
Co-evolution of Fitness Maximizers and Fitness Predictors
Michael D. Schmidt

Computational Synthesis Laboratory
School of Electrical and Computer Engineering

Cornell University, Ithaca NY 14853, USA

mds47@cornell.edu

Hod Lipson
Computational Synthesis Laboratory

School of Mechanical and Aerospace Engineering
Cornell University, Ithaca NY 14853, USA

hod.lipson@cornell.edu

ABSTRACT
We introduce an estimation of distribution algorithm (EDA) based
on co-evolution of fitness maximizers and fitness predictors for
improving the performance of evolutionary search when
evaluations are prohibitively expensive. Fitness predictors are
lightweight objects which, given an evolving individual,
heuristically approximate the true fitness. The predictors are
trained by their ability to correctly differentiate between good and
bad solutions using reduced computation. We apply co-evolving
fitness prediction to symbolic regression and measure its impact.
Our results show that the additional computational investment in
training the co-evolving fitness predictors can greatly enhance
both speed and convergence of individual solutions while overall
reducing the number of evaluations. In application to symbolic
regression, the advantage of using fitness predictors grows as the
complexity of models increases.

Keywords
Genetic Programming, Symbolic Regression, Co-evolution,
Fitness Prediction, Estimation of Distribution Algorithm

1. INTRODUCTION
The driving importance of genetic programming is to solve
complex problems which cannot feasibly be solved directly or
rigorously in real world applications. Genetic applications are
extremely successful at intelligently searching an enormous
search space of solutions. However, they are directly hindered by
the cost of measuring each evolved individual’s fitness. We
address this restraint by introducing an estimation of distribution
algorithm (EDA) which approximates fitness measurement to
maintain evolutionary progress while maximizing evolutionary
speed [15]. To achieve this goal, we introduce the concept of co-
evolving fitness maximizers with fitness predictors.

Estimation of distribution algorithms generate evolutionary
individuals intelligently by modeling the search space of the
problem being solved [17]. In this paper, we effectively model the
search space of the fitness maximizers via fitness prediction.

Fitness maximizers are the individual encodings the program is

directly trying to optimize to solve a particular problem [14].
These individuals have a measurable fitness, but in many
applications this fitness is prohibitively expensive to measure.

Fitness predictors, on the other hand, are lightweight objects
which heuristically approximate the true fitness of a fitness
maximizer. However, since nothing can be assumed about how to
predict the fitness of an individual, the fitness predictors must also
be evolved to generate accurate predictions.

The co-evolution of fitness predictors comes at a cost, but this
cost is more than made up for by the rapid improvement of the
fitness maximizers. In this paper, we demonstrate the application
of fitness predictor co-evolution to symbolic regression.

In symbolic regression, functional expressions are evolved in
order to fit the provided training data [14]. Very complex
expressions require a large set of training data in order to
characterize all features of the phenomenon. Ordinarily, the
fitness of each expression is measured by finding the error at each
of these data points [1]. By applying a fitness predictor, we
drastically reduce the total error evaluations necessary.

 Our fitness predictor in symbolic regression is a sub-sample of
the provided training data. This sub-sample is evolved to
accurately predict fitnesses of the current function population.
The fitness predictor sub-samples allow for fitness differentiation
in the fitness maximizer population, while reducing the total error
calculations needed by several orders of magnitude.

2. RELATED WORK
Co-evolution is a genetic programming technique where two
populations are evolved within the context of each other [12].
More precisely, the fitness of individuals in one population is in
some way related to the individuals in the other. As a result, the
evolution of one population influences the other by changing the
fitness calculation [18]. Much research has been done on the use
and application of co-evolution to enhance problem solving [2, 3,
4, 6, 11, 19, 20, 22, 23, 24]. We apply this work to our co-evolved
fitness predictor algorithm.
We base our work on an estimation-exploration algorithm (EEA)
setup. Unlike classical co-evolution [12], an EEA consists of three
components: A population of estimators, a population of
exploratory solutions, and a target hidden system. In this case the
evolving fitness maximizers comprise the exploratory population,
the fitness predictors are the estimation population, and the true
fitness landscape is the target hidden system.
Symbolic regression is used in this paper to demonstrate the
application of co-evolved fitness predictors. In symbolic
regression, functional expressions are evolved in order to model
training data by minimizing error [1, 14]. We again make strong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO) '05,
 June 25-29, 2005, Washington DC, USA.
Copyright 2005 ACM 1-58113-000-0/00/0004.$5.00.

use of previous research done in symbolic regression [8, 10, 13,
21].
Dolin, Brad, Bennett, and Rieffel apply co-evolution to symbolic
regression in order to enhance performance [7]. In their research,
populations of functions and sample points are co-evolved in
direct competition with each other. An over-representative sample
population is used so that extra attention is focused on data
samples of high error. Our work takes a significantly different
approach to co-evolving fitness samples. Instead of focusing on
areas of error, we co-evolve predictors which characterize the
training data as a whole. We also aim to drastically reduce the
necessary evaluations by using an under-representative predictor
sample.

Many others have applied acceleration techniques to symbolic
regression also. Eggermont and Hemert [9] apply the Stepwise
Adaptive Weights method to symbolic regression. Their approach
is very similar to Dolin’s in that training points are given
increasingly larger weights in fitness calculations where functions
have high error. We compare our co-evolved predictor algorithm
directly with Eggermont and Hemert’s results in this paper.

3. FUNCTION MODEL
3.1 Function Encoding
In this paper, functional expressions are represented by a binary
tree of mathematical operations. The operations can be unary
operations such as abs(), exp(), and log(), or binary operations
such as add(), mult(), and div(). The types of operations available
are chosen differently for different experiments [1, 14].
Additionally, we specify a maximum depth for each tree to
prevent extremely long functions from impacting performance.
Leaf nodes of the binary tree evaluate to terminal values. The
terminal values consist of the function’s input variables and the
function’s evolved constant values [10]. The number of constant
values available to the function is chosen at runtime for each
experiment.

3.2 Function Training Data
The function training data consists of a list of predefined known
inputs and outputs. For the experiments done in this paper, the
training data is simply a set of x and y pairs [8]. For example:

These known correct value pairs are used to determine each
function’s fitness, as described in the next section.

3.3 Function Fitness
The fitness of a symbolic function is determined by its mean
absolute error from the set of predefined data points. These data
points are loaded at runtime based on the experiment being
conducted. We use a mean error rather than the sum of errors in
order to reduce floating point overflow. To accomplish this, the
mean fitness is calculated progressively using the following
pseudo code.

Most importantly, using a mean absolute error fitness metric also
allows us to define a simple fitness predictor, which is described
in Section 4.

3.4 Evolutionary Selection
For the experiments in this paper, we use two different types of
selection for population generation: Deterministic Crowding
(DC), and Truncation Selection (TS).
Deterministic crowding is our preferred selection technique, and
is used in most experiments in this paper. The deterministic
crowding method maintains good population diversity and tends
to follow multiple divergent pathways to the final solution [5]. As
a result, this method provides more accurate experimental results
with fewer experiment repetitions.
We also implement Truncation Selection scheme for comparison
with other researchers’ results. The truncation selection method
tends to converge very fast on simple data such as low order
polynomials and is a well used and proven selection technique
[6].

4. FITNESS PREDICTORS
Fitness predictors are the new element being explored in this
paper. Essentially, they replace the fitness evaluations done in the
function population training with less expensive predictions given
any valid function.

4.1 Predictor Encoding
In application to symbolic regression, we choose the fitness
predictor as simply a smaller sample of the predefined training
data. An example of a training set of size eight and predictor size
four is given below:

In this example, the predictor chooses to only evaluate the
average error on the points 1, 3, 6, and 7. The predictor gives an
estimate of the true fitness of the function by only evaluating on
half of the training data. Using this predictor to train the fitness
maximizers thereby cuts the number of function evaluations in
half when evolving the function population.
There are many more ways to encode the fitness predictors. For
example, an artificial neural network could be used whose inputs
are the function’s binary tree encoding, and the output is the
predicted fitness. Different fitness predictor encodings are
possible for any type of application, but they must always take a
fitness maximizer as an input, and output a predicted fitness. We
chose a sub-sample encoding for simplicity.

Training Data:
{ (x0,y0) (x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) (x6,y6) (x7,y7) }

For each [data point]
 Fit = Fit/(1 + 1/n) – Err/(n+1)
 n++
End

Function Training Data:
{ (x0,y0) (x1,y1) (x2,y2) (x3,y3) (x4,y4) (x5,y5) (x6,y6) (x7,y7) }

Predictor Encoding:
{ (x1,y1) (x3,y3) (x6,y6) (x7,y7) }

4.2 Predictor Training Data
4.2.1 Predictor Training Data Structure
The population of predictors has its own set of training data used
to calculate the fitness of predictors themselves. The predictor
training data consists of functions chosen from the function
population and their true fitness measured on all training points.
An example predictor training data is shown below:

Only the most recent training functions are stored for predictor
training. This optimizes the predictors for predicting fitness of the
current function population, rather than all known functions or
random functions.
The number of stored training items is important. The predictor
training dataset must contain at least as many items as the number
of sample points encoded by the predictor. This specification
ensures an overdetermined system, where the predictor evolution
progresses to a generally consistent solution, rather than solving
special case scenerios.

4.2.2 Generating Predictor Training Data
New predictor training items are generated periodically during co-
evolution. Generating a new item is viewed as an expensive
operation since the true fitness of the chosen function requires
evaluating the function on all training points.
To generate a predictor training data item, a fitness maximizer is
chosen from the current population. The true fitness of this
individual is evaluated and stored into the predictor population’s
training data set.
This choice of fitness maximizer is extremely important. In order
to generate good predictors, the program must maintain a diverse
set of fitness maximizers. This is done by calculating the variance
of each function in the population from the currently stored
training items on the points defined by the current best predictor.
The most variant function is chosen since it offers the most new
information to the predictor training data.
There are other training data selection methods which also
maintain diverse training data. One alternative would be to choose
the fitness maximizer which is getting the worst prediction. This
method unfortunately requires the full fitness evaluation on every
fitness maximizer and can be very expensive. The variance
selection method described previously is effective and much less
expensive.

4.3 Predictor Fitness
Since fitness predictors are being co-evolved, they also have their
own fitness. The fitness predictor’s fitness is how well it predicts
the true fitness of the stored fitness maximizers. Specifically, the
fitness is the mean absolute fitness prediction error of the stored
predictor training items described in the previous section.
There are several alternative ways to measure this type of
predictor’s fitness, and hence its evolution. Other alternatives we
considered were to have fitness related to the amount of
disagreement created in the predictor training data, thereby

spotting areas of uncertainty. Another technique would be to
reward predictors based on the amount of error their data items
measure.
These techniques still maintain the predictive qualities necessary
since they still approximate the existing training data. However,
they have very different co-evolutionary effects. We present the
straight forward fitness matching technique in this paper for
simplicity.

5. CO-EVOLVING FITNESS PREDICTORS
The algorithm presented in this paper evolves two populations at
once, the fitness maximizers and the fitness predictors.
Each iteration of our algorithm is called a cycle. In each cycle,
both populations are evolved, and progress is made toward the
final solution. The basic program flow is outlined below:

Not shown in this basic outline are minor controls which turn on
and off any of the steps 4.a, 4.b, and 4.c in each cycle. These
controls determine how much time is spent evolving predictors
verses functions, and also when to generate new predictor training
data.
The time spent evolving the predictors verses the functions is
controlled by a ratio value referred to as the predictor training
ratio. This value typically ranges between 0 and 0.5. For example,
a value of 0.5 forces the number of function evaluations invested
in both populations to be equal.
The second control determines when to generate a predictor
training data item. Since this is an expensive step, this step is only
executed every predictor data period. This period is typically in
the range of 10 to 1000 cycles.

6. MEASURING PERFORMANCE
6.1 Function Evaluation Metric
In application to symbolic regression, we use the total number of
function evaluations to measure performance. This metric is
directly related to the execution time but is independent of
encoding types, generations, processor speed, etc [7]. All other
execution time is viewed as evolution implementation overhead,
which could theoretically be removed.

6.2 Evaluation Budgeting
Note that co-evolving fitness predictors also comes at a cost of
evaluations. For each generation of predictors, evaluations are
spent to calculate the fitness predictors’ own fitnesses.
Since we use function evaluations as our performance metric, we
can easily decide how to appropriate all evaluations. The controls
described in section 5 turn on and off the training of both

Predictor Training Data:
{ [F(x) = x2 + esin(x), True Fitness = -12.56]
 [F(x) = 4.3x + sin(x + 1.2), True Fitness = -82.56]
}

1. Load function training data
2. Initialize predictor training data with f(x)=0
3. Initialize the function and predictor populations
4. Execute a cycle

a. Evolve predictor population
b. Evolve function population
c. Generate a predictor training data item

5. Loop back to step 4

populations in order to maintain the specified investment ratio of
evaluations.
Since the search space of the fitness predictor is many orders of
magnitude less than the search space for the fitness maximizers,
we choose to invest only a small percent of evaluation in training
the predictors. For all experiments described in the following
section, we invest 5% of evaluations into training predictors, and
the remaining train the functions themselves. Even with this small
investment, the fitness predictors offer significant payoff which
are described later.

7. EXPERIMENTATION
7.1 Untrained Sampling Comparison
The goal of this experiment is to show that predictor co-evolution
is always at least as good as or better than untrained fitness
samples. To do this, we compare the performance of the co-
evolution predictor algorithm with three other training data
sampling techniques.

7.1.1 Full Sampling
This algorithm uses the full set of training data provided at
runtime. Error is measured on every data point in order to
calculate the most accurate fitness possible. For the data modeled
in this experiment, this is roughly ten times the number of data
points used by the predictor.

This comparison gives an approximate idea of how significantly
sampling a small subset of training data can improve the speed
and performance in symbolic regression.

7.1.2 Static Random Sample
This algorithm uses a uniform random sample of training data for
fitness calculation. The number of samples is identical to the size
of the predictor’s sample. This sample is chosen at runtime, and
used throughout one run.

In other words, this algorithm uses a static fitness predictor that is
never trained. Likewise, no evaluations are invested in training
the subset. It is simply a uniform random sample of the provided
training data.

This comparison directly demonstrates the added payoff of co-
evolving a predictor over simply choosing a smaller data sample
of the same size.

7.1.3 Random Sampling
In this algorithm, a sample of the training data is used again
which is also the same size of the fitness predictor’s subset. This
sample is not static however. Instead, the sample is randomized
after each fitness evaluation.

This comparison is given to demonstrate the payoff of
intelligently evolving a data sample. Randomly sampling allows
the sample to change, however it is still not trained in any way.

7.1.4 Experiment Setup
This experiment thoroughly compares the four symbolic
regression programs described: Fitness Predictor Sampling, Full
Sample, Static Random Sample, and Random Sampling.

For each run, all parameters except those relating to the sampling
technique are held constant. These control parameters are shown
in Table 1.

Table 1: Experimental Control Parameters

Parameter Control Value
Function Population Size 128
Predictor Population Size 5
Predictor Training Ratio 0.05

Predictor Samples 8
Selection Deterministic Crowding

Mutation Probability 0.1
Crossover Probability 0.5

Operators +, -, *, /, exp, log, sin, cos
Terminals Input X, One Constants

These programs are tested on three different functions of varying
difficulty. These functions are listed blow and also graphed in
Figure 1. Each test is repeated 50 times, and the average fitness
for each run is recorded over time.

These functions are plotted in Figure 1 on their respective data
ranges.

Figure 1: Experiment 7.1 Data Model

The first function F1(x) is chosen as a simple example where all
algorithms should do well. Since this is a function with only one
local minima, the random sample is very effective representation
of the training data. So the best that the predictor algorithm can do
is to co-evolve a fairly uniform distribution of samples.

The second function F2(x) is slightly more complex in that it has
multiple peaks and valleys. This allows for much more intelligent
predictors to be co-evolved, which more accurately represent the
data than the uniformly random algorithm.

The third function F3(x) is chosen as a complex function with
multiple local minima and maxima, but also an additional noise

F1(x) = 1.5x2 – x3
F2(x) = e|x|*sin(2pi*x)
F3(x) = x2*exp(sin(x)) + x + 2*sin(pi/4 - x3)

term is added. This noise term is very difficult to find without
intelligent sampling.

7.2 Stepwise Adaptive Weights Comparison
In this experiment, the co-evolved fitness predictor program is
compared with the Stepwise Adaptive Weights (SAW) program
researched by Eggermont and Hemert [4].

The SAW algorithm uses the full training data, but adds an
additional weight to each training item. The weight of each
training item is updated each generation based on the error of
each function in the population. Training points with high error on
many functions in the population receive greater and greater
weight in the fitness calculation for each generation.
Eggermont and Hemert compare two SAW techniques with the
canonical genetic program by applying the SAW technique to
symbolic regression. In their experiments, they model two
polynomial functions which are shown graphed in Figure 2.

These functions are both fairly simple, but they both have very
distinct local maxima and minima on their given data ranges. The
SAW program is very good at solving this data as opposed to the
canonical GP due to the fact that the weights can pull
intermediary solutions out of local maxima to by forcing
importance on data features [4].
We show in this experiment that the co-evolved predictor
program is also extremely effective at modeling this type of data.

Figure 2: Experiment 7.2 Data Model

To make the most direct comparison possible, we changed a few
of the controlled parameters in order to more closely match the
parameters used by Eggermont and Hemert. The new control
parameters are shown in Table 2.

Table 2: New Experimental Control Parameters

Parameter Control Value
Function Population Size 100

Selection Truncation Selection
Operators +, -, *, /
Terminals Input X, No Constants

Additionally, the MSE error calculations were changed to
absolute error as used by Eggermont and Hemert. The absolute
error is the sum of absolute error on each training point.

Eggermont and Hemert’s SAW applications evolve a population
of 100 functions for 1000 generations, and use 50 sample points.
Assuming each function’s fitness is evaluated once per generation
on 50 points, the total evaluations done in the experiment is 5e6.
Even though truncation selection is being used, we still calculate
the fitness for each individual every generation, although it is not
necessary.
The experiment is repeated 15 times for each function, and the
minimum, maximum, median, mean, and standard deviation are
compared.

8. RESULTS
This section shows the results obtained from performing the
experiments described in section 7.

8.1 Uniform Sampling Comparison
The first function modeled is F1(x) = 1.5x2 – x3. The mean MSE
for this function over 50 repetitions is plotted against the total
number of function evaluations in Figure 3.

Figure 3: Mean MSE vs. Evaluations for F(x)=1.5x2 - x3

As Figure 3 shows, the co-evolved predictor program is slightly
faster than the static random sample program. The full sample
program uses the most accurate fitness calculation, and hence has
the most stable and gradual progress. The random sampling
program starts off the fastest, but tapers off very quickly.
The second function modeled is F2(x) = e|x|*sin(2pi*x). Again the
mean MSE for this function over 50 repetitions is plotted against
the total number of function evaluations in Figure 4.

Figure 4: Mean MSE vs. Evaluations for F(x)=e|x|*sin(2*pi*x)
For this more complicated function, the co-evolved predictor
program starts off the slowest, but quickly jumps far ahead of the

F1(x) = x5 – 2x3 + x
F2(x) = x6 – 2x4 + x2

F3(x) = x2*exp(sin(x)) + x + 2*sin(pi/4 - x3)

other programs. The full sample program makes slow and steady
progress. The static random sample and random sampling
programs fail to find any convergence. These two programs tend
to evolve linear functions which minimize error, but do not
closely follow any of the data.
The third function tested is F3(x). Over 50 repetitions, the mean
MSE is plotted against evaluations in Figure 5.

Figure 5: Mean MSE vs. Evaluations for
F(x)= x2*exp(sin(x)) + x + 2*sin(pi/4 - x3)

In this experiment, the predictor and random sampling programs
converge onto the modeled function without the noise term very
rapidly. The predictor program is the only one able to find the
noise term leading to a successful fit. The full sample makes
steady progress, however it is also severely bogged down when
finding the noise term. The static random sampling program is
unable to find any convergence as it is unable to represent all
features of the graph while remaining static.

8.2 Stepwise Adaptive Weights Comparison
In this experiment, the co-evolved fitness predictor program is
executed on the experiments performed by Eggermont and
Hemert. The GP, GP-CSAW, and GP-PSAW results were
obtained from Eggermont and Hemert [4]. The final column in
Tables 1 and 2 are the co-evolved fitness predictor program
results, where the abbreviation GP-FP is used for brevity. Tables
2 and 3 show the results of modeling functions F1(x) and F2(x)
respectively.

Table 2: F1(x)=x5-2x3+x Results

 GP GP-CSAW GP-PSAW GP-FP
Median 3.763e-7 3.693e-7 3.669e-7 3.027E-15
Mean 0.1161 0.08323 0.06513 0.034139
Std. Dev. 0.2547 0.1803 0.1856 0.13222
Minimum 2.324e-7 1.704e-7 2.114e-7 1.841E-15
Maximum 1.034 0.6969 1.111 0.5120775

Table 3: F2(x)=x6-2x4+x2 Results

 GP GP-CSAW GP-PSAW GP-FP
Median 1.888E-07 1.824E-07 1.899E-07 1.743E-15
Mean 0.06963 0.061 0.05084 0.0408403
Std. Dev. 0.2258 0.1741 0.1418 0.15817
Minimum 1.135E-07 1.048E-07 1.013E-07 1.504E-15
Maximum 1.73 1.161 0.5467 0.612605

These results are further summarized in the bar graph shown in
Figure 5.

Q uintic and Sextic Polynomial Performance

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13

Quintic
Polynomial

Sextic
Polynomial

M
ea

n
A

bs
ol

ut
e

Er
ro

r

GP
GP-CSAW
GP-PSAW
GP-FP

Figure 6: SAW Comparison Results

As shown in Figure 5, the co-evolved fitness predictor program
achieves the lowest mean absolute error after using the same
number of function evaluations for both experiments.

9. ANALYSIS AND CONCLUSIONS
In this section, we discuss our observations and conclusions
drawn from the experiments conducted. We also identify
important characteristics of the fitness predictors in each
experiment, and identify their impact on the fitness maximizer
evolution.

9.1 Sample Selection Conclusions
An interesting observation of the predictors is that they identify
the important data regions without including points at local
maxima and minima. Training points at the local maxima and
minima tend to overestimate the error, and thus lead to bad
predictors, and may lead to total annihilation of the best fitness
maximizer. To demonstrate the behavior of the fitness predictors,
the frequency of the training points used is shown below in Figure
7.

Figure 7: Predictor Data Point Use

Notice that the evolved predictors tend to use only one or two
data points at local minima and maxima, and then distribute the
remaining points on the sides of local curves.

From this observation, the fitness predictors offer gentle guiding
of the functions in the population. Since the predictors are
evolved only using recent functions found in the function
population, predictors’ sample points include a combination of
both points that the functions are modeling well and a few points
where many functions are missing.

The effect of gentle guiding supports the high fit individuals to
survive but strongly encourages alterations which offer
improvement. This prevents extinction of functions which are
modeling certain regions very well.

This effect is most prominent in the modeling of F3(x) F shown in
Figure 1 of Section 7.1. We observe that often early in evolution,
a function ex*sin(c*x) is evolved which is missing the absolute
value operation to give it the correct form e|x|*sin(c*x). Without
the absolute value, the function closely matches the right hand
side of the graph where x > 0, but is nearly flat on the x < 0 side.
Ordinarily this intermediate function would have a very low
fitness and be replaced. However, the predictors allow the
function to survive since it is modeling the x > 0 side so well.

In contrast, the SAW program gives heavy weight to training
points which have high error. This induces rapid revolution away
from the current functions in the population. Based on the results
shown in figure 6, the gentler is much more successful.

9.2 Performance Gain Conclusions
A primary goal of the co-evolution of fitness predictors is to
reduce the number of evaluations needed to evolve the fitness
maximixer population. As Figure 3 in section 8.1 shows, reducing
the training data sample size does indeed accomplish this. Both
the static random sample program and co-evolving fitness
predictors program strongly outperform the full sample program.
The fitness predictor program performs the best for this simple
model because it is able to always evolve predictors that are
uniformly distributed, where the static random sample maybe
have a randomly poor distribution.

The performance gain is also very apparent in the SAW
comparison experiment. In addition to the gentle guidance effect
of the fitness predictors, the reduced number of evaluations allows
the co-evolved fitness predictor program to reach solutions faster
and with greater probability.

The investment of evaluations to co-evolve the predictors has a
strong return. On all functions experimented in Section 7.1, the
co-evolved predictor program always outperforms the untrained
equal sized random sample program.

The benefit of co-evolved predictors also increases with the
complexity of the data. For the simple function F1(x) modeled in
Figure 3, the predictor program evolves slightly faster than the
static random sample program. For the more complex functions
F2(x) and F3(x) shown in Figures 4 and 5, the predictor program
performs increasing faster than the untrained sample programs.

9.3 Avoiding Local Maximum Conclusion
The co-evolution of fitness predictors is very effective at avoiding
local maxima functions. Although the predictors have a gentle
guiding effect, local maxima fitness solutions are avoided due to
the fitness predictor training data using only the most recent data.
If the function population becomes dominated by a local maxima

solution, the predictor training data becomes dominated with
similar functions also. As a result, the gentle guiding becomes
gradually more forceful and dynamic.

As described earlier, the predictors will have points that the
function matches exactly, and a few points that have error. In the
local maxima situation, the low error points jump around
randomly since they do not change any predictions on the
dominated training data. This effect generates very poor
predictors in the short run, and allows mutated children to enter
the population.

In addition to the local maxima domination effect, simply having
fewer sample points in the predictors helps prevent local maxima
functions. The functions have more freedom to model the
predictor sample in different ways. As a result, the smaller
predictor sample permits more divergent evolution. Since
predictors change during co-evolution however, divergence is
controlled in the long run to model the full training data.

The advantage of the co-evolved predictor program progressing
from local maxima is most apparent in experiment modeling F3(x)
shown in Figure 5. In this experiment only the co-evolved fitness
predictor program is able to find the noise term successfully. The
random sampling and full sample programs reach the local
maxima of fitting the basic shape of the data without the noise
term fairly quickly. However, they are unable to progress further.
The co-evolved predictor program is able to intelligently focus on
the noise variation at this difficult point, and gradually pick up on
its polynomial frequency.

10. FUTURE WOK
There are many alternate training techniques and enhancements
possible for fitness predictors in symbolic regression. We plan to
implement and evaluate the characteristics of different predictor
evolution techniques as described in Sections 4.1, 4.2, and 4.3.

We also plan to apply predictor co-evolution to other evolutionary
computation disciplines and evaluate their utility. In particular,
we would like to develop more robust predictors which can
integrate with many genetic applications in addition to symbolic
regression.

11. REFERENCES
[1] Augusto, Douglas A., and Helio J.C. Barbosa. "Symbolic

Regression via Genetic Programming." VI Brazilian
Symposium on Neural Networks (SBRN'00), 01: 22-01,
2000.

[2] Bongard J. C., and H. Lipson "Nonlinear System
Identification using Co-Evolution of Models and Tests",
IEEE Transactions on Evolutionary Computation, 2004.

[3] Bongard J., and H. Lipson "Managed challenge alleviates
disengagement in co-evolutionary system identification." In
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO’05), 2005.

[4] Cliff D., and G.F. Miller "Tracking The Red Queen:
Measurements of adaptive progress in co-evolutionary
simulations." European Conference on Artificial Life, 1995.

[5] Crow, James F., and Motoo Kimura. "Efficiency of
Truncation Selection." Proceedings of Natl Acad Sci USA
1979, 76:396-399.

[6] De Jong, E.D., and J.B. Pollack "Ideal evaluation from
coevolution." Evolutionary Computation, 2004, 12(2):159–
192.

[7] Dolin, Brad, Forrest Bennett, and Eleanor Rieffel. “Co-
evolving an Effective Fitness Sample: Experiments in
Symbolic Regression and Distributed Robot Control.”
Proceedings of the 2002 ACM Symposium on Applied
Computing, 2002

[8] Duffy, J., and J. Engle-Warnick. "Using Symbolic
Regression to Infer Strategies from Experimental Data." S-H.
Chen eds., Evolutionary Computation in Economics and
Finance, Physica-Verlag. New York, 2002.

[9] Eggermont, J., and J.I. van Hemert. "Stepwise Adaptation of
Weights for Symbolic Regression with Genetic
Programming." Proceedings of EuroGP, 2001.

[10] Ferreira, Cândida. "Function Finding and the Creation of
Numerical Constants in Gene Expression Programming."
Advances in Soft Computing – Engineering Design and
Manufacturing, Springer-Verlag, 2003: 257-266.

[11] Ficici, S.G., and J.B. Pollack. "Pareto optimality in
coevolutionary learning." In Advances in Artificial Life: 6th
European Conference (ECAL 2001), 2001: 316–327.

[12] Hillis, W. D. “Co-evolving improves simulated evolution as
an optimization procedure.” In Langton, C. et al. (Eds.),
Artificial Life II. Addison Wesley, 1992.

[13] Keijzer, Maarten. “Improving Symbolic Regression with
Interval Arithmetic and Linear Scaling.” In Proceedings of
the Sixth European Conference on Genetic Programming,
Springer, Essex UK., 70-82, 2003.

[14] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press, 1992.

[15] Larrañaga, Pedro, and José A Lozano. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Norwell: Kluwer Academic Publishers, 2001.

[16] Mahfoud, S.W. "Niching Methods for Genetic Algorithms."
Ph.D. Thesis, University of Illinois at Urbana-Champaign,
1995.

[17] Naga, P. Laura, and J.A. Lozano. "Special Issue on
Estimation of Distribution Algorithms." Evolutionary
Computation. 13.1 (2005): v-vi.

[18] Olsson, B. "Co-evolutionary search in asymmetric spaces."
Information Sciences, 2001, 133:103–125

[19] Potter, M.A., and K.A. De Jong "Cooperative coevolution:
An architecture for evolving coadapted subcomponents."
Evolutionary Computation, 2000, 8(1):1–29

[20] Rosin, C. D., and R.K. Belew. "New methods for
competitive coevolution." Evolutionary Computation, 1997,
5(1):1–29.

[21] Soule, T. and Heckendorn, R.B. ”Function Sets in Genetic
Programming.” GECCO-2001: Proceedings of the Genetic
and Evolutionary Computation Conference, Morgan
Kaufmann, 190, 2001.

[22] Stanley, K.O., and R. Miikkulainen. "Competitive
coevolution through evolutionary complexification." Journal
of Artificial Intelligence Research, 2004, 21:63–100

[23] Watson, R.A. and J.B. Pollack. "Coevolutionary dynamics in
a minimal substrate." In L. Spector and E.D. Goodman et al,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 702–709,
San Francisco, CA, 2001. Morgan Kaufmann.

[24] Zykov, V., J. Bongard, and H. Lipson "Co-evolutionary
variance guides physical experimentation in evolutionary
system identification." In The 2005 NASA/DoD Conference
on Evolvable Hardware, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

