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ABSTRACT 
We introduce an estimation of distribution algorithm (EDA) based 
on co-evolution of fitness maximizers and fitness predictors for 
improving the performance of evolutionary search when 
evaluations are prohibitively expensive. Fitness predictors are 
lightweight objects which, given an evolving individual, 
heuristically approximate the true fitness. The predictors are 
trained by their ability to correctly differentiate between good and 
bad solutions using reduced computation. We apply co-evolving 
fitness prediction to symbolic regression and measure its impact. 
Our results show that the additional computational investment in 
training the co-evolving fitness predictors can greatly enhance 
both speed and convergence of individual solutions while overall 
reducing the number of evaluations. In application to symbolic 
regression, the advantage of using fitness predictors grows as the 
complexity of models increases. 
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1. INTRODUCTION 
The driving importance of genetic programming is to solve 
complex problems which cannot feasibly be solved directly or 
rigorously in real world applications. Genetic applications are 
extremely successful at intelligently searching an enormous 
search space of solutions. However, they are directly hindered by 
the cost of measuring each evolved individual’s fitness. We 
address this restraint by introducing an estimation of distribution 
algorithm (EDA) which approximates fitness measurement to 
maintain evolutionary progress while maximizing evolutionary 
speed [15]. To achieve this goal, we introduce the concept of co-
evolving fitness maximizers with fitness predictors.  

Estimation of distribution algorithms generate evolutionary 
individuals intelligently by modeling the search space of the 
problem being solved [17]. In this paper, we effectively model the 
search space of the fitness maximizers via fitness prediction.  

Fitness maximizers are the individual encodings the program is 

directly trying to optimize to solve a particular problem [14]. 
These individuals have a measurable fitness, but in many 
applications this fitness is prohibitively expensive to measure.  

Fitness predictors, on the other hand, are lightweight objects 
which heuristically approximate the true fitness of a fitness 
maximizer. However, since nothing can be assumed about how to 
predict the fitness of an individual, the fitness predictors must also 
be evolved to generate accurate predictions. 

The co-evolution of fitness predictors comes at a cost, but this 
cost is more than made up for by the rapid improvement of the 
fitness maximizers. In this paper, we demonstrate the application 
of fitness predictor co-evolution to symbolic regression. 

In symbolic regression, functional expressions are evolved in 
order to fit the provided training data [14]. Very complex 
expressions require a large set of training data in order to 
characterize all features of the phenomenon. Ordinarily, the 
fitness of each expression is measured by finding the error at each 
of these data points [1]. By applying a fitness predictor, we 
drastically reduce the total error evaluations necessary. 

 Our fitness predictor in symbolic regression is a sub-sample of 
the provided training data. This sub-sample is evolved to 
accurately predict fitnesses of the current function population. 
The fitness predictor sub-samples allow for fitness differentiation 
in the fitness maximizer population, while reducing the total error 
calculations needed by several orders of magnitude. 

2. RELATED WORK 
Co-evolution is a genetic programming technique where two 
populations are evolved within the context of each other [12]. 
More precisely, the fitness of individuals in one population is in 
some way related to the individuals in the other. As a result, the 
evolution of one population influences the other by changing the 
fitness calculation [18]. Much research has been done on the use 
and application of co-evolution to enhance problem solving [2, 3, 
4, 6, 11, 19, 20, 22, 23, 24]. We apply this work to our co-evolved 
fitness predictor algorithm. 
We base our work on an estimation-exploration algorithm (EEA) 
setup. Unlike classical co-evolution [12], an EEA consists of three 
components: A population of estimators, a population of 
exploratory solutions, and a target hidden system. In this case the 
evolving fitness maximizers comprise the exploratory population, 
the fitness predictors are the estimation population, and the true 
fitness landscape is the target hidden system. 
Symbolic regression is used in this paper to demonstrate the 
application of co-evolved fitness predictors. In symbolic 
regression, functional expressions are evolved in order to model 
training data by minimizing error [1, 14]. We again make strong 
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use of previous research done in symbolic regression [8, 10, 13, 
21]. 
Dolin, Brad, Bennett, and Rieffel apply co-evolution to symbolic 
regression in order to enhance performance [7]. In their research, 
populations of functions and sample points are co-evolved in 
direct competition with each other. An over-representative sample 
population is used so that extra attention is focused on data 
samples of high error. Our work takes a significantly different 
approach to co-evolving fitness samples. Instead of focusing on 
areas of error, we co-evolve predictors which characterize the 
training data as a whole. We also aim to drastically reduce the 
necessary evaluations by using an under-representative predictor 
sample. 

Many others have applied acceleration techniques to symbolic 
regression also. Eggermont and Hemert [9] apply the Stepwise 
Adaptive Weights method to symbolic regression. Their approach 
is very similar to Dolin’s in that training points are given 
increasingly larger weights in fitness calculations where functions 
have high error. We compare our co-evolved predictor algorithm 
directly with Eggermont and Hemert’s results in this paper. 

3. FUNCTION MODEL 
3.1 Function Encoding 
In this paper, functional expressions are represented by a binary 
tree of mathematical operations. The operations can be unary 
operations such as abs(), exp(), and log(), or binary operations 
such as add(), mult(), and div(). The types of operations available 
are chosen differently for different experiments [1, 14]. 
Additionally, we specify a maximum depth for each tree to 
prevent extremely long functions from impacting performance. 
Leaf nodes of the binary tree evaluate to terminal values. The 
terminal values consist of the function’s input variables and the 
function’s evolved constant values [10]. The number of constant 
values available to the function is chosen at runtime for each 
experiment. 

3.2 Function Training Data 
The function training data consists of a list of predefined known 
inputs and outputs. For the experiments done in this paper, the 
training data is simply a set of x and y pairs [8]. For example: 

 
These known correct value pairs are used to determine each 
function’s fitness, as described in the next section. 

3.3 Function Fitness 
The fitness of a symbolic function is determined by its mean 
absolute error from the set of predefined data points. These data 
points are loaded at runtime based on the experiment being 
conducted. We use a mean error rather than the sum of errors in 
order to reduce floating point overflow. To accomplish this, the 
mean fitness is calculated progressively using the following 
pseudo code. 

 
Most importantly, using a mean absolute error fitness metric also 
allows us to define a simple fitness predictor, which is described 
in Section 4. 

3.4 Evolutionary Selection 
For the experiments in this paper, we use two different types of 
selection for population generation: Deterministic Crowding 
(DC), and Truncation Selection (TS). 
Deterministic crowding is our preferred selection technique, and 
is used in most experiments in this paper. The deterministic 
crowding method maintains good population diversity and tends 
to follow multiple divergent pathways to the final solution [5]. As 
a result, this method provides more accurate experimental results 
with fewer experiment repetitions. 
We also implement Truncation Selection scheme for comparison 
with other researchers’ results. The truncation selection method 
tends to converge very fast on simple data such as low order 
polynomials and is a well used and proven selection technique 
[6]. 

4. FITNESS PREDICTORS 
Fitness predictors are the new element being explored in this 
paper. Essentially, they replace the fitness evaluations done in the 
function population training with less expensive predictions given 
any valid function. 

4.1 Predictor Encoding 
In application to symbolic regression, we choose the fitness 
predictor as simply a smaller sample of the predefined training 
data. An example of a training set of size eight and predictor size 
four is given below: 

 
In this example, the predictor chooses to only evaluate the 
average error on the points 1, 3, 6, and 7. The predictor gives an 
estimate of the true fitness of the function by only evaluating on 
half of the training data. Using this predictor to train the fitness 
maximizers thereby cuts the number of function evaluations in 
half when evolving the function population. 
There are many more ways to encode the fitness predictors. For 
example, an artificial neural network could be used whose inputs 
are the function’s binary tree encoding, and the output is the 
predicted fitness. Different fitness predictor encodings are 
possible for any type of application, but they must always take a 
fitness maximizer as an input, and output a predicted fitness. We 
chose a sub-sample encoding for simplicity. 

Training Data:  
{ (x0,y0) (x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) (x6,y6) (x7,y7) } 

For each [data point] 
 Fit = Fit/(1 + 1/n) – Err/(n+1) 
 n++ 
End 

Function Training Data:  
{ (x0,y0) (x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) (x6,y6) (x7,y7) } 

Predictor Encoding: 
{ (x1,y1) (x3,y3) (x6,y6) (x7,y7) } 



4.2 Predictor Training Data 
4.2.1 Predictor Training Data Structure 
The population of predictors has its own set of training data used 
to calculate the fitness of predictors themselves. The predictor 
training data consists of functions chosen from the function 
population and their true fitness measured on all training points. 
An example predictor training data is shown below: 

 
Only the most recent training functions are stored for predictor 
training. This optimizes the predictors for predicting fitness of the 
current function population, rather than all known functions or 
random functions. 
The number of stored training items is important. The predictor 
training dataset must contain at least as many items as the number 
of sample points encoded by the predictor. This specification 
ensures an overdetermined system, where the predictor evolution 
progresses to a generally consistent solution, rather than solving 
special case scenerios. 

4.2.2 Generating Predictor Training Data 
New predictor training items are generated periodically during co-
evolution. Generating a new item is viewed as an expensive 
operation since the true fitness of the chosen function requires 
evaluating the function on all training points.  
To generate a predictor training data item, a fitness maximizer is 
chosen from the current population. The true fitness of this 
individual is evaluated and stored into the predictor population’s 
training data set. 
This choice of fitness maximizer is extremely important. In order 
to generate good predictors, the program must maintain a diverse 
set of fitness maximizers. This is done by calculating the variance 
of each function in the population from the currently stored 
training items on the points defined by the current best predictor. 
The most variant function is chosen since it offers the most new 
information to the predictor training data. 
There are other training data selection methods which also 
maintain diverse training data. One alternative would be to choose 
the fitness maximizer which is getting the worst prediction. This 
method unfortunately requires the full fitness evaluation on every 
fitness maximizer and can be very expensive. The variance 
selection method described previously is effective and much less 
expensive. 

4.3 Predictor Fitness 
Since fitness predictors are being co-evolved, they also have their 
own fitness. The fitness predictor’s fitness is how well it predicts 
the true fitness of the stored fitness maximizers. Specifically, the 
fitness is the mean absolute fitness prediction error of the stored 
predictor training items described in the previous section. 
There are several alternative ways to measure this type of 
predictor’s fitness, and hence its evolution. Other alternatives we 
considered were to have fitness related to the amount of 
disagreement created in the predictor training data, thereby 

spotting areas of uncertainty. Another technique would be to 
reward predictors based on the amount of error their data items 
measure.  
These techniques still maintain the predictive qualities necessary 
since they still approximate the existing training data. However, 
they have very different co-evolutionary effects. We present the 
straight forward fitness matching technique in this paper for 
simplicity. 

5. CO-EVOLVING FITNESS PREDICTORS 
The algorithm presented in this paper evolves two populations at 
once, the fitness maximizers and the fitness predictors.  
Each iteration of our algorithm is called a cycle. In each cycle, 
both populations are evolved, and progress is made toward the 
final solution. The basic program flow is outlined below: 

 
Not shown in this basic outline are minor controls which turn on 
and off any of the steps 4.a, 4.b, and 4.c in each cycle. These 
controls determine how much time is spent evolving predictors 
verses functions, and also when to generate new predictor training 
data.  
The time spent evolving the predictors verses the functions is 
controlled by a ratio value referred to as the predictor training 
ratio. This value typically ranges between 0 and 0.5. For example, 
a value of 0.5 forces the number of function evaluations invested 
in both populations to be equal. 
The second control determines when to generate a predictor 
training data item. Since this is an expensive step, this step is only 
executed every predictor data period. This period is typically in 
the range of 10 to 1000 cycles.  

6. MEASURING PERFORMANCE 
6.1 Function Evaluation Metric 
In application to symbolic regression, we use the total number of 
function evaluations to measure performance. This metric is 
directly related to the execution time but is independent of 
encoding types, generations, processor speed, etc [7]. All other 
execution time is viewed as evolution implementation overhead, 
which could theoretically be removed.  

6.2 Evaluation Budgeting 
Note that co-evolving fitness predictors also comes at a cost of 
evaluations. For each generation of predictors, evaluations are 
spent to calculate the fitness predictors’ own fitnesses.  
Since we use function evaluations as our performance metric, we 
can easily decide how to appropriate all evaluations. The controls 
described in section 5 turn on and off the training of both 

Predictor Training Data: 
{ [ F(x) = x2 + esin(x),                 True Fitness = -12.56 ] 
 [ F(x) = 4.3x + sin(x + 1.2),   True Fitness = -82.56 ] 
} 

1. Load function training data 
2. Initialize predictor training data with f(x)=0 
3. Initialize the function and predictor populations 
4. Execute a cycle 

a. Evolve predictor population 
b. Evolve function population 
c. Generate a predictor training data item 

5. Loop back to step 4 



populations in order to maintain the specified investment ratio of 
evaluations.  
Since the search space of the fitness predictor is many orders of 
magnitude less than the search space for the fitness maximizers, 
we choose to invest only a small percent of evaluation in training 
the predictors. For all experiments described in the following 
section, we invest 5% of evaluations into training predictors, and 
the remaining train the functions themselves. Even with this small 
investment, the fitness predictors offer significant payoff which 
are described later. 

7. EXPERIMENTATION 
7.1 Untrained Sampling Comparison 
The goal of this experiment is to show that predictor co-evolution 
is always at least as good as or better than untrained fitness 
samples. To do this, we compare the performance of the co-
evolution predictor algorithm with three other training data 
sampling techniques. 

7.1.1 Full Sampling 
This algorithm uses the full set of training data provided at 
runtime. Error is measured on every data point in order to 
calculate the most accurate fitness possible. For the data modeled 
in this experiment, this is roughly ten times the number of data 
points used by the predictor. 

This comparison gives an approximate idea of how significantly 
sampling a small subset of training data can improve the speed 
and performance in symbolic regression. 

7.1.2 Static Random Sample 
This algorithm uses a uniform random sample of training data for 
fitness calculation. The number of samples is identical to the size 
of the predictor’s sample. This sample is chosen at runtime, and 
used throughout one run. 

In other words, this algorithm uses a static fitness predictor that is 
never trained. Likewise, no evaluations are invested in training 
the subset. It is simply a uniform random sample of the provided 
training data. 

This comparison directly demonstrates the added payoff of co-
evolving a predictor over simply choosing a smaller data sample 
of the same size. 

7.1.3 Random Sampling 
In this algorithm, a sample of the training data is used again 
which is also the same size of the fitness predictor’s subset. This 
sample is not static however. Instead, the sample is randomized 
after each fitness evaluation. 

This comparison is given to demonstrate the payoff of 
intelligently evolving a data sample. Randomly sampling allows 
the sample to change, however it is still not trained in any way. 

7.1.4 Experiment Setup 
This experiment thoroughly compares the four symbolic 
regression programs described: Fitness Predictor Sampling, Full 
Sample, Static Random Sample, and Random Sampling. 

For each run, all parameters except those relating to the sampling 
technique are held constant. These control parameters are shown 
in Table 1. 

Table 1: Experimental Control Parameters 

Parameter Control Value 
Function Population Size 128 
Predictor Population Size 5 
Predictor Training Ratio 0.05 

Predictor Samples 8 
Selection Deterministic Crowding 

Mutation Probability 0.1 
Crossover Probability 0.5 

Operators +, -, *, /, exp, log, sin, cos 
Terminals Input X, One Constants 

 

These programs are tested on three different functions of varying 
difficulty. These functions are listed blow and also graphed in 
Figure 1. Each test is repeated 50 times, and the average fitness 
for each run is recorded over time. 

 
These functions are plotted in Figure 1 on their respective data 
ranges. 

 
Figure 1: Experiment 7.1 Data Model 

The first function F1(x) is chosen as a simple example where all 
algorithms should do well. Since this is a function with only one 
local minima, the random sample is very effective representation 
of the training data. So the best that the predictor algorithm can do 
is to co-evolve a fairly uniform distribution of samples. 

The second function F2(x) is slightly more complex in that it has 
multiple peaks and valleys. This allows for much more intelligent 
predictors to be co-evolved, which more accurately represent the 
data than the uniformly random algorithm. 

The third function F3(x) is chosen as a complex function with 
multiple local minima and maxima, but also an additional noise 

F1(x) = 1.5x2 – x3 
F2(x) = e|x|*sin(2pi*x) 
F3(x) = x2*exp(sin(x)) + x + 2*sin(pi/4 - x3) 



term is added. This noise term is very difficult to find without 
intelligent sampling. 

7.2 Stepwise Adaptive Weights Comparison  
In this experiment, the co-evolved fitness predictor program is 
compared with the Stepwise Adaptive Weights (SAW) program 
researched by Eggermont and Hemert [4]. 

The SAW algorithm uses the full training data, but adds an 
additional weight to each training item. The weight of each 
training item is updated each generation based on the error of 
each function in the population. Training points with high error on 
many functions in the population receive greater and greater 
weight in the fitness calculation for each generation. 
Eggermont and Hemert compare two SAW techniques with the 
canonical genetic program by applying the SAW technique to 
symbolic regression. In their experiments, they model two 
polynomial functions which are shown graphed in Figure 2. 

 
These functions are both fairly simple, but they both have very 
distinct local maxima and minima on their given data ranges. The 
SAW program is very good at solving this data as opposed to the 
canonical GP due to the fact that the weights can pull 
intermediary solutions out of local maxima to by forcing 
importance on data features [4].  
We show in this experiment that the co-evolved predictor 
program is also extremely effective at modeling this type of data. 

 
Figure 2: Experiment 7.2 Data Model 

To make the most direct comparison possible, we changed a few 
of the controlled parameters in order to more closely match the 
parameters used by Eggermont and Hemert. The new control 
parameters are shown in Table 2. 

Table 2: New Experimental Control Parameters 

Parameter Control Value 
Function Population Size 100 

Selection Truncation Selection 
Operators +, -, *, / 
Terminals Input X, No Constants 

 

Additionally, the MSE error calculations were changed to 
absolute error as used by Eggermont and Hemert. The absolute 
error is the sum of absolute error on each training point. 

Eggermont and Hemert’s SAW applications evolve a population 
of 100 functions for 1000 generations, and use 50 sample points. 
Assuming each function’s fitness is evaluated once per generation 
on 50 points, the total evaluations done in the experiment is 5e6. 
Even though truncation selection is being used, we still calculate 
the fitness for each individual every generation, although it is not 
necessary. 
The experiment is repeated 15 times for each function, and the 
minimum, maximum, median, mean, and standard deviation are 
compared. 

8. RESULTS 
This section shows the results obtained from performing the 
experiments described in section 7. 

8.1 Uniform Sampling Comparison 
The first function modeled is F1(x) = 1.5x2 – x3. The mean MSE 
for this function over 50 repetitions is plotted against the total 
number of function evaluations in Figure 3.  

 
Figure 3: Mean MSE vs. Evaluations for F(x)=1.5x2 - x3 

As Figure 3 shows, the co-evolved predictor program is slightly 
faster than the static random sample program. The full sample 
program uses the most accurate fitness calculation, and hence has 
the most stable and gradual progress. The random sampling 
program starts off the fastest, but tapers off very quickly. 
The second function modeled is F2(x) = e|x|*sin(2pi*x). Again the 
mean MSE for this function over 50 repetitions is plotted against 
the total number of function evaluations in Figure 4. 

 
Figure 4: Mean MSE vs. Evaluations for F(x)=e|x|*sin(2*pi*x) 
For this more complicated function, the co-evolved predictor 
program starts off the slowest, but quickly jumps far ahead of the 

F1(x) = x5 – 2x3 + x 
F2(x) = x6 – 2x4 + x2 

F3(x) = x2*exp(sin(x)) + x + 2*sin(pi/4 - x3) 



other programs. The full sample program makes slow and steady 
progress. The static random sample and random sampling 
programs fail to find any convergence. These two programs tend 
to evolve linear functions which minimize error, but do not 
closely follow any of the data. 
The third function tested is F3(x). Over 50 repetitions, the mean 
MSE is plotted against evaluations in Figure 5.  

 
Figure 5: Mean MSE vs. Evaluations for  
F(x)= x2*exp(sin(x)) + x + 2*sin(pi/4 - x3) 

In this experiment, the predictor and random sampling programs 
converge onto the modeled function without the noise term very 
rapidly. The predictor program is the only one able to find the 
noise term leading to a successful fit. The full sample makes 
steady progress, however it is also severely bogged down when 
finding the noise term. The static random sampling program is 
unable to find any convergence as it is unable to represent all 
features of the graph while remaining static. 

8.2 Stepwise Adaptive Weights Comparison 
In this experiment, the co-evolved fitness predictor program is 
executed on the experiments performed by Eggermont and 
Hemert. The GP, GP-CSAW, and GP-PSAW results were 
obtained from Eggermont and Hemert [4]. The final column in 
Tables 1 and 2 are the co-evolved fitness predictor program 
results, where the abbreviation GP-FP is used for brevity. Tables 
2 and 3 show the results of modeling functions F1(x) and F2(x) 
respectively. 

Table 2: F1(x)=x5-2x3+x Results 

  GP GP-CSAW GP-PSAW GP-FP 
Median 3.763e-7 3.693e-7 3.669e-7 3.027E-15 
Mean 0.1161 0.08323 0.06513 0.034139 
Std. Dev. 0.2547 0.1803 0.1856 0.13222 
Minimum 2.324e-7 1.704e-7 2.114e-7 1.841E-15 
Maximum 1.034 0.6969 1.111 0.5120775 

 

Table 3: F2(x)=x6-2x4+x2 Results 

  GP GP-CSAW GP-PSAW GP-FP 
Median 1.888E-07 1.824E-07 1.899E-07 1.743E-15 
Mean 0.06963 0.061 0.05084 0.0408403 
Std. Dev. 0.2258 0.1741 0.1418 0.15817 
Minimum 1.135E-07 1.048E-07 1.013E-07 1.504E-15 
Maximum 1.73 1.161 0.5467 0.612605 

 

These results are further summarized in the bar graph shown in 
Figure 5. 
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Figure 6: SAW Comparison Results 

As shown in Figure 5, the co-evolved fitness predictor program 
achieves the lowest mean absolute error after using the same 
number of function evaluations for both experiments. 

9. ANALYSIS AND CONCLUSIONS 
In this section, we discuss our observations and conclusions 
drawn from the experiments conducted. We also identify 
important characteristics of the fitness predictors in each 
experiment, and identify their impact on the fitness maximizer 
evolution. 

9.1 Sample Selection Conclusions 
An interesting observation of the predictors is that they identify 
the important data regions without including points at local 
maxima and minima. Training points at the local maxima and 
minima tend to overestimate the error, and thus lead to bad 
predictors, and may lead to total annihilation of the best fitness 
maximizer. To demonstrate the behavior of the fitness predictors, 
the frequency of the training points used is shown below in Figure 
7. 

 
Figure 7: Predictor Data Point Use 

Notice that the evolved predictors tend to use only one or two 
data points at local minima and maxima, and then distribute the 
remaining points on the sides of local curves. 



From this observation, the fitness predictors offer gentle guiding 
of the functions in the population. Since the predictors are 
evolved only using recent functions found in the function 
population, predictors’ sample points include a combination of 
both points that the functions are modeling well and a few points 
where many functions are missing.  

The effect of gentle guiding supports the high fit individuals to 
survive but strongly encourages alterations which offer 
improvement. This prevents extinction of functions which are 
modeling certain regions very well. 

This effect is most prominent in the modeling of F3(x) F shown in 
Figure 1 of Section 7.1. We observe that often early in evolution, 
a function ex*sin(c*x) is evolved which is missing the absolute 
value operation to give it the correct form e|x|*sin(c*x). Without 
the absolute value, the function closely matches the right hand 
side of the graph where x > 0, but is nearly flat on the x < 0 side. 
Ordinarily this intermediate function would have a very low 
fitness and be replaced. However, the predictors allow the 
function to survive since it is modeling the x > 0 side so well. 

In contrast, the SAW program gives heavy weight to training 
points which have high error. This induces rapid revolution away 
from the current functions in the population. Based on the results 
shown in figure 6, the gentler is much more successful. 

9.2 Performance Gain Conclusions 
A primary goal of the co-evolution of fitness predictors is to 
reduce the number of evaluations needed to evolve the fitness 
maximixer population. As Figure 3 in section 8.1 shows, reducing 
the training data sample size does indeed accomplish this. Both 
the static random sample program and co-evolving fitness 
predictors program strongly outperform the full sample program. 
The fitness predictor program performs the best for this simple 
model because it is able to always evolve predictors that are 
uniformly distributed, where the static random sample maybe 
have a randomly poor distribution. 

The performance gain is also very apparent in the SAW 
comparison experiment. In addition to the gentle guidance effect 
of the fitness predictors, the reduced number of evaluations allows 
the co-evolved fitness predictor program to reach solutions faster 
and with greater probability. 

The investment of evaluations to co-evolve the predictors has a 
strong return. On all functions experimented in Section 7.1, the 
co-evolved predictor program always outperforms the untrained 
equal sized random sample program. 

The benefit of co-evolved predictors also increases with the 
complexity of the data. For the simple function F1(x) modeled in 
Figure 3, the predictor program evolves slightly faster than the 
static random sample program. For the more complex functions 
F2(x) and F3(x) shown in Figures 4 and 5, the predictor program 
performs increasing faster than the untrained sample programs. 

9.3 Avoiding Local Maximum Conclusion 
The co-evolution of fitness predictors is very effective at avoiding 
local maxima functions. Although the predictors have a gentle 
guiding effect, local maxima fitness solutions are avoided due to 
the fitness predictor training data using only the most recent data. 
If the function population becomes dominated by a local maxima 

solution, the predictor training data becomes dominated with 
similar functions also. As a result, the gentle guiding becomes 
gradually more forceful and dynamic.  

As described earlier, the predictors will have points that the 
function matches exactly, and a few points that have error. In the 
local maxima situation, the low error points jump around 
randomly since they do not change any predictions on the 
dominated training data. This effect generates very poor 
predictors in the short run, and allows mutated children to enter 
the population. 

In addition to the local maxima domination effect, simply having 
fewer sample points in the predictors helps prevent local maxima 
functions. The functions have more freedom to model the 
predictor sample in different ways. As a result, the smaller 
predictor sample permits more divergent evolution. Since 
predictors change during co-evolution however, divergence is 
controlled in the long run to model the full training data. 

The advantage of the co-evolved predictor program progressing 
from local maxima is most apparent in experiment modeling F3(x) 
shown in Figure 5. In this experiment only the co-evolved fitness 
predictor program is able to find the noise term successfully. The 
random sampling and full sample programs reach the local 
maxima of fitting the basic shape of the data without the noise 
term fairly quickly. However, they are unable to progress further. 
The co-evolved predictor program is able to intelligently focus on 
the noise variation at this difficult point, and gradually pick up on 
its polynomial frequency. 

10. FUTURE WOK 
There are many alternate training techniques and enhancements 
possible for fitness predictors in symbolic regression. We plan to 
implement and evaluate the characteristics of different predictor 
evolution techniques as described in Sections 4.1, 4.2, and 4.3. 

We also plan to apply predictor co-evolution to other evolutionary 
computation disciplines and evaluate their utility. In particular, 
we would like to develop more robust predictors which can 
integrate with many genetic applications in addition to symbolic 
regression. 
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