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ABSTRACT 
Autonomous mobile robot navigation is a complex problem and 
evolutionary principles applied to such problems provide good 
solutions with relatively less computational effort. This also 
allows an automatic evolution of such systems. We describe how 
to evolve a neural network control system for a mobile robot 
using a simulator applying concepts of multi-objective 
optimization. Sometimes a single objective may not be adequate 
to describe the desired performance of the robot. In such cases, 
typecasting the problem as a multi-objective problem becomes 
necessary. In this paper we investigate the possibility of using 
evolutionary algorithms to evolve a controller for a mobile robot 
with multiple objectives to be satisfied simultaneously.  Such 
behavior includes obstacle avoidance, smooth motion and target 
acquisition. The novelty of this method lies in the evolution of 
different navigational behaviors simultaneously using concepts of 
Pareto-optimality and evolutionary algorithms. A neural network 
is utilized to provide the control structure for the navigation of the 
mobile robot. A multi-objective evolutionary algorithm (FSGA) is 
utilized to identify the optimal neural network weights. The 
simulation results show that the proposed methodology is efficient 
and robust for evolving different behaviors simultaneously. 
Simulation results are provided and discussed. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – heuristic methods 

General Terms 
Algorithms, Performance, Design. 

Keywords 

Evolutionary robotics, Genetic Algorithms, Multi-objective 
optimization, Pareto-optimal and Neural Networks. 

 

 

 
1. INTRODUCTION 
Autonomous mobile robot navigation is typically 
formulated as follows: given a robot and a given a set of 
sensors to measure environmental conditions, we need to 
find a control system for the robot that can move the robot 
in the environment such that the robot motion is collision-
free and satisfies certain optimization criteria. In this paper 
we address the problem of evolving autonomous mobile 
robot navigation in an environment where multiple costs 
are to be optimized using evolutionary techniques. 
Evolutionary robotics aims to develop a suitable control 
system of the robot through artificial evolution [1]. The 
execution of the motion is mediated by a controller, which 
is often implemented as a neural network of a specific 
topology [2, 3]. Evolutionary robotics uses techniques, 
such as genetic algorithms, genetic programming, and 
evolutionary strategie to evolve the controllers for the 
robot. An initial population of different genotypes, each 
encoding the robots architecture, is created at random. Each 
robot is allowed to interact with the environment and 
fitness is assigned to each of them. The designer defines a 
fitness function, which measures the ability of a robot to 
perform a desired task. The designer plays a passive role 
and the behaviors emerge automatically though evolution 
due to interactions between the robot and its environment. 
The robot and the environment form a highly dynamical 
system, in which the robot’s decision at a particular time 
depends on the sensory information and its previous 
actions. The initial controllers may not behave optimally, 
but the controller improves its performance and produces 
better results gradually with incremental generations of 
evolution. Robots with higher fitness are allowed to 
reproduce to hopefully create better solutions. The 
population of solutions is modified using operators as 
crossover and mutation and also hybrid local improvement 
search techniques as Nelder-Mead Simplex [4] and 
ultimately good solutions are obtained through generations.  

 



Most evolutionary robotics problems utilize single 
objective functions [2]. But however in practice we often 
find the need to evolve behaviors with multiple objectives 
[5, 6, 7, and 8]. These multiple objectives could be 
dependent on various parameters as length of the path, time 
taken to travel to the destination, etc. A simple example 
would be to consider the case of target acquisition behavior 
in a dynamic environment, with the objectives to be 
minimized are the total distance traveled and total time 
taken to reach the target. In such cases, it is not always the 
path associated with minimal distance coincides with 
minimal time path. One possible case is that the robot could 
be stationary at one place, and wait for the obstacle to 
move away from its path and then move straight towards 
the target. This would be the shortest path length solution, 
but not necessarily the shortest time solution. The other 
extreme solution could be the robot navigating around the 
obstacles and moving towards the target. This would be the 
minimal time solution but at the same time it may not be 
the minimal distance traveled solution. In between these 
two extreme solutions there could be more solutions that 
are also possible, but none of them could be minimal time 
or minimal distance traveled paths. Generally to solve such 
multi-objective problems, a weighted objectives approach 
is implemented where the n-objective cost functions f1, f2, 
to fn, are aggregated in a linear fashion to get a single 
objective, as F = . Selecting suitable weights a 

solution with certain desired characteristics is obtained.  
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The major reasons why multi-objective search techniques 
would be better than single objective search techniques can 
be explained as follows. 1. By using multi-objective 
optimization routines, we can get all the possible solution 
set possible with single run and can use the best possible 
solution from the set of pareto-front optimal solutions set. 
In a single objective routine, multiple runs have to be done 
with different weights to get all the possible solutions. 2. 

The solutions obtained in a multi-objective search could be 
queried to get the required specifications the user demands 
from the algorithm. For example, if the user wants a robot 
that would go from Point A to Point B in within a certain 
time T, and using up only a certain amount of energy E, we 
can look up at the solutions of the pareto-front and clearly 
demark the solutions that satisfy such criteria. This may not 
be always possible with single objective runs, where 
additional training or rerun of the algorithm with a 
modified fitness function would be necessary. 3. Finally, it 
may be the case that the objectives we are trying to evolve 
are conflicting in their cost functions. In such cases, the 
single objective function may not be able to provide 
solutions which are good in both the costs with just a single 
run, while a multi-objective approach would provide a set 
of solutions which are good in either costs or intermediate 

solutions which are non-dominated. 
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2. ROBOT DESCRIPTION 
The robot model that has been used in the simulations is a 
miniature mobile robot with differential drive steering. The 
robot has a circular shape with 55mm diameter. A 
schematic of the robot is shown below in Figure 1. The 
robot has two motors that are capable of moving in both 
directions. The output of the motors is limited such that the 
maximum velocity of the robot is restricted to 2.5cm/sec in 
either direction. The robot is provided with eight infrared 
proximity sensors placed symmetrically on the robot. These 
sensors can only detect obstacles in the range of 0-5cm in 
our simulations. The values of infrared sensors were 
normalized to the range of [0, 1], where 0 denotes no 
obstacle detected and 1 denotes robot sensor is touching the 
obstacle. For safety reasons the robot is assumed to have a 
collision if the sensor reading is greater than 0.98. This 
avoids the robot to move further and actually collide into 
the obstacle. For target acquisition we assume the targets to 
be bright lights placed at a certain height. These light 
sources are assumed to be sources of energy for the robot. 
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Figure 2. Schematic of the Neural Network used 
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Figure 1. Schematic of the Mobile Robot used. 



The robot has to reach within a radius of 1cm of the light 
source’s actual position to recharge itself. The light sensor 
on the robot measures the intensity of light and provides it 
a feedback in which direction is the nearest light source. 
The robot initially has a minimal amount of battery life, 
and has to reach the target and get recharged so that it can 
move for another few steps. After it has recharged at the 
target, the light switches off and the robot has to search for 
a new source. The objective of the robot would be to 
navigate in the environment autonomously and try to find 
light sources where it can recharge itself, while also trying 
to do obstacle avoidance and maintain a smooth motion. 

3. EVOLUTIONARY PROCESS 
3.1 Structure of Neural Network 
The control system for the autonomous robot was chosen to 
be a neural network. Neural networks are appropriate 
because of their adaptive nature that is an important issue 
for autonomous robots. This allows the robot to work even 
under different conditions in different environments. An 
efficient way of training neural networks for mobile robot 
is by using evolutionary algorithms to train the synaptic 
weights of the neural network. The evolutionary procedure 
employed in the simulations is a multi-objective genetic 
algorithm FSGA [9], to evolve the weights of the neural 
network. Figure 2 shows a schematic of the neural network 
architecture that was used. The architecture of the neural 
network was fixed for all different simulations. The neural 
network inputs are the eight infrared sensor readings, the 
direction in which the target is located and the recurrent 
inputs at the output layer. There is no hidden layer in the 
network. The output of the neural network is directly used 
to control the motor activation. The total number of 
weights that were to be evolved for the network was 22. 
The weights were individually coded as floating point 
numbers on the chromosome. The length of the 
chromosome was 22 and a population size of 50 was used 
for all simulations. Initially weights are randomly 
generated in the range of ±0.5 for each individual. The 
multi-objective genetic algorithm then evaluates each 
member of the population according to some fitness 
measure decided by the user, depending on the task to be 
solved. Details of the multi-objective genetic algorithm are 
explained in the next section. 

3.2 Multi-Objective Evolutionary Algorithm 
Evolutionary algorithms have emerged as one of the most 
popular approaches for the complex optimization problems. 
They draw upon Darwinian paradigms of evolution to 
search through the solution space (the set of all possible 
solutions). Starting with a set (or population) of solutions, 
in each generation of the algorithm, new solutions are 
created from older ones by means of two operations, 
mutation and crossover. Mutation is accomplished by 

imparting a small, usually random perturbation to the 
solution. In a manner similar to the Darwinian paradigm of 
survival of the fittest, only the better solutions are allowed 
to remain in a population, the degree of optimality of the 
solution being assessed through a measure called fitness. 

3.2.1 Multi-objective Optimization 
When dealing with optimization problems with multiple 
objectives, the conventional concept of optimality does not 
hold good [10, 11]. Hence, the concepts of dominance and 
Pareto-optimality are applied. Without a loss of generality, 
if we assume that the optimization problem involves 
minimizing each objective , a solution u is 
said to dominate over another solution v iff 

(.),ie i ...1= M

},,,2,1{ Mi K∈∀ )(vi)( euei ≤  with at least one of the 
inequalities being strict, i.e. for each objective, u  is better 
than or equal to  and better in at least one objective. This 
relationship is represented as . In a population of 
solution vectors, the set of all non-dominating solutions is 
called the Pareto front. In other words, if  is the 
population, the Pareto Front Γ  is given by, 
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The simplistic approach of aggregating multiple objectives 
into a single one often fails to produce good results. It 
produces only a single solution. Multi-objective 
optimization on the other hand involves extracting the 
entire Pareto front from the solution space. In recent years, 
many evolutionary algorithms for multi-objective 
optimization have been proposed [10, 11]. 

3.2.2 Fuzzy Dominance 
Assume an overall minimization problem involving M 
objective functions ei(.), i = 1 … M. The solution space is 
denoted as . Given a monotonically non-
decreasing function , whose range is in [0, 1], 
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. Fuzzy dominance can 

be regarded as a fuzzy relationship u  between u  
and . Solution 

vF
if

Ψ∈u  is said to fuzzy dominate solution 
Ψ∈v  if and only if },, M,2,1{i K∈∀ vF

iu

vF

f . This 

relationship can be denoted as u . The degree of 
fuzzy dominance can be defined by invoking the concept of 
fuzzy intersection and using a t-norm, 
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Given a population of solutions , a solution v S∈  
is said to be fuzzy dominated in  iff it is fuzzy dominated 
by any other solution . In this case, the degree of 
fuzzy dominance can be computed by performing a union 
operation over every possible , carried out 
using t-co norms as, 
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In this manner, each solution can be assigned a single 
measure to reflect the amount it dominates others in a 
population. Non-dominated individuals within a solution 
will be assigned zero fuzzy dominance, as for any non-
dominated individual  

Further details of this concept can be found in [9]. In the 
present work, the membership  is piecewise 
linear, and given by,  
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where, ∆ . The union and intersection 
operators follow the standard min and max definitions [12]. 
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3.2.3 The Fuzzy Simplex Genetic Algorithm 
Fuzzy dominance time makes it possible to assign a single 
measure of fitness to multiple individuals. Computing the 
mutual fuzzy dominance in a population of individuals 
enables local gradient descent based techniques to be 
applied in a multi-objective framework. In [9] a strategy 
was proposed that applied a local search procedure, the 
Nelder-Mead algorithm [4], in conjunction with a genetic 
algorithm.  
A simplex in -dimensions consists of  solutions , 

 which are its vertices. In a plane, this 
corresponds to a triangle. The solutions are evaluated in 
each step and the worst solution w  is identified. The 
centroid of the simplex is then evaluated, excluding the 
worst solution and the worst point is reflected along the 
centroid. If c  is the centroid, the reflected 

solution is 
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Usually, the worst point  is replaced with the reflected 
point 

w
r  in the simplex, but if the r is better than any 

solution in the simplex, the simplex is further expanded as, 

)6()( wccre −+= η   

Where η  is called the expansion coefficient. However, if 
the reflected solution r  is worse than , the simplex is 
contracted and the reflected solution is placed on the same 
side of the centroid. When solution 

w

r  is not worse than , 
but worse than any other solution in the simplex, the 
simplex is still contracted, but the reflection is allowed to 
remain on the other side of the simplex. Reflection is 
carried out as follows, 

w

)7()( wccrc −±= κ
 
In the above equation, κ  is called the contraction 
coefficient. Solution  is replaced with the new one, w r , 

, or r  in the next step. The simplex algorithm is allowed 
to run for multiple steps before it converges. 

er c

Fuzzy dominance is the objective function to which 
Nelder-Mead is applied. This allows the Nelder-Mead 
algorithm to push solutions towards regions of lower 
dominance, i.e. the Pareto front.  
A binary tournament selection is implemented in the 
genetic algorithm that selected two individuals at random 
from the population with replacement, and picks the one 
with the least fuzzy dominance. An offspring , was 
computed from two parents u  and 

t
v  in the following 

manner, 
)8()1( vut ζζ −+=                      

where ζ is a uniformly distributed random number in [0,1]. 

Solutions were mutated with a probability of β , by adding 
a random number with zero mean, that followed a Gaussian 
distribution with a spreadσ , according to, 
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3.3 Fitness Functions 
The desired behavior of the mobile robot is based on the 
following abilities: (a) moving forward as fast as possible, 
(b) moving in as straight a line as possible, (c) keeping as 
far away from obstacles as possible, (d) getting close to 
specified targets as possible and (e) maintaining its heading 
towards the targets as much as possible. In order to 
evaluate the individual’s fitness in the evolutionary 
algorithm, we used the following fitness functions. We 
have used two different fitness functions given in equations 
(10) and (11). 
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where Vi is the average rotation speeds of the two wheels, 
DVi is the algebraic difference between signed speed values 
of the wheels, Ii is the activation value of the proximity 
sensor with the highest activation at time i, di is the 
distance from the nearest target and ∆i is the scaled 
difference of the heading direction of robot and the 
direction where the nearest target is present at time i.  The 
values are summed up over number of steps the robot runs 
without collision. The function F1, is a common fitness 
function used for Khepera robot evolutionary algorithms 
[1, 2]. This fitness function has three components: the first 
part is maximized by speed of the robot, the second one by 
straight-line motion and the third by obstacle avoidance. 
Since the robot has a circular shape and the wheels can 
rotate in both directions, this function has a symmetric 
surface with two equal maximum, each corresponding to 
one direction of motion. The second fitness function F2 has 
two components: the first part is maximized by getting 
close to the nearest target and the second part is maximized 
by keeping the heading of the robot towards the nearest 
target. The first fitness tries to make the robot go as fast 
and straight as possible at the same time avoid the obstacles 
in the path. The second fitness makes sure that the robot 
tries to reach the targets while it is trying to satisfy the first 
objective function. These two objectives can be conflicting 
in nature. The robot might come into a situation where it 
would want to reach a target but at the same time would 
like to avoid hitting into the obstacle in front of the target. 
So using a single objective function for both these 
behaviors may not provide optimal solution. The only way 
to solve such objectives simultaneously is to use a multi-
objective optimization algorithm. 
 

4. SIMULATION RESULTS 
 

In this section we show some results of the simulations 
done on the mobile robot using the multi-objective search 
algorithm described in the previous section. Three different 
test cases were considered for the evaluation of the 
approach. In case (a) a very simple environment is used 
with no obstacles in the path of the robot. Only the 
enclosure wall for the environment is considered as the 
obstacle to avoid the robot from going out of bounds. The 
evolutionary algorithm was run for 50 generations. Figure 
3 shows the simulation of the one of the robots in the 
Pareto front. The robot starts from an initial position of 
[10,10] and an initial heading of π/2. The robot is always 
trying to reach the nearest target from its current position. 
It has successfully reached all the targets in the 
environment. It can be noted that the path is nearly smooth, 
in a straight line as much as possible, and as far away from 
the walls as possible. In case (b), we have used a room like 
scenario, where the environment in case (a) was modified 

to have walls within the path of the motion of the robot. 
The robot was supposed to reach the targets while avoiding 
the obstacles in the path and at the same time try to do it at 
the maximum possible velocity and moving in a straight 
line as much as possible. Figure 4 shows the navigation of 
one of the robot in the Pareto front obtained in this case. 
From the figure we can observe that the robot is always 
tying to reach the target, while at the same time its 
controller is avoiding obstacles and trying to maintain a 
straight line of motion.  

To avoid the notion of robot learning the behavior for only 
a specific situation, the same evolved robot was run in a 
different scenario with the targets placed at a different 
position from what the robot was actually trained on. The 
robot had to complete the task without any additional 
training. Figure 5 shows the navigation of the robot 
evolved in Case (b) run in a different scenario from what it 
was actually trained on.   

In case (c), the environment used is very much similar to 
the one used in evolution of Khepera robot navigation 
behavior. Figure 6 shows the navigation of one the evolved 
robot in the Pareto-front. The evolved robot was tested in 
an environment with changes to both the obstacle positions 
and targets positions. The navigation of the robot is shown 
in Figure 7. From the figures we can clearly note that the 
robot has been able to learn a multiple objective behavior 
successfully and the learned robot is able to move in the 
environment with modifications to both the obstacles and 
targets.  

Figure 4. Navigation of the evolved robot in Case (b) 
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5. CONCLUSIONS 
Although applying evolutionary algorithms to optimize the 
behavior of mobile robots has been attempted they have 
been mostly concerned with single objective optimization. 
Unfortunately, in more complex environments, a single 
objective approach may fall short of accomplishing the task 



of evolving the desired behavior. Under these 
circumstances, a multi-objective optimization approach 
becomes useful. Furthermore, applying a multi-objective 
technique produces a Pareto front of possible behaviors. It 
offers the designer a wide spectrum of possible behaviors 
to incorporate into a mobile robot. It also allows the user to 

incorporate a more complex set of behaviors into the robot 
that normally would not be possible using a simple 
evolutionary approach. With a Pareto front of optimal 
solutions, the designer can consider the possibility of 
switching behaviors in a robot en route. For instance, a 
robot that is too cautious in avoiding obstacles, may switch 
to a more aggressive behavior. The ability to change 
behavioral patterns is handy in dynamic environments 
where a suitable objective cannot be devised a priori. A 
multi-objective approach would also be particularly useful 
in real world applications, where it becomes essential to 
deploy robots in environments where they have not been 
trained to navigate before. 
 Figure 5. Navigation of the evolved robot in 

Case (b) in a different environment In this article we suggest the use of a multi-objective 
evolutionary approach to model robot behavior. In order to 
demonstrate the feasibility of such an approach, two 
distinct components of robot behavior have been 
considered. Firstly, mobile robots need to navigate along a 
path that runs free of obstacles and is as smooth as 
possible. Secondly, the robot also should also perform its 
task, which in this case is to reach its target. These two 
tasks are often in conflict, and aggregating them into a 
single objective will not suffice. Two separate objectives 
have therefore been formulated and a recent multi-
objective approach, the Fuzzy Simples Genetic Algorithm 
applied to simultaneously optimize both objectives. The 
effectiveness of this approach has been demonstrated 
through two separate simulations. Our approach can be 
easily generalized to handle other objectives also. Thus far, 
evolving robot behavior has been confined to simple 
environments. In future, we plan to extend the work to 
more complex environments. The multi-objective 
evolutionary approach proposed here offers a versatile 
alternative to the single-objective approach for determining 
robot behavior. 

Figure 6. Navigation of the evolved robot in Case (c)
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