designed to be in some way challenging to  the 
solver. A typical example is Schaffer’s F6 function, shown in 
Figure 1.

While a focus on these problems has raised many important 
issues, they are arguably not very representative of naturally 
occurring optimisation problems. F6, for example, is difficult 
because the closer a candidate solution gets to  the global 
minimum, the bigger the hill that must be climbed or “jumped” to 
move from one local minimum to  the next. However we are not 
aware of any naturally occurring phenomenon which clearly has 
this  property. The importance of choosing benchmark problems 
that are as representative as possible of a broad range of 
applications is discussed further in Section 2.2.

In this paper we choose (fractal) landscapes  as our problem 
domain. These domains are appealingly simple and intuitive as  a 
class of benchmarking problems. We would also argue that, while 
it  is impossible to  choose a domain that demonstrates all 
difficulties to which optimisation algorithms are applied in 

practice, there are a number of properties in these domains  that 
generalise to others. These domains are discussed in more detail in 
Section 3.

• Ready access to benchmark problems and 
comparative  statistics

In recent years various benchmark problems and problem 
generators have been made available on the web. An example is 
Spears’  Repository of Test Functions [7] and Spears and Potter’s 
Repository of Test Problem Generators [8]. 

Assuming one overcomes the issues discussed above, it  may still 
not be easy to benchmark an algorithm against those of peers. 
Comparative results between pairs  (or groups) of algorithms tend 
to  be distributed among academic papers. To carry out a 
comparison it is typically necessary to obtain another author’s 
code, or sufficient detail  of their algorithm to reproduce it. Even 
then comparisons between a large range of algorithms is 
impractical.

This paper describes a system that  allows authors  to  “plug in” 
their own algorithm and have it benchmarked against others, with 
the results available in real time on the web. The way that this is 
achieved is described in Section 4.

2.2 A Word on the No Free Lunch Theorem
The No Free Lunch Theorem (NFL) [2, 9] states, roughly 
speaking, that no algorithm performs better than any other when 
averaged over all  fitness functions. More specifically, for any 
algorithms a and b, as well as a performs on function fa, b will 
perform equally well on some function fb. It has been further 
shown that the NFL theorem applies to any subsect of functions 
iff that  subset is  closed under permutation.

The NFL theorem implies that algorithms cannot  be benchmarked 
to  find a best general  algorithm averaged over all  fitness 
functions. If an algorithm performs well on a set  of benchmarking 
problems, it cannot be claimed that it is better than any other 
algorithm other than on  that set. (Of course this empirical result 
does not  even prove it is better on other unseen problems in that 
class.)

The NFL theorem, however, takes no account of structure in  
naturally occurring classes of problems. The theorem assumes a 
uniform probability distribution over fitness functions. Further, it 
appears that naturally occurring classes of problems are unlikely 
to  be closed under permutation. Igel and Toussaint [2] show that 
the fraction of non-empty subsets that are closed under 
permutation rapidly approaches zero as the cardinality of the 
search space increases. They further show that constraints on 
steepness and number of local  minima lead to subsets that are not 
closed under permutation. (Similar results are provided for non-
uniform probability distributions.)

Thus for naturally occurring classes of structured problems, one 
might  expect  some algorithms to perform better than others. (This 
is  intuitively apparent - for example any given “random” search 
algorithm can be expected to  perform badly on most if not  all non-
contrived problems.)

This does not save our benchmarking suite from a theoretical 
standpoint. We can be reasonably certain that, providing we take a 
sufficiently large sample of test problems from the suite, 
algorithms that perform well on those problems have general 
properties that will cause them to perform well on the unseen 
problems in the class (as  opposed to just performing well on  the 

Figure 1. A cross section of Schaffer’s F6 function.



seen problems). However to  the extent that we cannot show the 
suite to be representative of larger classes of problems, we cannot 
make substantiated claims about the algorithms’ general purpose 
performance. As  the saying goes, there is no free lunch, but there 
may be a free appetiser. This suite aims to provide such an 
appetiser.

3. FRACTAL LANDSCAPES
3.1 Why Landscapes?
The problem domain chosen is finding a minimum in random (but 
repeatable) automatically generated landscapes. As well  as being 
familiar and intuitively appealing, landscapes exhibit many of the 
properties that  raise difficulties in  search and optimisation 
algorithms.

• Landscapes have a very large number of local minima 
(sometimes referred to as highly multimodal). However these 
are achieved naturally and randomly, unlike mathematical 
functions such as F6 mentioned earlier.

• Landscapes are more complex than functions such as F6 in  that 
detail does not diminish with scale. This is representative of 
naturally occurring problems, which  do not  necessarily “smooth 
off” as candidate populations converge to smaller scales. This is 
particularly important in regard to two issues that  arise in 
poulation-based and hybrid algorithms.

Exploration versus exploitation

One of the most  difficult issues in population-based methods is 
managing the balance between exploration, in particular 
jumping  out of local wells to search for new minima, and 
exploitation, or convergence of the population to find a value 
suitably close to the local minimum. In  many problems 
knowledge of scale of the problem or domain allows one to 
implicitly “cheat” in optimising the parameters of the algorithm 
for the problem.

As a simple illustration consider a bowl function, such as 
appears in De Jong’s  test suite as F1 [1]. Any reasonable 
optimisation  algorithm will solve this problem very quickly and 
easily, using either local search (eg. hill climbing) or 
convergence.  This is because prior information is (implicitly) 
provided that  the minimum lies within the given bounds, and 
therefore convergence parameters can be chosen with  the sole 
implication of determining rate of convergence.

If we assume, however, that the bowl could be part of a larger 
picture, the implications of the parameter choice change 
entirely. Sufficient  random action is required to jump out of the 
well. If the available computing resource is, for example, 
number of evaluations, we are faced with a very  difficult 
problem of how best to use them. (Consider, for example, you 
are hiking in a mountain range in the Gibson Desert and 
looking for the lowest place to start digging for water!)

Examples where the scale or bounds  of solutions are not known 
occur in other practical  domains. Lets say for example we are 
using an  evolutionary algorithm to find the optimal set of 
weights for an (arbitrary) neural  network. Wherever we seed 
our population, we cannot be certain that the best solution lies 
within, say, any  given hyper-sphere containing the initial 
population. 

Population search versus local  search

One approach  to  dealing with the exploration/exploitation 
problem has been to propose hybrid (or memetic) algorithms 
combining population-based methods with local search. Again, 
when the scale at which the detail occurs is  known or bounded, 
this  can make these algorithms perform above their general 
potential.

To continue the bowl illustration, consider say an egg box (or 
muffin tray). It would be very easy to  parameterise a hybrid 
algorithm so that the population operators search across the egg 
cups, while local search is used to rapidly find minima within 
the cups. This may report excellent results for this problem, but 
perform extremely poorly when the number of minima (“cups”) 
within  each cup is increased - suddenly the scales at which the 
population-based and local search are operating are 
inappropriate.

Landscapes are considered to have (or at  least  in some sense 
approximate) the fractal property of statistical self-similarity. As 
one zooms in on, say, a mountain range, rather than reaching a 
scale in which the landscape is smooth, successively more detail 
reveals itself. 

Since we seek to find algorithms that do well in general rather  
than on more specific problems, we use problems in which the  
level of detail is maintained as  scale decreases (and indeed while 
scale increases, if the algorithm is  initialised  at  an arbitrary scale).  
Algorithms that do well on these problems should generalise 
easily to problems with more limited scale.

3.2 Midpoint Displacement Algorithms
Probably the most widely  used algorithms for random fractal 
landscape generation are midpoint displacement  algorithms. These 
are iterative algorithms that successively randomly perturb a 
shape at finer and finer scales. In the 2-dimensional case the 
midpoint of each line segment is found and perturbed up or down 
by  a random amount, creating twice as many line segments for the 
next iteration. Similarly, in the 3-dimensional case the midpoint of 
a square is perturbed, creating four new “squares”.

This approach has three major drawbacks from our point  of view.  
First, it  is difficult to justify as a model of landscape formation, 
bearing little or no relationship to natural  geological processes. 
The second, arguably minor issue (assuming the landscape can  be 
generated to arbitrarily fine resolution), is that the depths of points 
between the perturbed midpoints must be “guessed” by some form 
of interpolation. While the simplest would be linear interpolation, 
this  is difficult to justify geographically.

The third and most important problem, however, is that of storage. 
The number of midpoints that must be stored increases 
exponentially with the depth of iteration. In the 2 dimensional 
case the number of midpoints increases with  2n, while in  the 3 
dimensional case it  increases with 22n. This may not be a big 
problem if landscapes are being generated for human viewing, 
such as in a film, since the resolution of the human eye is quite 
low. However if we wish to generate fractal  landscapes with detail 
to  the limit of the resolution that can be achieved on a standard 
computer (which we take to be 64 bit  IEEE floating point) the 
files describing the landscapes would be far too large to store.

3.3 Our Approach
Our approach to generating landscapes is based on a (grossly) 
simplified model of the natural process of meteors impacting a 



moon (or planetary) surface. We assume a new moon begins as a 
sphere, and each meteor or boulder that hits it leaves a crater the 
size of the bottom half of the boulder.

While we don’t have space in this  paper for a detailed description 
of our algorithms, in the following we cover the main points.

3.3.1 A Suite of Landscapes
Using a single landscape for benchmarking would reward 
optimisers that are overly specific (in  choice of parameters) and 
may generalise poorly to other landscapes (and other domains). In 
other words, it would encourage users to “overtrain” their  
algorithms.

Our approach is  to generate a suite of landscapes. Users are given 
a number of test landscapes on  which to hone their algorithms, but 
the benchmarking itself is carried out  across a range of unseen 
landscapes.

3.3.2 Randomness and Scale
The suite of landscapes must be randomly generated. For 
language independence we use a portable (multiplicative 
congruential) pseudo-random generator [4]. The landscapes must 
also be repeatable. We therefore ensure an entire landscape can be 
generated from a single seed.  

The seed provides a convenient way of indexing a sequence of 
landscapes. However sequential seeds produce related random 
deviates in multiplicative congruential algorithms. We therefore 
scatter or hash the seed (or index) to produce that actual starting 
point of the random number generator for each landscape.

While the positions of boulders can be chosen from a uniform 
distribution, the number of boulders of each size must be chosen 
so  as to preserve statistical  self-similarity. One way to put  this  is 
that for each  order of magnitude square on the surface, we would 
expect, on average, the same number of boulders of that order of 
magnitude to strike the surface. This is illustrated in  Table 1.

All landscapes, or moons, in the Huygens Suite are parameterised  
by  n, the mean number of boulders per order of magnitude square, 
and the seed or index. For example, Figure 2 shows the landscape 
of Moon 20_101 (n=20, seed 101), the first training example 
provided for the n=20 series at the Huygens Server web site [3].

3.4 Implementation
There are a number of ways that  this model can be implemented. 
We describe the issues that arise in a number of these, motivating 
the approach taken.

3.4.1 Storing the Landscape
Perhaps the most obvious approach is to generate landscapes by 
storing  the depth of the surface (initially zero) and simulate the 
impact of the boulders by deducting the boulder dimension from 
the depth. This allows the landscapes to be generated and stored in 
advance, and probes of the surface (candidate solutions) to be 
evaluated very quickly.

The obvious problem with this approach, as with the midpoint 
displacement algorithms, is that the storage space increases with 
resolution. Given that we wish to represent detail  to the limit  of 64 
bit floating  point, the arrays of points would be far too large to 
store.

3.4.2 Storing the Boulders
An alternative approach is to store the boulders, that  is their 
centres and radii, and regenerate the landscape as needed. The 
benchmarking process only requires evaluation at specific points 
(x,y co-ordinates), so  it is  not  necessary to generate an entire 
landscape (except for viewing purposes). Each  time we wish to 
evaluate a point, we would cycle through all the boulders  and 
determine the effect each one has  on that  point.

This approach has problems with both storage and running 
(evaluation) time. It  can be seen from Table 1  that the number of 
boulders increases with the inverse square of the scale. Thus for a 
resolution of 1012 we would need to store more than  1024 boulders, 
and cycle through these each time a point is evaluated. Clearly 
this  is impractical in both time or space. 

3.4.3 Regenerating the Boulders
As mentioned earlier we would like each landscape to be 
generated from a single random seed. This requires that we are 
able to regenerate the boulders from the seed in a deterministic 
sequence. It  is therefore possible to overcome the storage 

Table 1. Increasing boulder numbers with reducing 
scale.

Scale Boulder 
size

Size of square with 
mean n boulders

Mean total 
no. boulders

1 0.1-1 1x1 n

0.1 0.001-0.1 0.1x0.1 100n

0.01 0.0001
-0.001

0.01x0.01 10 000n

10-3 10-4-10-3 10-3x10-3 106n

... ... ... ...

Figure 2. The landscape of Moon 20_101 from the 
Huygens Suite. Notice the landscape wraps around in both 
x and y dimensions.



problems referred to above - we simply record the seed and 
regenerate the boulders on each evaluation. The seed and 
generation algorithm can be regarded as an implicit encoding of 
the landscape (much as ax+by+c is  an  explicit encoding of a 
plane). While this overcomes the storage problem, it  clearly 
exacerbates the execution time problem, and again is entirely 
impractical.

3.4.4 A Recursive Approach
While the number of boulders  increases rapidly with decreasing 
scale, only a small proportion can impact a particular location 
being evaluated. As mentioned earlier, the average number of 
boulders at  a given scale centred in a square of that scale is 
constant. A given location can only be impacted by the boulders 
centred in the square in which it lies and its  eight neighbours. This  
number of boulders increases  only linearly with the exponent of 
the resolution.  If we can find a way of generating only these 
boulders then we can evaluate any point in a practical  time.

This is the approach taken in the benchmarking software. The 
trick is to associate a recursively generated seed with each square 
at each scale. That is, the seed associated with a square at scale       
10-(m+1) is determined by its  parent seed at scale 10-m, along with 
its relative position within that  parent square. It is  possible to 
generate these seeds uniquely for all  squares to a scale of 10-7 
before the 32-bit random number generator seeds are exhausted 
and reuse of seeds is required.

Once the recursive algorithm has  generated  the seed for a square 
at a given scale, the boulders at that scale centred in that square 
can be generated using the pseudo-random generator. It then 
determines which square at the next scale down the point lies in, 
and calls  the recursive algorithm on this square and its eight 
neighbours. In practice this can be continued until at  least a scale 
of 10-12, at which  point the resolution of 64 bit  floating point 
becomes insufficient.

3.5 Results
The landscapes used in the Huygens Suite are all evaluated to a 
scale of 10-12. No storage is required as evaluation is done 

recursively from a single seed. Evaluation time is linear in (the 
absolute value of) the scale exponent, so the full resolution of the 
computer is available while execution time remains  fast. Thus the 
technical goals have been met.

We believe the landscapes to be challenging, intuitive, and 
visually convincing (tho we leave the latter judgement to the 
reader, who we invite to view a range of sample landscapes at the 
website). To illustrate the widely varying domains that  arise from 
small seed changes, we have included two further landscapes in 
Figure 3.

Finally, to illustrate that  the fractal  self-similarity property is 
satisfied we have included in  Figure 4 six cross sections of the 
landscape in  Figure 2 at  successively smaller scales. Both the x 
and z  (depth) scales are reduced by 10 in each successive picture. 
Notice that there is no systematic change in the amount of detail 
(number of local minima, height of peaks, etc) as  one progresses 
through the sequence. Indeed the images could be shuffled in any 
order without looking out of place.

3.6 Whats in a Name?
The benchmarking suite in this paper is named after the Huygens 
Probe, which recently made a successful landing on Saturn’s 
moon Titan. (The probe is in  turn named after Christiaan 
Huygens, the astrologer who discovered Titan.) 

The analogy with the crater-based landscapes developed in this 
paper is obvious. However the choice of Huygens (rather than say 
Titan) is more specifically motivated.

First, when developing a benchmarking methodology, the 
computing resource to be optimised must be chosen. In 
evolutionary algorithms a wide variety have been used. Examples 
include number of epochs  or iterations to reach the global 
minimum (which in our case is  unknown) to within a given 
accuracy, best value achieved in a given number of evaluations, 
average population fitness, through to environment  dependent 
measures such as CPU time. 

Figure 3. Two additional landscapes from the 20 boulder series showing the distinctively different 
landscapes arising from small seed changes.



In order to allow comparison of a very  broad range of algorithms, 
including hybrid and traditional search algorithms, we have 
steered clear of paradigm-specific concepts such as epochs. 
Similarly to support multiple computing environments we have 
steered clear of  enviroment-dependent measures. We have taken 
the view that  in  most practical applications, as with  the Huygens 
Probe, the expensive operation is  evaluating the fitness at a given 
location. We therefore allow each algorithm a fixed number of 
evaluations, or probes, for each landscape to produce its best 
solution. (Further, in the non-training case, the algorithm does  not 
know which landscape it  is solving at any given time, so  probe 
information cannot be accrued across multiple attempts.)

The second analogy is that the probes are sent to the surface from 
a remote location and the data sent back. The reasons for this are 
given in the next section.

4. THE HUYGENS SERVER
Now that we have addressed the content of the benchmarking 
suite, we address the question of making it readily accessible to all 
users. 

4.1 Design
The benchmark server is  designed according to the following 
principles:

1. Access to the benchmarking software and results should be 
freely available through the web.

2. Use of the software should be independent of the user’s 
computing platform.

3. The user should be able to develop his or her algorithm in the 
programming language of his or her choice.

4. The user should be free of any need to understand (or even 
see) the benchmarking code.

5. The user should be able to initiate the benchmarking process. 
(For example, the user should not have to submit an 
algorithm and rely on a human at the “other end” to run it.)

These principles are achieved by the structure illustrated in Figure 
5. The fundamental design decision that allows these principles to 
be satisfied  is the separation of the user and benchmarking 
(server) environments. The user’s algorithm runs in the user’s own 
environment. This  way the user does not need to download and 
build the benchmarking code. Nor does he or she have to submit  
code for a second party to build and run (also avoiding the 
security risks this entails). It also means the user can  benchmark 
existing algorithms or write new algorithms in the language of his 
or her choice.

4.2 Implementation
In order to benchmark the user’s algorithm, the software must be 
able to obtain, via the internet, candidate solutions (tuples 
representing points in  the search space) from the algorithm, and 
return the evaluations (fitness values) of those candidates  to the 
algorithm. This can be achieved using remote procedure calls 
(RPC). 

As one of our goals is language independence, we require a 
language independent RPC protocol. The protocol we have 
employed is XML-RPC [10]. This is a relatively simple open 
standard for sending procedure calls  between different 
environments over the internet. It uses the standard HTTP 
transport mechanism, and encodes data using XML (plain text).

In addition there is a strong XML-RPC user community, 
providing clients and servers in a wide range of programming 
languages (examples include C, C++, Java, php, Perl and Python).

Figure 4. A one dimensional slice of terrain 20_101 shown at magnifications of 100 to 106. The square shows the 
detail in the subsequent plot.



The user is simply required to “plug in” their own code to the 
appropriate XML-RPC server as illustrated by the shaded box in 
Figure 5. To do this the user’s code must handle two requests (that 
is, fill in two methods/procedures/function calls). The first 
supplies the number of evaluations allowed and requests the first 
probe (candidate solution) from the user algorithm. The second 
supplies the fitness value of the previous probe, and requests  the 
next probe. 

4.3 Control
The user initiates  a benchmarking test via a browser. The Huygens 
Server then runs the user algorithm using the two RPC calls 
mentioned above.  Once this is  complete it updates its  record of 
results based on the user algorithm’s performance, and displays 
the results to the user through the browser.

This achieves the design principles and overcomes the difficulties 
outlined in Section 2.

5. Conclusion
While arguments such as the No Free Lunch Theorem mean that it 
will  never be possible to identify the “best” general purpose 
optimisation  algorithm, it  is  nevertheless vital to develop some 
definitive and widely accessible means of comparing algorithms. 
This paper presents one attempt at  such a system.
We have argued that  the benchmarking problems chosen are 
intuitively simple and appealing, while overcoming technical 
issues to provide efficient, high resolution fitness functions. We 
have also presented an  architecture for accessing the system that 
overcomes problems of language and environment 
incompatibilities. The system allows the user to  “plug in” their 
algorithm and initiate automated benchmarking, while leaving  
access to the test  problems and accumulation of results data under 
the control of the server.
We hope that  this system will provide a valuable resource to the 
evolutionary algorithms research community.
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