
Benchmarking Evolutionary Algorithms:
The Huygens Suite

Cara MacNish
School of Computer Science & Software Engineering

The University of Western Australia
35 Stirling Highway, Nedlands 6009

+61 8 6488 3453
cara@csse.uwa.edu.au

ABSTRACT
The success (and, importantly, potential success) of randomised
population-based algorithms and their hybrids on ever more
difficult optimisation problems has led to an explosion in the
number of algorithms and variants proposed. It is difficult to
definitively compare the range of algorithms proposed, and
therefore to advance the field.

In this paper we discuss the difficulties of providing widely
available benchmarking, and present a solution that addresses
these difficulties. Our solution uses automatically generated
fractal landscapes, and allows user’s algorithms written in any
language and run on any platform to be “plugged into” the
benchmarking software via the web.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization – global optimization;
G.4 [Mathematics of Computing]: Mathematical Software -
certification and testing, efficiency;
I.2.8 [Computing Methodologies]: Artificial Intelligence -
Problem Solving, Control Methods, and Search;
I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling - curve, surface, solid and object representations.

General Terms
Algorithms, Measurement, Performance, Standardization.

Keywords
Benchmarking, test suite, search, optimisation, evolutionary
algorithms, particle swarm optimisation, memetic algorithms,
hybrid algorithms, fractal landscapes.

1. INTRODUCTION
The success of population-based optimisation algorithms, such as
genetic and evolutionary algorithms, swarm algorithms and ant
colony optimisation, along with the steady increase in accessible

computing power, has allowed previously impractical search and
optimisation problems to be addressed across many application
domains. This has led to an explosion in the number of
algorithms, or variants of algorithms, proposed by researchers. In
addition there has been renewed interest in (stochastic or non-
stochastic versions of) more traditional algorithms, such as hill-
climbing and best-first searches, as well as so-called memetic
algorithms which combine the distributed and traditional
approaches.

Effective means of comparing the multitude of proposed
algorithms are limited. This in turn makes it difficult for the field
to progress, since it is difficult to evaluate the relative merits of
proposed algorithms and modifications.

In this paper we discuss the difficulties of providing widely
available benchmarking, and present a solution that addresses
these difficulties. Our solution uses automatically generated
fractal landscapes, and allows user’s algorithms written in any
language and run on any platform to be “plugged into” the
benchmarking software via the web.

In Section 2 we discuss some of the difficulties that have inhibited
the broad adoption of benchmarking techniques for evolutionary
and related algorithms, and begin to motivate our solution.
Section 3 discusses the problem domain used in our
benchmarking suite, and the design decisions that enabled its
implementation. Section 4 describes the architecture that is used
to overcome the practical issues of a widely available
benchmarking server. Section 5 concludes the paper.

A test version of the benchmarking system is available at the time
of writing at http://karri.csse.uwa.edu.au/cara/huygens/.

2. DIFFICULTIES IN UNIVERSAL
BENCHMARKING

2.1 Practical Issues
There are a number of practical issues that inhibit the
development and adoption of universal benchmarking facilities.
We now discuss some of these and how we approach them.

• Programming Languages and Architectures
Researchers develop implementations for testing their algorithms
in programming languages that they are familiar with, and perhaps
have existing tools that they can build on. Problem sets to test the
algorithms tend to be developed in the same language, and where
they are not, specific interfaces are built to bridge the two. Where

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Genetic and Evolutionary Computation Conference (GECCO)’05,
June 25-29, 2005, Washington, DC, USA..
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

other researchers use different languages or interfaces, it often
requires many hours of programming and testing, and in many
cases rewriting in a new language, in order to compare algorithms
on the same problems. This is made more difficult by the fact that
researchers often do not have the resources to extensively
document their code.

Similar problems exist for different hardware platforms and
associated operating systems. This is particularly true when
executables are written for proprietary systems.

In this paper we present a novel approach to this problem that uses
XML-RPC to separate the benchmarking code and its platform
from the user’s code and platform. This allows the user to develop
in the language and architecture of their choice. This solution is
detailed in Section 4.

• Choice of Problem Domains
Optimisation algorithms are developed and themselves optimised
for a huge range of problem domains. Many of these are not well
known or understood, and in some cases they are proprietary and
cannot be released. In order for benchmarking problems to be
widely accepted they must be readily familiarised.

Various attempts have been made to adopt standard problem sets
by common use. Well-known examples are those by De Jong [1]
and Schaffer [5]. These are typically mathematically described
problems that are designed to be in some way challenging to the
solver. A typical example is Schaffer’s F6 function, shown in
Figure 1.

While a focus on these problems has raised many important
issues, they are arguably not very representative of naturally
occurring optimisation problems. F6, for example, is difficult
because the closer a candidate solution gets to the global
minimum, the bigger the hill that must be climbed or “jumped” to
move from one local minimum to the next. However we are not
aware of any naturally occurring phenomenon which clearly has
this property. The importance of choosing benchmark problems
that are as representative as possible of a broad range of
applications is discussed further in Section 2.2.

In this paper we choose (fractal) landscapes as our problem
domain. These domains are appealingly simple and intuitive as a
class of benchmarking problems. We would also argue that, while
it is impossible to choose a domain that demonstrates all
difficulties to which optimisation algorithms are applied in

practice, there are a number of properties in these domains that
generalise to others. These domains are discussed in more detail in
Section 3.

• Ready access to benchmark problems and
comparative statistics

In recent years various benchmark problems and problem
generators have been made available on the web. An example is
Spears’ Repository of Test Functions [7] and Spears and Potter’s
Repository of Test Problem Generators [8].

Assuming one overcomes the issues discussed above, it may still
not be easy to benchmark an algorithm against those of peers.
Comparative results between pairs (or groups) of algorithms tend
to be distributed among academic papers. To carry out a
comparison it is typically necessary to obtain another author’s
code, or sufficient detail of their algorithm to reproduce it. Even
then comparisons between a large range of algorithms is
impractical.

This paper describes a system that allows authors to “plug in”
their own algorithm and have it benchmarked against others, with
the results available in real time on the web. The way that this is
achieved is described in Section 4.

2.2 A Word on the No Free Lunch Theorem
The No Free Lunch Theorem (NFL) [2, 9] states, roughly
speaking, that no algorithm performs better than any other when
averaged over all fitness functions. More specifically, for any
algorithms a and b, as well as a performs on function fa, b will
perform equally well on some function fb. It has been further
shown that the NFL theorem applies to any subsect of functions
iff that subset is closed under permutation.

The NFL theorem implies that algorithms cannot be benchmarked
to find a best general algorithm averaged over all fitness
functions. If an algorithm performs well on a set of benchmarking
problems, it cannot be claimed that it is better than any other
algorithm other than on that set. (Of course this empirical result
does not even prove it is better on other unseen problems in that
class.)

The NFL theorem, however, takes no account of structure in
naturally occurring classes of problems. The theorem assumes a
uniform probability distribution over fitness functions. Further, it
appears that naturally occurring classes of problems are unlikely
to be closed under permutation. Igel and Toussaint [2] show that
the fraction of non-empty subsets that are closed under
permutation rapidly approaches zero as the cardinality of the
search space increases. They further show that constraints on
steepness and number of local minima lead to subsets that are not
closed under permutation. (Similar results are provided for non-
uniform probability distributions.)

Thus for naturally occurring classes of structured problems, one
might expect some algorithms to perform better than others. (This
is intuitively apparent - for example any given “random” search
algorithm can be expected to perform badly on most if not all non-
contrived problems.)

This does not save our benchmarking suite from a theoretical
standpoint. We can be reasonably certain that, providing we take a
sufficiently large sample of test problems from the suite,
algorithms that perform well on those problems have general
properties that will cause them to perform well on the unseen
problems in the class (as opposed to just performing well on the

Figure 1. A cross section of Schaffer’s F6 function.

seen problems). However to the extent that we cannot show the
suite to be representative of larger classes of problems, we cannot
make substantiated claims about the algorithms’ general purpose
performance. As the saying goes, there is no free lunch, but there
may be a free appetiser. This suite aims to provide such an
appetiser.

3. FRACTAL LANDSCAPES
3.1 Why Landscapes?
The problem domain chosen is finding a minimum in random (but
repeatable) automatically generated landscapes. As well as being
familiar and intuitively appealing, landscapes exhibit many of the
properties that raise difficulties in search and optimisation
algorithms.

• Landscapes have a very large number of local minima
(sometimes referred to as highly multimodal). However these
are achieved naturally and randomly, unlike mathematical
functions such as F6 mentioned earlier.

• Landscapes are more complex than functions such as F6 in that
detail does not diminish with scale. This is representative of
naturally occurring problems, which do not necessarily “smooth
off” as candidate populations converge to smaller scales. This is
particularly important in regard to two issues that arise in
poulation-based and hybrid algorithms.

Exploration versus exploitation

One of the most difficult issues in population-based methods is
managing the balance between exploration, in particular
jumping out of local wells to search for new minima, and
exploitation, or convergence of the population to find a value
suitably close to the local minimum. In many problems
knowledge of scale of the problem or domain allows one to
implicitly “cheat” in optimising the parameters of the algorithm
for the problem.

As a simple illustration consider a bowl function, such as
appears in De Jong’s test suite as F1 [1]. Any reasonable
optimisation algorithm will solve this problem very quickly and
easily, using either local search (eg. hill climbing) or
convergence. This is because prior information is (implicitly)
provided that the minimum lies within the given bounds, and
therefore convergence parameters can be chosen with the sole
implication of determining rate of convergence.

If we assume, however, that the bowl could be part of a larger
picture, the implications of the parameter choice change
entirely. Sufficient random action is required to jump out of the
well. If the available computing resource is, for example,
number of evaluations, we are faced with a very difficult
problem of how best to use them. (Consider, for example, you
are hiking in a mountain range in the Gibson Desert and
looking for the lowest place to start digging for water!)

Examples where the scale or bounds of solutions are not known
occur in other practical domains. Lets say for example we are
using an evolutionary algorithm to find the optimal set of
weights for an (arbitrary) neural network. Wherever we seed
our population, we cannot be certain that the best solution lies
within, say, any given hyper-sphere containing the initial
population.

Population search versus local search

One approach to dealing with the exploration/exploitation
problem has been to propose hybrid (or memetic) algorithms
combining population-based methods with local search. Again,
when the scale at which the detail occurs is known or bounded,
this can make these algorithms perform above their general
potential.

To continue the bowl illustration, consider say an egg box (or
muffin tray). It would be very easy to parameterise a hybrid
algorithm so that the population operators search across the egg
cups, while local search is used to rapidly find minima within
the cups. This may report excellent results for this problem, but
perform extremely poorly when the number of minima (“cups”)
within each cup is increased - suddenly the scales at which the
population-based and local search are operating are
inappropriate.

Landscapes are considered to have (or at least in some sense
approximate) the fractal property of statistical self-similarity. As
one zooms in on, say, a mountain range, rather than reaching a
scale in which the landscape is smooth, successively more detail
reveals itself.

Since we seek to find algorithms that do well in general rather
than on more specific problems, we use problems in which the
level of detail is maintained as scale decreases (and indeed while
scale increases, if the algorithm is initialised at an arbitrary scale).
Algorithms that do well on these problems should generalise
easily to problems with more limited scale.

3.2 Midpoint Displacement Algorithms
Probably the most widely used algorithms for random fractal
landscape generation are midpoint displacement algorithms. These
are iterative algorithms that successively randomly perturb a
shape at finer and finer scales. In the 2-dimensional case the
midpoint of each line segment is found and perturbed up or down
by a random amount, creating twice as many line segments for the
next iteration. Similarly, in the 3-dimensional case the midpoint of
a square is perturbed, creating four new “squares”.

This approach has three major drawbacks from our point of view.
First, it is difficult to justify as a model of landscape formation,
bearing little or no relationship to natural geological processes.
The second, arguably minor issue (assuming the landscape can be
generated to arbitrarily fine resolution), is that the depths of points
between the perturbed midpoints must be “guessed” by some form
of interpolation. While the simplest would be linear interpolation,
this is difficult to justify geographically.

The third and most important problem, however, is that of storage.
The number of midpoints that must be stored increases
exponentially with the depth of iteration. In the 2 dimensional
case the number of midpoints increases with 2n, while in the 3
dimensional case it increases with 22n. This may not be a big
problem if landscapes are being generated for human viewing,
such as in a film, since the resolution of the human eye is quite
low. However if we wish to generate fractal landscapes with detail
to the limit of the resolution that can be achieved on a standard
computer (which we take to be 64 bit IEEE floating point) the
files describing the landscapes would be far too large to store.

3.3 Our Approach
Our approach to generating landscapes is based on a (grossly)
simplified model of the natural process of meteors impacting a

moon (or planetary) surface. We assume a new moon begins as a
sphere, and each meteor or boulder that hits it leaves a crater the
size of the bottom half of the boulder.

While we don’t have space in this paper for a detailed description
of our algorithms, in the following we cover the main points.

3.3.1 A Suite of Landscapes
Using a single landscape for benchmarking would reward
optimisers that are overly specific (in choice of parameters) and
may generalise poorly to other landscapes (and other domains). In
other words, it would encourage users to “overtrain” their
algorithms.

Our approach is to generate a suite of landscapes. Users are given
a number of test landscapes on which to hone their algorithms, but
the benchmarking itself is carried out across a range of unseen
landscapes.

3.3.2 Randomness and Scale
The suite of landscapes must be randomly generated. For
language independence we use a portable (multiplicative
congruential) pseudo-random generator [4]. The landscapes must
also be repeatable. We therefore ensure an entire landscape can be
generated from a single seed.

The seed provides a convenient way of indexing a sequence of
landscapes. However sequential seeds produce related random
deviates in multiplicative congruential algorithms. We therefore
scatter or hash the seed (or index) to produce that actual starting
point of the random number generator for each landscape.

While the positions of boulders can be chosen from a uniform
distribution, the number of boulders of each size must be chosen
so as to preserve statistical self-similarity. One way to put this is
that for each order of magnitude square on the surface, we would
expect, on average, the same number of boulders of that order of
magnitude to strike the surface. This is illustrated in Table 1.

All landscapes, or moons, in the Huygens Suite are parameterised
by n, the mean number of boulders per order of magnitude square,
and the seed or index. For example, Figure 2 shows the landscape
of Moon 20_101 (n=20, seed 101), the first training example
provided for the n=20 series at the Huygens Server web site [3].

3.4 Implementation
There are a number of ways that this model can be implemented.
We describe the issues that arise in a number of these, motivating
the approach taken.

3.4.1 Storing the Landscape
Perhaps the most obvious approach is to generate landscapes by
storing the depth of the surface (initially zero) and simulate the
impact of the boulders by deducting the boulder dimension from
the depth. This allows the landscapes to be generated and stored in
advance, and probes of the surface (candidate solutions) to be
evaluated very quickly.

The obvious problem with this approach, as with the midpoint
displacement algorithms, is that the storage space increases with
resolution. Given that we wish to represent detail to the limit of 64
bit floating point, the arrays of points would be far too large to
store.

3.4.2 Storing the Boulders
An alternative approach is to store the boulders, that is their
centres and radii, and regenerate the landscape as needed. The
benchmarking process only requires evaluation at specific points
(x,y co-ordinates), so it is not necessary to generate an entire
landscape (except for viewing purposes). Each time we wish to
evaluate a point, we would cycle through all the boulders and
determine the effect each one has on that point.

This approach has problems with both storage and running
(evaluation) time. It can be seen from Table 1 that the number of
boulders increases with the inverse square of the scale. Thus for a
resolution of 1012 we would need to store more than 1024 boulders,
and cycle through these each time a point is evaluated. Clearly
this is impractical in both time or space.

3.4.3 Regenerating the Boulders
As mentioned earlier we would like each landscape to be
generated from a single random seed. This requires that we are
able to regenerate the boulders from the seed in a deterministic
sequence. It is therefore possible to overcome the storage

Table 1. Increasing boulder numbers with reducing
scale.

Scale Boulder
size

Size of square with
mean n boulders

Mean total
no. boulders

1 0.1-1 1x1 n

0.1 0.001-0.1 0.1x0.1 100n

0.01 0.0001
-0.001

0.01x0.01 10 000n

10-3 10-4-10-3 10-3x10-3 106n

...

Figure 2. The landscape of Moon 20_101 from the
Huygens Suite. Notice the landscape wraps around in both
x and y dimensions.

problems referred to above - we simply record the seed and
regenerate the boulders on each evaluation. The seed and
generation algorithm can be regarded as an implicit encoding of
the landscape (much as ax+by+c is an explicit encoding of a
plane). While this overcomes the storage problem, it clearly
exacerbates the execution time problem, and again is entirely
impractical.

3.4.4 A Recursive Approach
While the number of boulders increases rapidly with decreasing
scale, only a small proportion can impact a particular location
being evaluated. As mentioned earlier, the average number of
boulders at a given scale centred in a square of that scale is
constant. A given location can only be impacted by the boulders
centred in the square in which it lies and its eight neighbours. This
number of boulders increases only linearly with the exponent of
the resolution. If we can find a way of generating only these
boulders then we can evaluate any point in a practical time.

This is the approach taken in the benchmarking software. The
trick is to associate a recursively generated seed with each square
at each scale. That is, the seed associated with a square at scale
10-(m+1) is determined by its parent seed at scale 10-m, along with
its relative position within that parent square. It is possible to
generate these seeds uniquely for all squares to a scale of 10-7
before the 32-bit random number generator seeds are exhausted
and reuse of seeds is required.

Once the recursive algorithm has generated the seed for a square
at a given scale, the boulders at that scale centred in that square
can be generated using the pseudo-random generator. It then
determines which square at the next scale down the point lies in,
and calls the recursive algorithm on this square and its eight
neighbours. In practice this can be continued until at least a scale
of 10-12, at which point the resolution of 64 bit floating point
becomes insufficient.

3.5 Results
The landscapes used in the Huygens Suite are all evaluated to a
scale of 10-12. No storage is required as evaluation is done

recursively from a single seed. Evaluation time is linear in (the
absolute value of) the scale exponent, so the full resolution of the
computer is available while execution time remains fast. Thus the
technical goals have been met.

We believe the landscapes to be challenging, intuitive, and
visually convincing (tho we leave the latter judgement to the
reader, who we invite to view a range of sample landscapes at the
website). To illustrate the widely varying domains that arise from
small seed changes, we have included two further landscapes in
Figure 3.

Finally, to illustrate that the fractal self-similarity property is
satisfied we have included in Figure 4 six cross sections of the
landscape in Figure 2 at successively smaller scales. Both the x
and z (depth) scales are reduced by 10 in each successive picture.
Notice that there is no systematic change in the amount of detail
(number of local minima, height of peaks, etc) as one progresses
through the sequence. Indeed the images could be shuffled in any
order without looking out of place.

3.6 Whats in a Name?
The benchmarking suite in this paper is named after the Huygens
Probe, which recently made a successful landing on Saturn’s
moon Titan. (The probe is in turn named after Christiaan
Huygens, the astrologer who discovered Titan.)

The analogy with the crater-based landscapes developed in this
paper is obvious. However the choice of Huygens (rather than say
Titan) is more specifically motivated.

First, when developing a benchmarking methodology, the
computing resource to be optimised must be chosen. In
evolutionary algorithms a wide variety have been used. Examples
include number of epochs or iterations to reach the global
minimum (which in our case is unknown) to within a given
accuracy, best value achieved in a given number of evaluations,
average population fitness, through to environment dependent
measures such as CPU time.

Figure 3. Two additional landscapes from the 20 boulder series showing the distinctively different
landscapes arising from small seed changes.

In order to allow comparison of a very broad range of algorithms,
including hybrid and traditional search algorithms, we have
steered clear of paradigm-specific concepts such as epochs.
Similarly to support multiple computing environments we have
steered clear of enviroment-dependent measures. We have taken
the view that in most practical applications, as with the Huygens
Probe, the expensive operation is evaluating the fitness at a given
location. We therefore allow each algorithm a fixed number of
evaluations, or probes, for each landscape to produce its best
solution. (Further, in the non-training case, the algorithm does not
know which landscape it is solving at any given time, so probe
information cannot be accrued across multiple attempts.)

The second analogy is that the probes are sent to the surface from
a remote location and the data sent back. The reasons for this are
given in the next section.

4. THE HUYGENS SERVER
Now that we have addressed the content of the benchmarking
suite, we address the question of making it readily accessible to all
users.

4.1 Design
The benchmark server is designed according to the following
principles:

1. Access to the benchmarking software and results should be
freely available through the web.

2. Use of the software should be independent of the user’s
computing platform.

3. The user should be able to develop his or her algorithm in the
programming language of his or her choice.

4. The user should be free of any need to understand (or even
see) the benchmarking code.

5. The user should be able to initiate the benchmarking process.
(For example, the user should not have to submit an
algorithm and rely on a human at the “other end” to run it.)

These principles are achieved by the structure illustrated in Figure
5. The fundamental design decision that allows these principles to
be satisfied is the separation of the user and benchmarking
(server) environments. The user’s algorithm runs in the user’s own
environment. This way the user does not need to download and
build the benchmarking code. Nor does he or she have to submit
code for a second party to build and run (also avoiding the
security risks this entails). It also means the user can benchmark
existing algorithms or write new algorithms in the language of his
or her choice.

4.2 Implementation
In order to benchmark the user’s algorithm, the software must be
able to obtain, via the internet, candidate solutions (tuples
representing points in the search space) from the algorithm, and
return the evaluations (fitness values) of those candidates to the
algorithm. This can be achieved using remote procedure calls
(RPC).

As one of our goals is language independence, we require a
language independent RPC protocol. The protocol we have
employed is XML-RPC [10]. This is a relatively simple open
standard for sending procedure calls between different
environments over the internet. It uses the standard HTTP
transport mechanism, and encodes data using XML (plain text).

In addition there is a strong XML-RPC user community,
providing clients and servers in a wide range of programming
languages (examples include C, C++, Java, php, Perl and Python).

Figure 4. A one dimensional slice of terrain 20_101 shown at magnifications of 100 to 106. The square shows the
detail in the subsequent plot.

The user is simply required to “plug in” their own code to the
appropriate XML-RPC server as illustrated by the shaded box in
Figure 5. To do this the user’s code must handle two requests (that
is, fill in two methods/procedures/function calls). The first
supplies the number of evaluations allowed and requests the first
probe (candidate solution) from the user algorithm. The second
supplies the fitness value of the previous probe, and requests the
next probe.

4.3 Control
The user initiates a benchmarking test via a browser. The Huygens
Server then runs the user algorithm using the two RPC calls
mentioned above. Once this is complete it updates its record of
results based on the user algorithm’s performance, and displays
the results to the user through the browser.

This achieves the design principles and overcomes the difficulties
outlined in Section 2.

5. Conclusion
While arguments such as the No Free Lunch Theorem mean that it
will never be possible to identify the “best” general purpose
optimisation algorithm, it is nevertheless vital to develop some
definitive and widely accessible means of comparing algorithms.
This paper presents one attempt at such a system.
We have argued that the benchmarking problems chosen are
intuitively simple and appealing, while overcoming technical
issues to provide efficient, high resolution fitness functions. We
have also presented an architecture for accessing the system that
overcomes problems of language and environment
incompatibilities. The system allows the user to “plug in” their
algorithm and initiate automated benchmarking, while leaving
access to the test problems and accumulation of results data under
the control of the server.
We hope that this system will provide a valuable resource to the
evolutionary algorithms research community.

6. REFERENCES
[1] De Jong, K. A. Analysis of the behaviour of a class of genetic

adaptive systems. PhD dissertation, (1975), Dept. Comput.
Commun. Sci., Univsity of Michigan, Ann Arbor, MI,.

[2] Igel, C. and Toussaint, M. A no-free-lunch theorem for non-
uniform distributions of target functions. Journal of
Mathematical Modelling and Algorithms, (2004), in print.
See also Recent Results on No-Free-Lunch Theorems for
Optimization (2003), Los Alamos pre-print.

[3] MacNish, C. Huygens Benchmarking Suite, http://
karri.csse.uwa.edu.au/cara/huygens/, accessible as at May 6,
2005.

[4] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery,
B. P., Numerical Recipes in C, 2nd Ed (1992), CUP.

[5] Schaffer, J. D., Caruana, L. J., Eshelman, L. J. and Das, R. A
study of control parameters affecting online performance of
genetic algorithms for function optimisation, Phillips Lab.,
North America Philips Corp., Briarcliff Manor, NY, 1989.

[6] Schumacher, C., Vose, M. D. and Whitley, L. D. The No Free
Lunch Theorem and Description Length. In Genetic and
Evolutionary Computation Conference (GECCO 2001),
(2001), Morgan Kaufmann, CA, USA, 565–570.

[7] Spears, W. M. Genetic Algorithms (Evolutionary
Algorithms): Repository of Test Functions, http://
www.cs.uwyo.edu/~wspears/functs.html. accessible as at
May 6, 2005.

[8] Spears, W. M. and Potter, M. A. Genetic Algorithms
(Evolutionary Algorithms): Repository of Test Problem
Generators, http://www.cs.uwyo.edu/~wspears/
generators.html, accessible as at May 6, 2005.

[9] Wolpert, D. H. and Macready, W. G. No Free Lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1,1 (1997) , 67-82.

[10] XML-RPC, UserLand Software, http://www.xmlrpc.com/,
accessible as at May 6, 2005.

Figure 5. Architecture of the Huygens Benchmark Server.

