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ABSTRACT

We propose and implement a new variant of cellular
automata incorporating physical rules, based largely on the
nonuniform cellular automata type first investigated by
Sipper [10]. The new automata rules are designed to be
realizable in an actual electromechanical robotic module
called a “molecube,” which was built by us [6][14] and
shown empirically to have self-replicating ability. The
spontaneous and continuous emergence of simple self-
replication is demonstrated using this automata platform.
In addition, qualitative differences are observed between
global state mutation and reproductive mutation.
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1. INTRODUCTION

Cellular automata have a long, storied history investigating basic
notions of unpredictability, emergent behavior, and self-
replication. Motivated in the 1940s by the question of how a
machine could reproduce itself, von Neumann invented cellular
automata and a complex cellular architecture capable of
recreating any other automata structure, including its own [11],
sparking early interest in computational reproductive systems [4].
This initial work has been refined by many other authors in the
ensuing years: the complexity of the replicating structures was
reduced dramatically [3], replicators were analyzed in terms of
how information was used [5], and recently the spontaneous
emergence of replicators in a cellular automata was demonstrated
[2]. However, in one aspect the basic automata model used in all
these researches remains unchanged; every cell in the automata
operates according to exactly the same rules.

In a 1995 paper “Studying artificial life using a simple, general
cellular model” [10], Sipper proposed a variation on the classic
models he called nonuniform automata. These automata are
populated by a grid of cellular “organisms,” which are rule sets
living in a cell that determine the next state of the cell and
neighboring cells from the previous state of these cells.
Organisms can move and replicate by copying their rules into
neighboring cells. This small modification from the standard
cellular automata creates remarkably complex behavior from
simple, modular automata rules, including evolutionary effects
similar to those observed in artificial life studies. By separating
the organisms’ local rules from the global rules which all
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organisms must obey, Sipper effectively created a virtual
environment for virtual creatures in the well-understood
automata paradigm. Nonuniform automata behavior in this way
can be understood along the lines of program-based artificial life
platforms such as Tierra [9] and Avida [13]. In Tierra and
Avida, digital organisms consisting of instruction loops evolve
without explicit fitness constraints over time. Placed in a virtual
environment with memory and processing resources, the
organisms are allowed to compete using their Turing-complete
instruction set by copying themselves and increasing their
execution time. Nonuniform automata organisms compete in an
analogous auto-adaptive fashion because they are pressured to
avoid overwrite by other organisms’ rules. However, they are
less complex. Instead of a Turing-complete basis, nonuniform
organism rules are only finite automata, and thus can only
perform less complicated operations individually. The entire
automata space is Turing-complete, but the individual cells are
not.

Al of these platforms, Tierra, Avida, and nonuniform automata,
produce intriguing results relating to self-replication and
evolution, but they remain only an analogy to real-world systems.
Many of the operations nonuniform automata and virtual
organisms perform would be impossible in any system
constrained by the laws of physics, such as replication into empty
space, globally simultaneous operations, unconstrained structural
changes, and monopolizing time from other organisms. More
mechanical self-replication platforms have been described in
literature by Penrose [8] and Chirikjian [1], but are rather
inflexible as to their applications. The nonuniform cellular
automata, however, is an incredibly general and simple
abstraction, and at minimum provides the notion of interacting
rules in space with simple structures of multicellular organisms.
For this reason, it is closer to a physical simulation than many
other artificial life simulations.

In this paper we propose and describe a type of nonuniform
cellular automata that is physically realizable, based on an
electromechanical cube which moves through magnetic
interactions with other cubes and containing an actuator for
motion. Real “molecubes” are described and built in our other
research [6][14]. The original molecube paper [6] proposed a
two-dimensional cellular automata simulation of these structures,
and the work described in herein addresses that goal. The
simulation remains discrete, but otherwise mechanical rules
simulating conservation of mass through conservation of cubes
and energy limitations create a more physical world to
investigate emergent replication and the properties replicating
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structures may possess. While results are indeed preliminary,
various small forms of spontaneous self-replication have already
been observed, as well as surprising effects arising from how
mutation is applied as a genetic operator. It is our hope that this
system will allow us to investigate properties of motion relating
to replication, as well as provide a basis for understanding the
control and movement patterns necessary for replication of
molecubes and arbitrary machines in the real world.

2. PHYSICAL CUBE AUTOMATA

The physical cube automata grid is a two-dimensional N x N grid
with periodic boundaries. Every position in the automata may be
occupied by exactly one cube, or is empty.

A cube in the automata is defined as a stateful, physical entity.
This differs from much other work in cellular automata, but the
cube automata was designed in this way so that the cubes could
easily represent physical objects or organisms. Cubes in the
automata cannot be created or destroyed, only moved and
changed, thus providing a concept of conservation of mass.

The cube was designed for the automata as a two-dimensional,
discrete simulation of an actual physical molecube [6][14], with
electromagnets on four of its “side” faces (viewed from above).
A cube's magnets can be turned on and off to allow a cube to
attach to other cubes, and currently two “on” magnets are
simulated to always attract. A diagonal cut is made from the top
to the bottom face of the cube, separating the cube into two
triangular prisms. This allows the cube to “swivel” its two
halves with respect to one another in three dimensions (see
Figure 2). In practice, this swiveling action is easily be
implemented as an internal cube actuator. All cubes are

Figure 1. Schematic top view of a sample cube structure
where the letters on each side cube indicate the cube
orientation. The swivel cut dividing the cube is shown by
the diagonal line through each cube. Active magnets are
shown by slim rectangles on the cube sides. Colored circles
at the center of the cubes indicate a particular rule set.

Figure 2. A cube may swivel one half with respect to the
other, based on the direction of the swivel cut.

identical except for the direction of this swivel cut, which can
either go from top-left to bottom-right or top-right to bottom-left
(see Figure 1).

In addition, the cube state includes “software” controllers, which
determine the next state of the cube magnets, which halves of a
cube should swivel, and whether the cube should overwrite the
controllers of its neighbors. Every controller also has an
associated color, which is chosen arbitrarily and used when
graphically representing the cube automata. Controllers directly
correspond to the organism rules in the standard nonuniform
cellular automata, but are separated out into their logical roles
for clarity. While molecubes could in theory have Turing-
complete control systems, the emphasis is initially placed on
simpler control schemes.

As input, each of the controllers receive four binary bits
indicating which of the four neighbor cells are filled by a cube
(von Neumann neighborhood). This type of input was chosen
because molecubes are simpler to build with inputs on the cube
faces. The magnet controller outputs four bits indicating the new
state of each magnet, while the swivel controller outputs four bits
indicating whether each of the cube halves should swivel.
Because there are two possible swivel cuts through the cube,
only two of these bits are used in a particular cube. The other
two bits are used when the controller is copied to a cube with a
different direction swivel cut, allowing the rules to specify
independent behavior for the two cube types. Finally, the
overwrite controller outputs four bits indicating which neighbors
A,B,C, or D should be overwritten. A cube will overwrite its
neighbors' controllers, replacing all of them with its own
versions, if the corresponding neighbor output bit is 1.
Overwrite contention between two cubes to overwrite the same
cube or each other is resolved by whichever cube executes first,
as explained below. This is inherently a random choice, so this
automata is somewhat nondeterministic. This may allow us to
relate our results to other work with stochastic molecube
interactions on a 2-D substrate [12]. Stochastic interactions are
applicable especially to smaller-scale molecubes which may not
be independently powered.

The function of the software controllers is essentially to map
binary strings to other binary strings, so many different
implementations were available to us. Sipper's nonuniform
automata implementation used finite automata, but at this time,
we are using a binary decision tree variant, which is
computationally equivalent. A controller decision tree consists of
a tree of nodes containing values indicating which input bit to
use when deciding the next branch. Between nodes, <output
value, output bit position> pairs may be emitted, and when a leaf
node is reached all output values must have been specified. This
representation is useful because it is able to represent any
symbolic input ?b output mapping, is easy to use when
generating randomized controllers, and lends itself well to testing
because it can be readily understood as a series of if-statements.
Also, in the future, controllers could easily be combined with one
another by merging trees together at random nodes.

Cube magnets are able to connect to one another if they both
have adjacent magnets in an “on” state. We refer to these
connected cubes as cube structures. Two cube structures are
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Figure 3. Sample cube swivel operation, around the cut
indicated in red. The B/C side of the cube is swiveled,
resulting in the attached cubes changing position and
orientation.

considered equivalent if the magnet connections create the
structures determine the same graph, i.e. if the magnets connect
the cube structures the same way, taking magnet letters into
account. In this way, the structure is independent of the
orientation of the cubes or swiveling, because these factors do
not affect magnet connections.

When a cube in a structure swivels a connected magnet, the
adjacent cube connected to that magnet stays attached. All cubes
attached to that adjacent cube also stay attached, and so on. The
intuition is that all attached cubes to a particular magnet create a
type of cube “arm,” which swivels around in the third dimension
and assumes new positions in the automata afterward, in a
flipped orientation. Swiveling is only allowed, however, if the
swiveled cube arm would not collide with other cubes in the
swiveled positions and if the arm not also attached to the other
swivel side of the cube. As an example, in Figure 3 the swivel
would not be allowed to occur if the cube arm attached to magnet
C was also attached to magnet A, because then the swivel would
need to break a magnet connection. Through this swiveling
action, cube structures are able to move themselves around the
automata. It should be noted, as seen again in Figure 3, that the
cube cut direction remains unchanged by swiveling, even after
flipping the arm orientation.

Initially, the cells of the cube automata are populated with a
probability that the cell will contain a cube. In this way, cube
probability corresponds roughly to cube density. In our
experiments, cube probability is kept at 10%, mostly because it
yields interesting results. Higher density makes it difficult for
the structures to move, while lower density makes it less likely
that structures would interact. Initial cubes are generated with

Figure 4. Example portion of an initial automata state.
Empty cells are represented by black regions, while cells
containing cubes are represented by the average color of
the controllers of that cube.

random cut direction and randomly generated controllers. The
initial cubes are also assigned a randomly generated cube
ordering.

We execute the cube automata by continually looping through the
cube ordering to find the next cube, gathering the neighbor cube
input, and then executing the output of that cube's controllers in
response to that neighbor input. A full iteration or “time step”
has passed when all the cubes have executed once. This differs
from the simultaneous execution of the standard nonuniform
cellular automata, but is a necessity in the cube automata
because of the possibility of collisions occurring between
swiveled cube arms. These collisions would be difficult, if not
impossible to resolve if they all occurred simultaneously.

3. PRELIMINARY EXPERIMENTS

The behavior of the cube automata is determined by the cube
controllers, and the number of unique controllers for a binary
four input to four-output mapping is 16”16 "4 1.84 x 10719,
yielding a large possible range of controller behavior. In these
initial experiments with the cube automata, the goal was to
discover controllers which would create self-replicating cube
structures, which has been demonstrated as possible in [10].

Because a given initialized system will not necessarily exhibit
replicating behavior, random mutations in the automata
continually search the space of possible controllers. It may
appear at first that these random mutations are searching the
large space of controllers in a totally unsystematic manner, but
surprisingly replicating structures were found a few hundred
iterations from the initial state. These replicating controllers
emerge because controllers which are effective in forming
structures to move and overwrite other cubes are less affected by
mutations killing off members of their “species” over time. (For
brevity, cubes in the automata which contain the same controller
functions will be referred to as being of the same species). In
effect, mutations continually cull the less active species from the
automata, resulting in a natural selection pressure.

The way mutations were applied in our experiments took two
forms, global mutations over the entire cube state, and mutations
linked to cube overwrites. Initially, it was assumed that the two
types of mutations would produce similar behavior, as was
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observed by Pargellis in his study of self-replicating digital
organisms [7]. However, in our automata, the two different
mutation logics produced significantly different results, and are
presented separately below.

3.1 Global Mutations

In the first set of experiments, mutations were applied globally to
the automata state. Every iteration, each cube had a 0.5%
chance of being mutated and having its controller set replaced by
new random rules. For example, in a 100 x 100 grid with 10%
cube probability when initializing the automata, five cubes on
average are mutated each iteration.

At first, only a single type of stable structure arose immediately,
a growing conglomerate of connected chunks of cube species.
The connected chunks could repair themselves against mutation
by continually overwriting their neighbors, and so tended to
survive longer than other species which did not form large
structures. This was observed as “survival of the flattest” in the
Avida paper [13]. Eventually, all the conglomerates grouped
together into one large semi-static final structure.

Stacked Lifecycles
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Figure 5.  Species replication emerging from a sample
execution of the globally mutated cube automata for
6000 iterations. Automata size was 200 x 200 cells, and
the automata was sampled every 50 iterations. The
different colors correspond to the different cube species,
with newer species emerging at the top of the stack. The
number of duplicates was calculated by determining the
structures consisting only of a particular species, and
then counting all the structures which had a copy
somewhere else in the automata.

Because we were interested in self-replicating behavior, this
stable structure capturing all the cubes had to be discouraged.
For this purpose, a new “swivel arm limit” rule was created that
does not allow a cube to swivel if more than 10 cubes were
attached to the swiveling portion. By “freezing” large structures
in place so that their component species are less effective in
overwriting large numbers of cubes, this rule was quite effective
in limiting the growth of huge structures. Because the same
problem occurred with overwrite-linked mutations, described
further down in the paper, the rule was kept in effect for those
experiments as well.

With global mutations and this structure size limitation, two
types of semi-stable structures emerge. As can be seen in Figure
5, the first purple species creates large numbers of duplicated
structures which emerge to quickly dominate the early automata.
These structures are very mobile, and so are able to overwrite
large portions of the board in a short amount of time. After a few
thousand iterations, however, fast duplicates are overtaken by
larger static structures (see Figure 9) which slowly overwrite
cubes from the moving species. This brings much of the

movement to a halt after many iterations and the automata into a
semi-steady state. Replicated structures still remain after long
periods of time, but these structures are not very active and
therefore unstable under global mutation. As enforced by the
swivel arm rule, the larger static structures are unable to move in
their entirety, but they are able to move small outer arms of
Stacked Lifecycles

Mumber of Duplicates
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Time Steps

Figure 7. Species replication emerging from a sample
execution of the overwrite-mutated cube automata for
6000 iterations. Automata size was 200 x 200 cells, and
the automata was sampled every 50 iterations.
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execution with global uniqueness expressed by (number
of species) / (number of cubes).

execution with overwrite mutations.
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Figure 9. Sample automata state using global (bottom)
and overwrite (top) mutation after 6000 iterations. Note
the large static structures using most of the cubes in the
globally mutated automata, while the overwrite-mutated
automata remains large structure-free.

attached cubes to overwrite other cubes as they come nearby,
somewhat like sea anemones capturing prey.
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Figure 10. The nine most common duplicated structures
in the sample overwrite mutation automata at
approximately iteration 3700. Note that the larger
structures are often composed of connections similar to
those in the smaller duplicated structures of their species.
These species correspond to some of those displayed at
iteration 3700 of Figure 7.

3.1 Overwrite-linked Mutations

Inspired by natural mutations and the Pargellis paper [7], another
mutation scheme to search the controller space was investigated:
overwrite-linked mutation. In the natural world, mutations to
species occur during replication, not randomly during the lifetime
of an individual. In these experiments, global mutation did not
occur, but instead overwrites had a 0.5% chance of failure,
creating a neighbor cube with randomly generated controllers
instead.

As was mentioned above, the initial globally mutated automata is
very dynamic, but static clumping invariably occurs at later
iterations. This clumping is avoided entirely with overwrite-
linked mutation, because self-overwrites to “heal” mutated
structures actually encourage more mutation to occur. What
results is a continually dynamic automata of many new
duplicated species structures. Even over large numbers of
iterations, the automata space has not been observed to slow
production of new duplicated species. This seems a paradoxical
observation, because performing mutations on overwrites
actually allows automata states which are entirely stable. If no
overwrites can occur in a particular sequence of automata states,
then that sequence will never change. This has never been
observed in the limited experiments we have performed, but it
may simply be an unlikely situation that rarely occurs.

4. DISCUSSION

There are two possible explanations for the duplicated cube
structures in the automata: a structure factory or self-replicating
cube structures. By structure factory, we mean a set of cube
structures that, while not producing copies of themselves, are
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t ~ 3000 t ~ 4000 t ~ 4500

Figure 11. Another sample execution of the cube automata using overwrite mutation. Note the emergence of a self-replicating
purple structure at t » 750, which expands to overwrite much of the board at t » 1250. Att» 2000, new green and red structures
emerge which compete for cubes, and at t » 2250, a pink structure emerges and eventually replaces the purple replicators at t »
4000. Att» 4500, the purple replicators have new competition from yellow, green, and light blue structures.

able to produce copies of a different type of cube structure.
These are the only two ways in which duplicated structures can
arise in the automata, essentially by definition. All mutations
create a single unique cube species as the origin of all later cubes
of that species, thus a single cube creates these factories or
replicators through overwrites, and so demonstrates self-

assembly in some limited form (though this could be, and
probably is in almost all cases, highly dependent on the cube

immediate surroundings).

Such cube factories are visible especially in the global mutation
experiments, because large self-reinforcing structures are stable
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using these rules. This can be seen in Figure 5 as the pinkish-
orange duplicated species that slowly dies over time. This pink
duplicated structure was not particularly mobile, but it was
duplicated anyway because there were larger pink structures (the
remains of which are still visible in Figure 9) supporting the
duplication. To create new structures, the larger, immobile pink
factories required moving structures to come close enough to
overwrite them, and as iterations went on more and more
automata structures were of the large, immobile type.

The purple duplicated species in Illustration 5 underwent
explosive growth of over 100 duplicates in the 600 to 800
iteration period, when on average a duplicate was created every
two iterations. No large purple factories existed at this early
time step. It is improbable that a mobile single factory created
this many duplicates, or that multiple unique factories were
created without using cubes from the duplicated structures (if
cubes from the duplicated structures were used to create more
factories, then the structures are performing self-replication). It
is probable, then, that between 600 to 800 iterations the purple
structures were exhibiting some form of self-replication. This is
supported by observation of the automata in progress, as
illustrated by Figure 11. Small, two-and-three cube replicated
structures travel outward from a central location, creating
geometrically more copies of themselves on the growing border
between the area they have consumed by overwrites and the rest
of the automata.

With  overwrite-linked mutation, factory structures are
necessarily unstable, because all overwrites run the risk of
pathological mutation.  Any particular structure or set of
structures that continually performs overwrites (such as a
structure factory) must eventually succumb to these mutations,
and a structure cannot heal itself with self-overwrites without
being even more susceptible to harm. This makes the emergence
of different types of self-replicating species more common, as can
be seen from the overwrite diversity graphs (Figures 6 and 8).
Larger numbers of replicating species also mean that these
species must compete for cubes, and this can be seen in the
smaller number of duplicates which coexist simultaneously using
overwrite mutation rules in Figure 7. The geometric growth of
duplicated structures indicating self-replication can still be
observed, however. For example, the blue structures between
600 and 650 and iterations create over 40 duplicates (Figure 7),
an especially large number considering how unstable duplicating
structures are.

5. CONCLUSION

The spontaneous and continuous emergence of small self-
replicating cube structures has been observed in the cube
automata. Our automata platform could be realized using
physical molecubes, so the replication observed would actually
occur in a real test using 2-D molecubes if constrained to a
discrete grid. Obviously this work is very preliminary, and in the
future we hope to address more precisely how the motion of
structures directed by controller rules allow structures to self-
replicate. Most of the duplication that occurs currently is of the
smallest possible two-cube structures, though larger duplicated
cube combinations have occurred as in Figure 10. This may be
because the search for replicating controller species is directed,

but still based only on random mutation, so it would be
interesting to see whether larger replicating species could be
discovered through recombining or incrementally mutating
controllers as was done in [10].

The controllers as currently implemented are also limited in their
behavior by the input that they receive, which is only four bits
indicating the presence of surrounding cubes. More interesting
controllers may be evolved if the input is richer. Inter-cube
communication using various numbers of communication bits
might yield more coordinated cube motions, and adding internal
cube state would allow cubes to “remember” portions of their
surroundings. These extra sources of information make the
controller space much larger, and it may take longer to evolve
very successful replicators, but these are traits real replicating
objects often use to their advantage.
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