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ABSTRACT
The rapid diffusion of web services is changing the software
engineering landscape. One of the most interesting features
offered by service–oriented systems is the possibility to per-
form dynamic binding, i.e. choosing, among sets of seman-
tically equivalent services, those which better contribute to
meet some constraints (e.g., related to the cost or to any
other Quality of Service attributes) and optimize some other
criteria (e.g., the response time). Solving this problem is
NP–hard, and approaches to tackle it using Genetic Algo-
rithms have been proposed.

In some cases, especially when it is not possible to find any
solution to the aforementioned problem, it would be useful
to relax constraints, in order to find some alternative solu-
tions that, while not meeting the initial constraints, at least
offer a reasonable Quality of Service. This paper proposes
the use of fuzzy logic to address the imprecision in specify-
ing QoS constraints, estimating QoS values and expressing
Service Level Agreements.

Categories and Subject Descriptors
D.2 [Software Engineering]

General Terms
Performance, Reliability

Keywords
Service–oriented software engineering, QoS–aware service com-
position, Fuzzy Logic

1. INTRODUCTION
Web services represent a big novelty in software technol-

ogy, and are likely to introduce important changes in the
software engineering landscape.
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As defined by W3C [8], a web service is a software system
designed to support interoperable machine-to-machine inter-
action over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed
by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with
other Web-related standards.

Mechanisms such as automatic service discovery based
on reasoning over service semantic descriptions, or dynamic
binding based on Quality of Service (QoS) are just some of
the most promising pieces of technology available. In partic-
ular, this paper focuses on service late-binding of composite
web services, obtained orchestrating more services using glue
code [6] or some specific web service orchestration language
(e.g., BPEL4WS [1] or WSCI [7]).

Given a specific feature needed in a service orchestra-
tion (named abstract service), several services (named con-
crete services) realizing such a feature may be available.
All concrete services corresponding to an abstract service
are functionally equivalent and thus are replaceable by each
other. The choice between them can be dictated by non–
functional properties, referred to as Quality of Service (QoS)
attributes. One may decide to choose the cheapest service,
the fastest, or maybe a compromise between the two. On the
other hand, the service provider can estimate ranges for the
QoS attribute values as part of the contract with potential
users (i.e., the Service Level Agreement (SLA)).

Finding a solution of the aforementioned problem, known
as QoS–aware service composition, is NP–hard. In the pa-
per [3] authors proposed the use of Genetic Algorithms (GA)
for QoS-aware service composition, and showed how, when
the number of available services is high, GAs outperforms
integer programming, used by Zeng et al. to tackle a similar
problem [9].

The main limitation of the proposed approach is that it
is able to search only for solutions that meet a given set of
constraints, while optimizing the fitness function.

Very often, the following scenarios may arise:

• there is no possible composition able to meet all QoS
constraints. Despite that, in some cases the QoS con-
straint violation may be considered acceptable. For
example, we need that our hotel booking composite
service is able to complete the transaction within 10
seconds. However, when determining the binding, we
find that no combination of concrete services is able to



satisfy such a constraint. As an alternative, we could
accept to wait for more than 10 seconds, provided that
the response time is bounded within 20 seconds, other-
wise this could cause further problems in our process;

• a service integrator may be interested to pursue one
of many different QoS tradeoffs. For example, s/he
could accept a service able to fulfill its task in less
than 3 seconds, and costs less than 10 dollars. As a
second choice, s/he could even accept a service that
guarantees a response time of 5 seconds, while costing
only 7 dollars.

In real word problems, constraints are often imprecisely
defined. For instance, if the service costs 10.10 dollars, it is
still a good option, but if it costs 20 dollars, it may be unac-
ceptable. Therefore, some constraints may be softly defined.
Soft constraints would be related to any QoS attribute, such
as time, cost, availability, and so on. Imprecision is not only
relatable to QoS attributes, but also to service specifica-
tion. Sometimes, service characteristics are imprecise. For
instance, the response time is assured within a time interval,
or reliability would spread around a nominal value. In this
paper we address the problem by using Fuzzy Logic, since
it has been proved to be a robust technique for dealing with
uncertainty, and as it provides the means to consider ranges
of values explicitly in the reasoning scheme.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the idea of service binding using GA, as
also described in the paper [3]. Section 2 introduces the idea
of relaxing constraints using fuzzy logic. Finally, Section 4
concludes.

2. SERVICE COMPOSITION
USING GENETIC ALGORITHMS

Let us consider a composite service S, composed of n
abstract services, S ≡ {s1, s2, . . . , sn}. Each compo-
nent si can be bound to one of the m concrete services
csi,1, . . . , csi,m, which are functionally equivalent. As stated
in the introduction and further described in the paper [3],
the QoS-aware service composition problem is related to de-
termine a set of concrete services, to be bound to abstract
services, so that:

1. QoS (i.e., non functional) constraints, established in
the SLA, are met.

2. a function of some other QoS parameters is optimized.

The approach used for computing the QoS of a composite
service is similar to what proposed by Cardoso [4]. For a
Switch construct in the workflow, each Case statement is
annotated with the probability to be chosen. Then, the
overall cost of the construct is given by the weighted sum of
cost of each Case, where a weight is the Case probabilities.
These probabilities are initialized by the workflow designer,
and then eventually updated considering the information
obtained by monitoring the workflow executions. Loops are
annotated with an estimated number of iterations k, and
the QoS of the Loop is computed taking into account the
factor k. For example, if the Loop compound has a cost Cl,
then the estimated cost of the Loop will be k Cl.

Given a concretization of a composite service, i.e., a com-
posite service description where each abstract service has
been bound to one of its corresponding concrete services,
the overall QoS can be computed by applying the rules de-
scribed in Table 1, which shows an aggregation function
for each pair workflow construct and QoS attribute. The
table is not complete and, except that for Loops, the ag-
gregation functions correspond to those proposed by Car-
doso [4]. These functions are recursively defined on com-
pound nodes of the workflow. Namely, for a Sequence con-
struct of tasks {t1, . . . , tm}, the Time and Cost functions are
additive while Availability and Reliability are multiplicative.
The Switch construct of Cases 1, . . . , n, with probabilities

pa1, . . . , pan such that
n

P

i=1

pai = 1, and tasks {t1, . . . , tn}

respectively, is always evaluated as a sum of the attribute
value of each task, times the probability of the Case to which
it belongs. The aggregation functions for the fork (named
Flow in BPEL4WS) construct, are essentially the same as
those for the Sequence construct, except for the Time at-
tribute where this is the maximum time of the parallel tasks
{t1, . . . , tp}. Finally, a Loop construct with k iterations of
task t is equivalent to a Sequence construct of k copies of t.

2.1 Defining the GA Operators
To let the GA search for a solution of our problem, we

first need to encode the problem with a suitable chromo-
some. In our case, the chromosome is represented by an
integer array with a number of items equals to the number
of distinct abstract services composing our service. Each
item, in turn, contains an index to the array of the concrete
services matching that abstract service. Figure 1 gives a
better idea of how the chromosome is made.

Figure 1: Chromosome Encoding

The crossover operator is the standard two-points crossover,
while the mutation operator randomly selects an abstract
service (i.e., a position in the chromosome) and randomly
replaces the corresponding concrete service with another one
among those available. Abstract services for which only one
concrete service is available are taken out from the GA evo-
lution.



QoS Attr. Sequence Switch Flow Loop

Time (T)
m
P

i=1

T (ti)
n

P

i=1

pai ∗ T (ti) Max{T (ti)i∈{1...p}} k ∗ T (t)

Cost (C)
m
P

i=1

C(ti)
n

P

i=1

pai ∗ C(ti)
p

P

i=1

C(ti) k ∗ C(t)

Availability (A)
m
Q

i=1

A(ti)
n

P

i=1

pai ∗ A(ti)
p

Q

i=1

A(ti) A(t)k

Reliability (R)
m
Q

i=1

R(ti)
n

P

i=1

pai ∗ R(ti)
p

Q

i=1

R(ti) R(t)k

Custom Attr. (F) fS(F (ti)) fB((pai, F (ti))) fF (F (ti)) fL(k, F (t))
i ∈ {1 . . . m} i ∈ {1 . . . n} i ∈ {1 . . . p}

Table 1: Aggregation functions per workflow construct and QoS attribute

2.2 Defining the Fitness Function
Once defined the chromosome and the GA operators, our

problem can now be modeled by means of a fitness func-
tion and, eventually, some constraints. The fitness function
needs to maximize some QoS attributes (e.g., reliability),
while minimizing others (e.g., cost). When user–defined,
domain–specific QoS attributes are used, the specification
of the fitness function is left to the workflow designer.

In addition, the fitness function must penalize individuals
that do not meet the constraints and drive the evolution
towards constraint satisfaction.

A solution x is feasible if it meets constraints on QoS at-
tributes such as cost, response time etc. If the solution over-
passes the constraint, then it cannot be accepted. Formally,
we have the constraints in the form

c(x, l) ≤ κ(l) (1)

where c(x, l) is the value, for the solution x, of the QoS
attribute l bouded1 by κ(l).

Generally the bound κ(l) is sharp, so that any additional
QoS value over κ(l) is not allowed. In this case, unaccept-
able solutions can be simply discarded. However, this is
equivalent to explicitly include the constraint satisfaction in
the fitness function as r(x)

f(x) = f(u(x), r(x)) (2)

where u(x) is the objective of our optimization problem (e.g.,
high service reliability or low cost). For example, we may
have

u(x) = reliability(x) (3)

or:

u(x) =
1

cost(x)
(4)

Since a good solution tends to maximize u(x) and meets
as much as possible the constraints, a conjunctive function
is the better way to model the solution fitness. For instance,

f(x) = min{u(x), r(x)} (5)

More in general, we can adopt a generic t-norm T (·, ·) [2],
so that

f(x) = T (u(x), r(x)) (6)

1For simplicity’s sake, we only consider upper bounds. Sim-
ilar formulae can be obtained for lower bounds.

For precise QoS values and bounds, which entail sharp con-
straints, r(x) is Boolean. If constraints are not satisfied,
then r(x) = 0. Since 0 is the annihilator element of t-norms,
so that T (u, 0) = 0 for any T and u, then

f(x) = 0 (7)

If fitness function is zero, the solution x is not selected for
the mating pool. Differently, if constraints are satisfied, then
r(x) = 1. The value 1 is the neutral element of t-norms, so
that T (u, 1) = u, and

f(x) = u(x) (8)

Therefore, in case of sharp constraints, the choice of T does
not play any role, and the effect on the algorithm is equiv-
alent to discard the unfeasible solutions. However, the ex-
plicit inclusion of constraints satisfaction in the fitness func-
tion, allows to consider soft constraints, which entail r(x) ∈
[0, 1]. In this case, the choice of T plays a role. Indeed, the
minimum operator tolerates too much the weakness of the
solutions. A stronger t-norm is the product operator, since
u · r ≤ min{u, r} for any value u and r. In this case,

f(x) = u(x) · r(x) (9)

3. SOFT CONSTRAINTS
The constraint satisfaction given by r(x) is an aggregated

measure of the single constraint satisfaction. Also in this
case, a good solution is expected to meet all constraints.
This leads again to choose a t-norm. In particular, if we
choose the product operator, we get

r(x) =
s

Y

l=1

r(x, l)w(l) (10)

where r(x, l) is the satisfaction level that the solution x gives
for the QoS attribute l, and w(l) ∈ [0, 1] is the constraint
criticality (importance). Normalization of weights requires

max(w(l)) = 1 (11)

In case of sharp QoS constraints, it is

r(x, l) =



1← c(x, l) ≤ κ(l)
0← c(x, l) > κ(l)

(12)

then

r(x) = ∧
l=1..s

r(x, l) (13)

where ∧ is the Boolean and operator, and r(x) is itself
Boolean. In this case, weights do not play any role.



3.1 Imprecise Bounds
Very often, QoS constraints are not sharply defined. There-

fore, it is necessary to allow some degree of flexibility in order
to relax the constraint. Such a degree can be assumed by
considering a maximum acceptable bound. The maximum
bound specifies which is the maximum QoS value the service
provider is allowed to exceed. Clearly, the more the bound is
exceeded, the less favorable the solution is. We can assume
a decreasing value of constraint satisfaction level r(x, l) such
that

r(x, l) =



1← c(x, l) ≤ κSTD(i, l)
0← c(x, l) > κMAX (i, l)

(14)

where κSTD is the standard bound, and κMAX is the max-
imum bound allowed. Therefore, there is a continuum of
possible bounds in [κSTD, κMAX ]. We are interested in find-
ing a function ρ(c, l) that represents a punctual constraint
satisfaction level for the QoS attribute l, bounded at c. In
case of precise estimation c(x, l), the constraint satisfaction
is given by

r(x, l) = ρ(c, l) (15)

The simplest way to decrease the satisfaction level within
the interval [κSTD, κMAX ], is to use a linear ramp

ρ(x, l) =

8

<

:

1 ← c ≤ κSTD(i, l)
1 − c ← κSTD < c ≤ κMAX

0 ← c > κMAX (i, l)
(16)

where

c =
c− κSTD

κMAX − κSTD

(17)

The interval [κSTD, κMAX ] is a set of bounds c, each with
an assigned degree of truth Tl(c). If c(x, l) < κSTD (i.e., the
QoS attribute value is bounded by the standard bound), we
do not exceed any limit, then ρ(c(x, l), l) = 1. For any QoS
estimation c(x, l) ∈ [κSTD, κMAX ] we overpass all bounds
c < c(x, l), thus the satisfaction level is lower, as the set
of bounds met is reduced to [c(x, l), κMAX ]. If we apply
the Sugeno-Takagi’s inference calculus [5], that is based on
linear interpolation, we obtain

ρ(c, l) =

R κMAX

c
tl(γ)dγ

R κMAX

κST D
tl(γ)dγ

= 1−

R c

κSTD
tl(γ)dγ

R κMAX

κST D
tl(γ)dγ

(18)

Therefore, we can assume tl(c) describes the membership
function for the fuzzy QoS bound κ(l). It is immediate to
verify that if tl(c) ≡ Π(κSTD, κMAX) is a window function
as depicted in Figure 2, we get the constraint satisfaction
described by Eq.(16).

Figure 2: Normal constraint

When the fuzzy bound κ(l) is described by a window func-
tion, all bounds values have the same degree of truth. We

will refer to this condition as normal constraint elasticity.
The degree of truth tl(c) is a measure of the bound value c
strength: the higher the degree is, the less it is allowed to
overpass the standard bound κSTD. Therefore, some con-
straints might be more restrictive than others, although they
consider the same interval [κSTD, κMAX ]. The constraint
elasticity (rigidity) is the property of easily (hardly) pass-
ing the standard capacity limit κSTD. A rigid constraint
shows a higher disallowance to overpass the standard limit
κSTD, and this disallowance becomes lower when approach-
ing the maximum bound κMAX . We can characterize a rigid
constraint by a linear ramp as depicted in Figure 3.

Figure 3: Rigid constraint

The resulting punctual constraint satisfaction (Figure 3)
is

ρ(c, l) =

8

<

:

1 ← c ≤ κSTD(i, l)
(1− c)2 ← κSTD < c ≤ κMAX

0 ← c > κMAX(i, l)
(19)

where c is still given by Eq.(17).
Vice versa, an elastic constraint allows to overpass the

standard bound κSTD more easily, and κMAX becomes the
real maximum bound. We can model this situation as de-
picted by Figure 4. In this case, the punctual satisfaction

Figure 4: Elastic constraint

level is

ρ(c, l) =

8

<

:

1 ← c(x, l) ≤ κSTD(i, l)
1− ċ(x, l)2 ← κSTD < c(x, l) ≤ κMAX

0 ← c(x, l) > κMAX(i, l)
(20)

Since the satisfaction level r(c, l) is now within the interval
[0, 1], the weight associated to the constraint becomes rele-
vant in discriminating criteria that mostly affect the fitness
function f(x).

3.2 Imprecise QoS attribute values
Until now we have considered to have precise QoS at-

tribute values available, for which the relation r(x, l) =
ρ(c(x, l), l), expressed by Eq.(15) is valid.

However, this is not the case for many QoS attributes. For
example, the response time measure is very likely to deviate



from values declared in the SLA or previously monitored
(used for service composition purposes).

For simplicity’s sake, let us start to consider the simplest
case of QoS values estimated by an interval c(x, l) ≡ [c1, c2]
against a sharp bound κ(l). There are three possible cases:

1. c2 > κ(l)

2. c1 < κ(l)

3. c1 ≤ κ(l) ≤ c2

In the first case, any possible estimation γ ∈ [c1, c2] is under
the bound κ(l), therefore the constraint satisfaction level is
r(x, l) = 1. Instead, when c1 < κ(l), any possible estimation
γ is over the bound, and r(x, l) = 0. The last condition
describes the case in which part of the possible estimations
in [c1, c2] is under the bound, and part of them is over. This
leads to calculate the constraint satisfaction level as

r(x, l) =
κ(l)− c1

c2 − c1
(21)

It is immediate to verify that this is a particular applica-
tion of Sugeno-Takagi integral. More in general, we assume
that c(x, l) is modeled by a triangular fuzzy number, as de-
picted in Figure 5. Values γ ∈ [c1, c2] have different degrees

Figure 5: A fuzzy QoS value estimation against a

sharp QoS bound

of truth c(x, l)|γ: some of them are under the bound κ(l),
then ρ(γ, l) = 1 ∀γ ≤ κ(l); others are over the bound, and
ρ(γ, l) = 0 ∀γ > κ(l). Therefore, the constraint satisfaction
can be computed as

r(x, l) =

R κ(l)

c1
c(x, l)|γ dγ

R c2

c1
c(x, l)|γ dγ

(22)

This can be geometrically interpreted as the ratio between
the triangle area under the bound, and the overall triangle
area. When estimation is based on intervals [c1, c2], the
membership function is c(x, l)|γ = 1 ∀γ ∈ [c1, c2], and
c(x, l)|γ = 0 ∀γ /∈ [c1, c2]. Then, the result of Eq.(22) is
Eq.(21).

Now, let us consider the case of interval-based QoS values
c(x, l) ≡ [c1, c2], against a fuzzy QoS bound κ(l). This case
is depicted by Figure 6. In this case, the satisfaction level is
computed as

r(x, l) =

R c2

c1
ρ(γ, l)dγ

c2 − c1
(23)

Figure 6: An interval QoS value estimation against

a rigid QoS bound

It is easy to verify that in the case of sharp QoS constraint,
Eq.(23) provides Eq.(21).

The most general case entails imprecise QoS values against
a fuzzy QoS bound, as depicted in Figure 7. The satisfaction

Figure 7: A fuzzy QoS value estimation against a

rigid QoS bound

level is provided as

r(x, l) =

R c2

c1
min(ρ(γ, l), c(x, l)|γ)dγ

R c2

c1
c(x, l)|γ dγ

(24)

When the fuzzy number is an interval, we get Eq.(23); when
the constraint is sharp, we get Eq.(22). Since functions are
very regular almost everywhere, then integrals can be easily
computed with Reimann or Eulero approximation.

4. CONCLUSIONS
AND WORK-IN-PROGRESS

QoS–aware composition and binding represents an im-
portant challenge for service–oriented software engineering.
The paper [3] demonstrates how GAs can be used to de-
termine the set of service concretization that lead to QoS
constraint satisfaction and also optimizes an objective func-
tion. This paper showed how fuzzy logic can be used to
relax QoS constraints and to deal with imprecise QoS value
estimations.

This will permit the application of QoS–aware service
composition to scenarios where it may not be possible to
find any combination of concrete services that meet the con-
straints, and to properly deal with some QoS attribute, such



as response time, throughput or availability, for which mea-
surements may deviate from previous estimates or from val-
ues initially declared from the service provider.

Work in progress is devoted to incorporate this idea in
the service composition tool mentioned in the paper [3] and,
above all, to perform a thorough experimentation.
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