
The Multi-objective Evolution of Mobile Robot Behavior

Praveen
Koduru

Electrical and
Computer

Engineering
Kansas State

University
Manhattan
KS 66502

Ashish Ahuja
Electrical and

Computer
Engineering

Kansas State
University
Manhattan
KS 66502

Kyle
McDowell

David Electrical
and Computer
Engineering

Kansas State
University
Manhattan
KS 66502

Lukas Lansky
Electrical and

Computer
Engineering

Kansas State
University
Manhattan
KS 66502

Sanjoy Das
Electrical and

Computer
Engineering

Kansas State
University

Manhattan,
KS 66502

sdas
@ksu.edu

Stephen
Welch

Division of
Biology Kansas
State University

Manhattan,
KS 66502
welchsm

@ksu.edu

ABSTRACT
Autonomous mobile robot navigation is a complex problem and
evolutionary principles applied to such problems provide good
solutions with relatively less computational effort. This also
allows an automatic evolution of such systems. We describe how
to evolve a neural network control system for a mobile robot
using a simulator applying concepts of multi-objective
optimization. Sometimes a single objective may not be adequate
to describe the desired performance of the robot. In such cases,
typecasting the problem as a multi-objective problem becomes
necessary. In this paper we investigate the possibility of using
evolutionary algorithms to evolve a controller for a mobile robot
with multiple objectives to be satisfied simultaneously. Such
behavior includes obstacle avoidance, smooth motion and target
acquisition. The novelty of this method lies in the evolution of
different navigational behaviors simultaneously using concepts of
Pareto-optimality and evolutionary algorithms. A neural network
is utilized to provide the control structure for the navigation of the
mobile robot. A multi-objective evolutionary algorithm (FSGA) is
utilized to identify the optimal neural network weights. The
simulation results show that the proposed methodology is efficient
and robust for evolving different behaviors simultaneously.
Simulation results are provided and discussed.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristic methods

General Terms
Algorithms, Performance, Design.

Keywords

Evolutionary robotics, Genetic Algorithms, Multi-objective
optimization, Pareto-optimal and Neural Networks.

1. INTRODUCTION
Autonomous mobile robot navigation is typically
formulated as follows: given a robot and a given a set of
sensors to measure environmental conditions, we need to
find a control system for the robot that can move the robot
in the environment such that the robot motion is collision-
free and satisfies certain optimization criteria. In this paper
we address the problem of evolving autonomous mobile
robot navigation in an environment where multiple costs
are to be optimized using evolutionary techniques.
Evolutionary robotics aims to develop a suitable control
system of the robot through artificial evolution [1]. The
execution of the motion is mediated by a controller, which
is often implemented as a neural network of a specific
topology [2, 3]. Evolutionary robotics uses techniques,
such as genetic algorithms, genetic programming, and
evolutionary strategie to evolve the controllers for the
robot. An initial population of different genotypes, each
encoding the robots architecture, is created at random. Each
robot is allowed to interact with the environment and
fitness is assigned to each of them. The designer defines a
fitness function, which measures the ability of a robot to
perform a desired task. The designer plays a passive role
and the behaviors emerge automatically though evolution
due to interactions between the robot and its environment.
The robot and the environment form a highly dynamical
system, in which the robot’s decision at a particular time
depends on the sensory information and its previous
actions. The initial controllers may not behave optimally,
but the controller improves its performance and produces
better results gradually with incremental generations of
evolution. Robots with higher fitness are allowed to
reproduce to hopefully create better solutions. The
population of solutions is modified using operators as
crossover and mutation and also hybrid local improvement
search techniques as Nelder-Mead Simplex [4] and
ultimately good solutions are obtained through generations.

Most evolutionary robotics problems utilize single
objective functions [2]. But however in practice we often
find the need to evolve behaviors with multiple objectives
[5, 6, 7, and 8]. These multiple objectives could be
dependent on various parameters as length of the path, time
taken to travel to the destination, etc. A simple example
would be to consider the case of target acquisition behavior
in a dynamic environment, with the objectives to be
minimized are the total distance traveled and total time
taken to reach the target. In such cases, it is not always the
path associated with minimal distance coincides with
minimal time path. One possible case is that the robot could
be stationary at one place, and wait for the obstacle to
move away from its path and then move straight towards
the target. This would be the shortest path length solution,
but not necessarily the shortest time solution. The other
extreme solution could be the robot navigating around the
obstacles and moving towards the target. This would be the
minimal time solution but at the same time it may not be
the minimal distance traveled solution. In between these
two extreme solutions there could be more solutions that
are also possible, but none of them could be minimal time
or minimal distance traveled paths. Generally to solve such
multi-objective problems, a weighted objectives approach
is implemented where the n-objective cost functions f1, f2,
to fn, are aggregated in a linear fashion to get a single
objective, as F = . Selecting suitable weights a

solution with certain desired characteristics is obtained.

∑
i

ii fw

The major reasons why multi-objective search techniques
would be better than single objective search techniques can
be explained as follows. 1. By using multi-objective
optimization routines, we can get all the possible solution
set possible with single run and can use the best possible
solution from the set of pareto-front optimal solutions set.
In a single objective routine, multiple runs have to be done
with different weights to get all the possible solutions. 2.

The solutions obtained in a multi-objective search could be
queried to get the required specifications the user demands
from the algorithm. For example, if the user wants a robot
that would go from Point A to Point B in within a certain
time T, and using up only a certain amount of energy E, we
can look up at the solutions of the pareto-front and clearly
demark the solutions that satisfy such criteria. This may not
be always possible with single objective runs, where
additional training or rerun of the algorithm with a
modified fitness function would be necessary. 3. Finally, it
may be the case that the objectives we are trying to evolve
are conflicting in their cost functions. In such cases, the
single objective function may not be able to provide
solutions which are good in both the costs with just a single
run, while a multi-objective approach would provide a set
of solutions which are good in either costs or intermediate

solutions which are non-dominated.

1

2. ROBOT DESCRIPTION
The robot model that has been used in the simulations is a
miniature mobile robot with differential drive steering. The
robot has a circular shape with 55mm diameter. A
schematic of the robot is shown below in Figure 1. The
robot has two motors that are capable of moving in both
directions. The output of the motors is limited such that the
maximum velocity of the robot is restricted to 2.5cm/sec in
either direction. The robot is provided with eight infrared
proximity sensors placed symmetrically on the robot. These
sensors can only detect obstacles in the range of 0-5cm in
our simulations. The values of infrared sensors were
normalized to the range of [0, 1], where 0 denotes no
obstacle detected and 1 denotes robot sensor is touching the
obstacle. For safety reasons the robot is assumed to have a
collision if the sensor reading is greater than 0.98. This
avoids the robot to move further and actually collide into
the obstacle. For target acquisition we assume the targets to
be bright lights placed at a certain height. These light
sources are assumed to be sources of energy for the robot.

IR

Target

VL

VR

Figure 2. Schematic of the Neural Network used

NN

Figure 1. Schematic of the Mobile Robot used.

The robot has to reach within a radius of 1cm of the light
source’s actual position to recharge itself. The light sensor
on the robot measures the intensity of light and provides it
a feedback in which direction is the nearest light source.
The robot initially has a minimal amount of battery life,
and has to reach the target and get recharged so that it can
move for another few steps. After it has recharged at the
target, the light switches off and the robot has to search for
a new source. The objective of the robot would be to
navigate in the environment autonomously and try to find
light sources where it can recharge itself, while also trying
to do obstacle avoidance and maintain a smooth motion.

3. EVOLUTIONARY PROCESS
3.1 Structure of Neural Network
The control system for the autonomous robot was chosen to
be a neural network. Neural networks are appropriate
because of their adaptive nature that is an important issue
for autonomous robots. This allows the robot to work even
under different conditions in different environments. An
efficient way of training neural networks for mobile robot
is by using evolutionary algorithms to train the synaptic
weights of the neural network. The evolutionary procedure
employed in the simulations is a multi-objective genetic
algorithm FSGA [9], to evolve the weights of the neural
network. Figure 2 shows a schematic of the neural network
architecture that was used. The architecture of the neural
network was fixed for all different simulations. The neural
network inputs are the eight infrared sensor readings, the
direction in which the target is located and the recurrent
inputs at the output layer. There is no hidden layer in the
network. The output of the neural network is directly used
to control the motor activation. The total number of
weights that were to be evolved for the network was 22.
The weights were individually coded as floating point
numbers on the chromosome. The length of the
chromosome was 22 and a population size of 50 was used
for all simulations. Initially weights are randomly
generated in the range of ±0.5 for each individual. The
multi-objective genetic algorithm then evaluates each
member of the population according to some fitness
measure decided by the user, depending on the task to be
solved. Details of the multi-objective genetic algorithm are
explained in the next section.

3.2 Multi-Objective Evolutionary Algorithm
Evolutionary algorithms have emerged as one of the most
popular approaches for the complex optimization problems.
They draw upon Darwinian paradigms of evolution to
search through the solution space (the set of all possible
solutions). Starting with a set (or population) of solutions,
in each generation of the algorithm, new solutions are
created from older ones by means of two operations,
mutation and crossover. Mutation is accomplished by

imparting a small, usually random perturbation to the
solution. In a manner similar to the Darwinian paradigm of
survival of the fittest, only the better solutions are allowed
to remain in a population, the degree of optimality of the
solution being assessed through a measure called fitness.

3.2.1 Multi-objective Optimization
When dealing with optimization problems with multiple
objectives, the conventional concept of optimality does not
hold good [10, 11]. Hence, the concepts of dominance and
Pareto-optimality are applied. Without a loss of generality,
if we assume that the optimization problem involves
minimizing each objective , a solution u is
said to dominate over another solution v iff

(.),ie i ...1= M

},,,2,1{ Mi K∈∀)(vi)(euei ≤ with at least one of the
inequalities being strict, i.e. for each objective, u is better
than or equal to and better in at least one objective. This
relationship is represented as . In a population of
solution vectors, the set of all non-dominating solutions is
called the Pareto front. In other words, if is the
population, the Pareto Front Γ is given by,

v
vfu

S

{ })1()(,| uvSvSu f¬∈∀∈=Γ

The simplistic approach of aggregating multiple objectives
into a single one often fails to produce good results. It
produces only a single solution. Multi-objective
optimization on the other hand involves extracting the
entire Pareto front from the solution space. In recent years,
many evolutionary algorithms for multi-objective
optimization have been proposed [10, 11].

3.2.2 Fuzzy Dominance
Assume an overall minimization problem involving M
objective functions ei(.), i = 1 … M. The solution space is
denoted as . Given a monotonically non-
decreasing function , whose range is in [0, 1],

nℜ⊂Ψ
dom
iµ)(⋅

},,2,1{ ni K∈ such that , solution 0)0(=dom
iµ Ψ∈u is

said to i-dominate solution , if and only if Ψ∈v
)()(veue ii < . This relationship can be denoted as u .

If , the degree of fuzzy i-dominance is equal to

vF
if

vu F
if

() ()vF
ifuu dom

ii µ≡)(evei
dom
iµ −)(

v

. Fuzzy dominance can

be regarded as a fuzzy relationship u between u
and . Solution

vF
if

Ψ∈u is said to fuzzy dominate solution
Ψ∈v if and only if },, M,2,1{i K∈∀ vF

iu

vF

f . This

relationship can be denoted as u . The degree of
fuzzy dominance can be defined by invoking the concept of
fuzzy intersection and using a t-norm,

f

())2()(
1
I ff

M

i

F
i

dom
i

Fdom vuvu
=

= µµ

Ψ⊂S

Given a population of solutions , a solution v S∈
is said to be fuzzy dominated in iff it is fuzzy dominated
by any other solution . In this case, the degree of
fuzzy dominance can be computed by performing a union
operation over every possible , carried out
using t-co norms as,

S
Su∈

()vu Fdom fµ

)3()()(U ff

Su

FdomFdom vuvS
∈

= µµ

)(vu F
i

dom
i fµ

In this manner, each solution can be assigned a single
measure to reflect the amount it dominates others in a
population. Non-dominated individuals within a solution
will be assigned zero fuzzy dominance, as for any non-
dominated individual

Further details of this concept can be found in [9]. In the
present work, the membership is piecewise
linear, and given by,

)(vu F
i

dom
i fµ

())4(
,1

0/)(
0,0

∆≥∆
∆<∆<∆∆

≤∆
=∆

ii

iiii

i

i
dom
i

e
ee

e
eµ

where, ∆ . The union and intersection
operators follow the standard min and max definitions [12].

)()(uevee iii −=

3.2.3 The Fuzzy Simplex Genetic Algorithm
Fuzzy dominance time makes it possible to assign a single
measure of fitness to multiple individuals. Computing the
mutual fuzzy dominance in a population of individuals
enables local gradient descent based techniques to be
applied in a multi-objective framework. In [9] a strategy
was proposed that applied a local search procedure, the
Nelder-Mead algorithm [4], in conjunction with a genetic
algorithm.
A simplex in -dimensions consists of solutions ,

 which are its vertices. In a plane, this
corresponds to a triangle. The solutions are evaluated in
each step and the worst solution w is identified. The
centroid of the simplex is then evaluated, excluding the
worst solution and the worst point is reflected along the
centroid. If c is the centroid, the reflected

solution is

n
}1

=

)1(+n ku
,2,1{ += nk K

wu
k

k −∑

)5()(wccr −+=

Usually, the worst point is replaced with the reflected
point

w
r in the simplex, but if the r is better than any

solution in the simplex, the simplex is further expanded as,

)6()(wccre −+= η

Where η is called the expansion coefficient. However, if
the reflected solution r is worse than , the simplex is
contracted and the reflected solution is placed on the same
side of the centroid. When solution

w

r is not worse than ,
but worse than any other solution in the simplex, the
simplex is still contracted, but the reflection is allowed to
remain on the other side of the simplex. Reflection is
carried out as follows,

w

)7()(wccrc −±= κ

In the above equation, κ is called the contraction
coefficient. Solution is replaced with the new one, w r ,

, or r in the next step. The simplex algorithm is allowed
to run for multiple steps before it converges.

er c

Fuzzy dominance is the objective function to which
Nelder-Mead is applied. This allows the Nelder-Mead
algorithm to push solutions towards regions of lower
dominance, i.e. the Pareto front.
A binary tournament selection is implemented in the
genetic algorithm that selected two individuals at random
from the population with replacement, and picks the one
with the least fuzzy dominance. An offspring , was
computed from two parents u and

t
v in the following

manner,
)8()1(vut ζζ −+=

where ζ is a uniformly distributed random number in [0,1].

Solutions were mutated with a probability of β , by adding
a random number with zero mean, that followed a Gaussian
distribution with a spreadσ , according to,

)9(),0(σNuu +=

3.3 Fitness Functions
The desired behavior of the mobile robot is based on the
following abilities: (a) moving forward as fast as possible,
(b) moving in as straight a line as possible, (c) keeping as
far away from obstacles as possible, (d) getting close to
specified targets as possible and (e) maintaining its heading
towards the targets as much as possible. In order to
evaluate the individual’s fitness in the evolutionary
algorithm, we used the following fitness functions. We
have used two different fitness functions given in equations
(10) and (11).

)11(
)1)(1(

1

)10()1)(1(

1
2

1
1

∑

∑

=

=

∆++
=

−−=

steps

i ii

steps

i
iii

d
F

IDVVF

where Vi is the average rotation speeds of the two wheels,
DVi is the algebraic difference between signed speed values
of the wheels, Ii is the activation value of the proximity
sensor with the highest activation at time i, di is the
distance from the nearest target and ∆i is the scaled
difference of the heading direction of robot and the
direction where the nearest target is present at time i. The
values are summed up over number of steps the robot runs
without collision. The function F1, is a common fitness
function used for Khepera robot evolutionary algorithms
[1, 2]. This fitness function has three components: the first
part is maximized by speed of the robot, the second one by
straight-line motion and the third by obstacle avoidance.
Since the robot has a circular shape and the wheels can
rotate in both directions, this function has a symmetric
surface with two equal maximum, each corresponding to
one direction of motion. The second fitness function F2 has
two components: the first part is maximized by getting
close to the nearest target and the second part is maximized
by keeping the heading of the robot towards the nearest
target. The first fitness tries to make the robot go as fast
and straight as possible at the same time avoid the obstacles
in the path. The second fitness makes sure that the robot
tries to reach the targets while it is trying to satisfy the first
objective function. These two objectives can be conflicting
in nature. The robot might come into a situation where it
would want to reach a target but at the same time would
like to avoid hitting into the obstacle in front of the target.
So using a single objective function for both these
behaviors may not provide optimal solution. The only way
to solve such objectives simultaneously is to use a multi-
objective optimization algorithm.

4. SIMULATION RESULTS

In this section we show some results of the simulations
done on the mobile robot using the multi-objective search
algorithm described in the previous section. Three different
test cases were considered for the evaluation of the
approach. In case (a) a very simple environment is used
with no obstacles in the path of the robot. Only the
enclosure wall for the environment is considered as the
obstacle to avoid the robot from going out of bounds. The
evolutionary algorithm was run for 50 generations. Figure
3 shows the simulation of the one of the robots in the
Pareto front. The robot starts from an initial position of
[10,10] and an initial heading of π/2. The robot is always
trying to reach the nearest target from its current position.
It has successfully reached all the targets in the
environment. It can be noted that the path is nearly smooth,
in a straight line as much as possible, and as far away from
the walls as possible. In case (b), we have used a room like
scenario, where the environment in case (a) was modified

to have walls within the path of the motion of the robot.
The robot was supposed to reach the targets while avoiding
the obstacles in the path and at the same time try to do it at
the maximum possible velocity and moving in a straight
line as much as possible. Figure 4 shows the navigation of
one of the robot in the Pareto front obtained in this case.
From the figure we can observe that the robot is always
tying to reach the target, while at the same time its
controller is avoiding obstacles and trying to maintain a
straight line of motion.

To avoid the notion of robot learning the behavior for only
a specific situation, the same evolved robot was run in a
different scenario with the targets placed at a different
position from what the robot was actually trained on. The
robot had to complete the task without any additional
training. Figure 5 shows the navigation of the robot
evolved in Case (b) run in a different scenario from what it
was actually trained on.

In case (c), the environment used is very much similar to
the one used in evolution of Khepera robot navigation
behavior. Figure 6 shows the navigation of one the evolved
robot in the Pareto-front. The evolved robot was tested in
an environment with changes to both the obstacle positions
and targets positions. The navigation of the robot is shown
in Figure 7. From the figures we can clearly note that the
robot has been able to learn a multiple objective behavior
successfully and the learned robot is able to move in the
environment with modifications to both the obstacles and
targets.

Figure 4. Navigation of the evolved robot in Case (b)

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

x (m)

y
(m

)

5. CONCLUSIONS
Although applying evolutionary algorithms to optimize the
behavior of mobile robots has been attempted they have
been mostly concerned with single objective optimization.
Unfortunately, in more complex environments, a single
objective approach may fall short of accomplishing the task

of evolving the desired behavior. Under these
circumstances, a multi-objective optimization approach
becomes useful. Furthermore, applying a multi-objective
technique produces a Pareto front of possible behaviors. It
offers the designer a wide spectrum of possible behaviors
to incorporate into a mobile robot. It also allows the user to

incorporate a more complex set of behaviors into the robot
that normally would not be possible using a simple
evolutionary approach. With a Pareto front of optimal
solutions, the designer can consider the possibility of
switching behaviors in a robot en route. For instance, a
robot that is too cautious in avoiding obstacles, may switch
to a more aggressive behavior. The ability to change
behavioral patterns is handy in dynamic environments
where a suitable objective cannot be devised a priori. A
multi-objective approach would also be particularly useful
in real world applications, where it becomes essential to
deploy robots in environments where they have not been
trained to navigate before.
 Figure 5. Navigation of the evolved robot in

Case (b) in a different environment In this article we suggest the use of a multi-objective
evolutionary approach to model robot behavior. In order to
demonstrate the feasibility of such an approach, two
distinct components of robot behavior have been
considered. Firstly, mobile robots need to navigate along a
path that runs free of obstacles and is as smooth as
possible. Secondly, the robot also should also perform its
task, which in this case is to reach its target. These two
tasks are often in conflict, and aggregating them into a
single objective will not suffice. Two separate objectives
have therefore been formulated and a recent multi-
objective approach, the Fuzzy Simples Genetic Algorithm
applied to simultaneously optimize both objectives. The
effectiveness of this approach has been demonstrated
through two separate simulations. Our approach can be
easily generalized to handle other objectives also. Thus far,
evolving robot behavior has been confined to simple
environments. In future, we plan to extend the work to
more complex environments. The multi-objective
evolutionary approach proposed here offers a versatile
alternative to the single-objective approach for determining
robot behavior.

Figure 6. Navigation of the evolved robot in Case (c)

6. REFERENCES
[1] Stefano Nolfi and Dario Floreano : Evolutionary

Robotics-The biology, Intelligence and Technology of
Self-Organizing Machines, MIT Press, Cambridge,
MA, 2000

[2] Floreano, D., and Mondada, F.: Evolution of Homing
Navigation in a Real Mobile Robot, IEEE Trans. On
Systems, Man and Cybernetics-Part B, Vol. 26, No. 3,
396-407, 1996. Figure 7. Navigation of evolved robot in Case (c) in a

different environment

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

x (m)

y
(m

)

0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

x (m)

y
(m

)

0 5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

x (m)

y
(m

)

[3] Floreano, D., and Mondada, F.: Automatic creation of
an autonomous agent: Genetic Evolution of a Neural
Network driven robot, In Cliff, Husbands, Meyer and
Wilson (Eds.), Proc. Of the Third International
Conference on Simulation of Adaptive behavior: From

Animals to Animats 3, The MIT Press/Bradford Book,
1994.

[4] Nelder, J. A. and R. Mead : A Simplex Method for
Function Minimization," Computer Journal, Vol. 7, p.
308-313

[5] Paolo Pirjanian: Multiple Objective Action Selection
in Behavior-Based Control, The 6th Symposium for
Intelligent Robotic Systems, Edinburgh, Scotland , pp
83-92, July 1998

[6] Paolo Pirjanian:The Notion of Optimality in Behavior-
Based Robotics, Journal of Robotics and Autonomous
Systems, Special Issue, 1999

[7] Dong-Oh Kang, Sung-Hun Kim, Heyoung Lee,
Zeungnam Bien: Multiobjective Navigation of a Guide
Mobile Robot for the Visually Impaired Based on
Intention Inference of Obstacles, Auton Robot, Vol.
10, No.2, pp 213-230, 2001

[8] Dozier, G., McCullough, S., Homaifar, A., Tunstel, E,
and Moore, L., Multiobjective evolutionary path
planning via fuzzy tournament selection, Evolutionary
computation proceedings, IEEE World Congress on

Computational Intelligence, The 1998 IEEE
International Conference, pp 684-689, 1998

[9] P. Koduru, S. Das, S. M. Welch, J. L. Roe: Fuzzy
Dominance Based Multi-objective GA-Simplex
Hybrid Algorithms Applied to Gene Network Models,
Lecture Notes in Computer Science: Proceedings of
the Genetic and Evolutionary Computing Conference,
Seattle, Washington, 2004.

[10] Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M.,
da Fonseca, V.G.: Performance assessment of
multiobjective optimizers: An analysis and review,
IEEE Transactions on Evolutionary Computation, Vol.
7, no. 2, pp 117-132, April, 2003

[11] Deb, K., Agrawal,S., Pratap, A. and Meyarivan, T.: A
fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary
Computation, vol. 6, No.2, pp 182-197, 2002

[12] Mendel, J.M.: Fuzzy logic systems for engineering: A
tutorial, Proceedings of the IEEE, Vol 83, No. 3, pp
345-377, March, 1995

http://www.vision.auc.dk/~paolo/publications/sirs98.ps.gz
http://www.vision.auc.dk/~paolo/publications/sirs98.ps.gz
http://www.vision.auc.dk/~paolo/publications/jras99.ps.gz
http://www.vision.auc.dk/~paolo/publications/jras99.ps.gz
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kim:Sung=Hun.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Lee:Heyoung.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bien:Zeungnam.html

	INTRODUCTION
	ROBOT DESCRIPTION
	EVOLUTIONARY PROCESS
	Structure of Neural Network
	Multi-Objective Evolutionary Algorithm
	Multi-objective Optimization
	Fuzzy Dominance
	The Fuzzy Simplex Genetic Algorithm

	Fitness Functions

	SIMULATION RESULTS
	CONCLUSIONS
	REFERENCES

