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ABSTRACT

Evolutionary algorithms have enjoyed a great success in a variety of
different fields ranging from numerical optimization to general cre-
ative design. However, to date, the question of why this success is
possible has never been adequately determined. In this paper, we ex-
amine two algorithms, a genetic algorithm and a pseudo-exhaustive
search algorithm dubbed Directed Exhaustive Search. We examine
the GA’s apparent ability to compound individual mutations, and its
role in the GA’s optimization. We then explore the use of the DES
algorithm using a suitably altered mutation operator mimicking the
GA’s surreptitious compounding of the mutation operator. We find
that the DES algorithm is capable of performing comparably to or
outperforming the GA over all test problems, as predicted by theory.

1. INTRODUCTION

Evolutionary algorithms [6, 4] have been in existence for
more than forty years. During that time, the uses that these
algorithms have been applied to have been widely varied.
Evolutionary algorithms are extremely useful on problems
for which there is little known analytically, or for which very
quick results are needed that might later be improved upon.
Though a great deal of work has been done on the develop-
ment of evolutionary algorithms, much basic work still needs
to be carried out.

One basic question that seems to have been sidestepped is
the question of how evolutionary algorithms compare to ex-
haustive algorithms. While this would seem to be a nonsen-
sical question because exhaustive algorithms cannot realis-
tically be expected to provide the optimum in a reasonable
amount of time, one might ask the same of an evolution-
ary algorithm. Indeed, it is realistic to ask whether or not
an exhaustive algorithm that had access to approrimately
the same search space an evolutionary algorithm might have
access to would perform comparably to an evolutionary al-
gorithm.

We view the search event similarly to the view expressed
by Inman Harvey when discussing his generational genetic
algorithms [3]. In this view, the path followed by the evo-

*To whom correspondences should be addressed.

Pasadena, CA 91107
mlee@)jisan.org

Pasadena, CA 91107
lauren@jisan.org

lutionary algorithm is a bundle of overlapping paths that
forms a tube through state space, eventually ending up at
some local optimum. This paper therefore begins with an ex-
amination of the likelihood that either an exhaustive search
or evolutionary search will make it to the best optimum in
this case. Section 3 introduces an ”exhaustive algorithm”
that would seem to satisfy some of the design constraints of
such an algorithm involved in optimization. Section 4 then
explores some of the finer points of genetic algorithms which
are beneficial in search. Section 5 reports the results of a
comparative study of a GA and an adequately constructed
DES. Finally, Section 6 provides some conclusions.

2. THEORETICAL CONSIDERATIONS

‘We begin this section with a look at evolutionary pathways.
We assume in these analyses that the evolutionary algo-
rithm, much like an exhaustive algorithm, can only make
progress if it is capable of finding vectors that outperform
(in the fitness sense) other vectors using diversification oper-
ators (mutation and crossover being two favorites) perhaps
repeatedly before selection culls these changes. These topics
lead naturally to the question of how repeated improvement
steps form paths, and how long it might take the average
algorithm (or multiply restarted algorithm) to find its way
to the best individual.

Search spaces contain a number of different points with re-
spect to the search. Consider a point which can be reached
from some initial point via a finite number of mutations. Let
us assume that the new point’s fitness is greater than the
original point’s fitness. Let us also assume that the number
of mutations required is smaller than the limit imposed by
selection. Then the original point is called an interior point.
If no such new point exists, then the initial point is called
a local mazimum. Because we will consider paths through
state space, we denote the local maximum as an end point.
The optimization problem is a search through state space
for the end point with the optimum fitness.

The interconnection of individuals through the diversifica-
tion operator defines the structure of the state space. The
optimization algorithm attempts to find a way through the
state space from the initial point(s) to end points of hope-
fully near optimal score. We define a path to be a set of
individuals which is ordered by fitness, connected by a fi-
nite number of diversification steps between adjacent vec-
tors, and which contains an end point. The space is made
up, generally, of interconnecting paths. Paths generally have



different lengths, though these lengths are typically much
smaller than the number of individuals in the space. Let us
define a path bundle as the set of all paths that start at the
same initial point or group of points and end at the same
point.

We can characterize a space as simple if all of the paths end
at the same end point. We characterize the space as complex
if the number of end points is a a large subset of the search
space. As the term ”large subset” is itself a characteristic
tied to the magnitude of computational resources available
to the researcher for the particular problem, the imprecision
in this definition may be forgiven, leaving the term complex
as a relative term.

Considering a single point in a search space, it is clear that
the search space can generally be altered by the diversifi-
cation operator into one of M different potential elements.
We do not consider in this work the case that M is infinite.
At each point only some of these M points will be improve-
ments. We define P to be the number of points out of the
total number of diversifications of the vector ¥ which lead
to an improvement in fitness. Typically, P is very large at
earlier stages of the search while it becomes relatively small
at later stages of the search. In an effort to simplify the
analysis, we assume that P is static throughout the search.

Let us assume that we have two paths p and p’ and that the
two paths have differing end points. Then, at some point,
the paths diverge. This means that the vectors making up
the paths become so different that it is impossible for a
vector on one of the paths to transition to a vector on the
other path.

It is clear that there must be some points on each path which
have the potentiality of being mutated into one or more of
the points on the other path. It is at these points that
optimization runs might ”jump ship” from one path over
to a the other path; beyond these points, the optimization
is ”locked in” to the path it is currently on. We call these
points transition points. Contiguous sets of transition points
are called transition regions, and we shall see that these have
a great effect on the future performance of the algorithm.

In general, in transition regions, an active optimization will
have the option of taking one or another direction leading
to one of potentially many different end points. In what
follows we use the simplifying assumption that each transi-
tion region forces the choice between k different path bun-
dles. Moreover, we can assume that each bundle of paths is
equally likely encounter m disparate transition regions be-
fore coming to an end point. Then the following theorem
holds.

Directed Exhaustive Search Theorem: The expected
number of evaluations required for an evolutionary optimiza-
tion algorithm given the above assumptions is given by

(Nevr) = mk™ 2 (1)

whereas the greatest number of possible evaluations required

to reach each end point in the search space is given by

k-1
Nmax = NpmMm (2)

The proof of the DES Theorem is beyond the scope of this
paper, but it will appear in an upcoming lengthened version
of this paper.

The significance of this theorem is that if it is possible to ex-
plore each path bundle individually and without repetition,
then it will be possible to duplicate the functionality of the
evolutionary algorithm despite using an exhaustive search.
Moreover, the number of evaluations one might expect to use
in order to reach a specific optimum is considerably smaller
using the exhaustive search than the evolutionary search if
the number of paths explored per bundle is near one and
the value of P is small.

Note that this result does not contradict the well known No
Free Lunch Theorems [9, 10] as that result does not consider
the number of evaluations required to reach the final result,
but rather the number of unique evaluations. Since it is well
known that EAs often times have redundant evaluations, the
NFL Theorems cannot be used to directly evaluate the speed
of convergence or the optimization speed.

3. ANEXHAUSTIVESEARCHALGORITHM
- DES

In the previous section, we examined a model of the search
space and the path through search space. In this model,
we likened the search space to a set of interconnecting path
bundles defined by the diversification operator whose func-
tion is tempered by selection. In this model, we identified
local maxima which we called end points, interior points,
path bundles, transition points, and transition regions. Us-
ing these we examined the expected number of evaluations
required to explore all path bundles. The DES theorem de-
scribes the number of evaluations one might expect to use
with an EA with potential restart after stagnation as well
as the same for an exhaustive algorithm. Suprisingly, if the
number of paths is restricted to one per bundle, the num-
ber of evaluations is comparable when considering the worst
ezhaustive case and the average case for the EA.

In this section, we first describe an exhaustive algorithm we
call DES. This algorithm approximates the functionality of
the algorithm described above. We then examine the aspects
of DES more closely in order to better understand how this
algorithm can be effectively deployed.

3.1 DES

DES is an exhaustive search algorithm in the sense that it
will systematically explore all branches of the search space
that may be reached using positive fitness transitions from
the initial point(s) of the search space. DES is not an ez-
haustive algorithm over the entire scope of the search space.

DES maintains two data structures which help it to avoid
duplicating evaluations of vectors and to keep track of where
it is in the search. The first of these is an ordered linked
list. This linked list contains all of the vectors currently



involved in the search, and it is from this list that the
search progresses. The second data structure is a binary
tree which maintains a record of all recently visited vectors.
This keeps the search from revisiting individual vectors and
entire branches once they have been visited. More on how
this is achieved will appear later in this subsection.

DES uses a diversification operator which takes as an input
a vector and returns a related vector which has one or more
vector components altered. The diversification operator is
assumed to be capable of a finite and enumerable set of
potential changes to the vector. Each vector is bundled in
a data structure which stores not only the vector, but also
the current diversification that the vector is on. Each time
a diversification occurs, this counter is increased, and the
vector will be deleted from the linked list once the counter
has reached the maximal count. Newly formed vectors will
be added to the linked list if and only if their fitness exceeds
that of the original vector.

The pseudocode is as given below.

initialize linked list with initial vector set.
store vectors in the binary tree.
set ptr to top of list.
set reset_random to 1
while (linked list is not empty or iteration numberjmax it-
eration)
{ . . .
1ncrease 1teration count
if (diversification count | maximal diversification count)

{
generate new vector and increase diversification count
of current vector
if (new vector isn’t in binary tree)
{ insert new vector in binary tree
calculate new vector’s fitness
if (new vector’s fitness ; old vector’s fitness)
{
insert new vector in linked list
reset pointer to top of the list

}
}
}
else
{
delete vector from linked list.
advance pointer
}
every so often
purge binary tree of unvisited vectors
if (random number is greater than reset_random)
reset pointer to top of linked list
every so often
recalculate reset_random based on length of linked list

}

This pseudocode implements a DES algorithm. The algo-
rithm continues until the linked list is exhausted, which
means that it has explored all potential paths from the ini-
tial positions. Three parameters affect the functionality of
the algorithm, though they do not affect the completeness of

the search. First, the frequency of binary tree purges affects
the size of the binary tree. Having a binary tree with few
elements makes the search recalculate many vectors, while
a huge binary tree causes a concommittent reduction in ef-
ficiency. Empirically, we have found that a frequency and
size that allows 10% of the vectors to remain in the binary
tree per purge works well.

The second parameter is defined by the mechanism for as-
signing the reset_random parameter. If the reset_random
number is very small, then the algorithm will tend to per-
form a depth-first search. If it is not small, then the algo-
rithm will perform a parallel search (NOT a breadth-first
search). Adaptivity is a useful characteristic which allows
the same algorithm to perform well on a variety of different
search spaces.

3.2 Acloser inspection of DES’ functionality
Perhaps the most important part of the algorithm is that
it is capable of doing three things. The first thing is the
generation of new vectors that are similar to those vectors
that a genetic algorithm might be able to generate. The
second is to limit the search of each of the bundles to a small
number of paths in the bundle, preferably only one. Third,
the algorithm must be able to recover when it reaches an
end point, even one several optimization steps from another
viable path to another end point.

All three objectives are accomplished using the DES algo-
rithm. Firstly, as the diversification operator is borrowed
from an EA, the diversification per step is identical to that
from the same EA algorithm. What this does not take into
account is the ability of the EA (as will be discussed below)
to invoke multiple diversifications on a single vector. The
remedy for this deficiency is to utilize diversification oper-
ators that invoke multiple steps within the DES. We shall
return to this subject in the next two sections, as it can be
demonstrated that this is a crucial property of evolutionary
algorithms.

The second objective is accomplished using the binary tree.
If multiple paths go through the same few vectors, then
examining these vectors is sufficient to block subsequent ex-
ploration of these paths. That is, once these vectors have
been added to the binary tree, they cannot be passed, and
the path bundle is effectively blocked. Moreover, as the bi-
nary tree maintains vectors that are visited only, the vectors
that can only be accessed beyond these few vectors will not
be visited, and can be removed from the binary tree. This
reduces the memory requirement and thereby improves the
algorithm’s speed. This capability requires that vectors are
not removed from the binary tree ”too quickly”, as this will
lead to their reinsertion in the binary tree and exploration
of connected (already searched) regions.

The third objective follows from the parallel nature of the
algorithm. Since the algorithm cannot retry already tried
areas of the search space, but maintains vectors from po-
tentially very different paths and path bundles, the end of
a path leads to the associated vectors’ deletion from the
search list. However, this does not affect the other threads
of search. Thus, the search continues unabated along mul-
tiple path bundles, and the algorithm avoids local maxima



traps.

As indicated above, one important property of the algorithm
is that it does not take backward steps beyond the range of
the diversification operator. This means that it is impossi-
ble for the algorithm to move backward in fitness and ex-
plore paths not connected to the initial points. However, at
early stages of EA runs, the run tends to make very quick
improvements which can put severe strain on backwards-
reaching vectors. The inclusion of backwards-reaching vec-
tors, or those that arise from them, which cannot be reached
by an extended mutation operator is unlikely.

4. THE REACH OF THE GENETIC ALGO-
RITHM

In the remainder of this study, we describe computational
experiments done utilizing a genetic algorithm and DES on
various computational problems and a set of neural network
training problems. In this section, we examine the GA’s
performance on these problems when the range of mutations
is limited and unlimited.

In these studies, we utilize a genetic algorithm which uses
a discrete decimal encoding for the vectors. All vectors are
represented by integer arrays whose elements range between
0 and 9. These vectors are broken into groups of three ele-
ments whose values represent the real values of problem pa-
rameters. For instance, the string 342028’ might represent
two parameters of value 3.42 and 0.28. Our genetic algo-
rithm has a population size of 1000, proportional selection,
and utilizes a mutation operator only as a diversification
operator. Our mutation randomly changes a single element
at a time, allowing multiple mutations to occur only if the
mutation hits the same vector multiple times. The muta-
tion probability is 0.05. We use a uniform selection in our
genetic algorithm. Each DES and GA run continues for 10°
evaluations’.

Number of i optimization Number of variations by iteration

o1 — 14
0 1 2 3 4 5
Number of variations for Rastrigin optimization

0 1e6 26 3e6 4e6 5e6 666 7e6 Be6 9e6 106
Number of variations by iteration

——
0 1 2 3 a 5 0 13 263 33 463 563
Number of variations for RHE optimization Number of variations by iteration

o 1 2 3 4 5 0 165 265 35 45 565 65 765

Figure 1: This figure illustrates the number of muta-
tions that occur on a single vector between improve-
ments. We represent it in a histogram (on the left) and

'Note that evaluations are not the same as iterations. With
a mutation probability of 0.05 and a population size of 1000,
this means an average of fifty evaluations per iteration

as a time series (on the right). Note that all of the al-
gorithms make use of multiple mutations during large
portions of the search.

When utilizing a population-based EA which does not uti-
lize replacement after each selection / diversification event,
individual vectors can have multiple diversifications. This,
in effect, extends the range of the algorithm. That is, the
algorithm benefits from this because it can utilize diversifica-
tions that cause more significant changes to the vector than
a single element diversification by combining the effects of
each of the diversification events. This can have a significant
effect on the final outcome of the search algorithm.

Consider, for instance, the data in Figure 1, which present
data taken during the genetic algorithm optimization of
three functions taken from the literature [7] (the Rastri-
gin, the RHE, and the Griewangk functions). These data
illustrate the number of changes given in a specific vector
between improvements. Note that many of the algorithms
have large numbers of changes, which are not necessarily
limited by the method of change. That is, our mutation
operator changes only a single element each time. However,
the selection operator is capable of removing only a few vec-
tors per iteration, allowing mutations to accrue in different
generations. The RHE function shows that a large number
of mutation events can accrue. The others use many fewer
mutations to get variations demonstrating that each func-
tion defines its own best mutation rate. Often times, when
single mutations no longer seem to provide improvements,
one or more multiple mutations will occur, restarting the
single mutations.

5. NUMERICAL EXPERIMENTS

In the previous section, we examined evolutionary systems
and found that evolutionary algorithms tend to execute mul-
tiple steps surreptitiously. Our goal in this section is to
observe that an exhaustive algorithm that mimics this be-
havior can perform comparably well to an EA. Each run
records the best vector during a 10° or 10 evaluation evolu-
ationary simulation. We evaluate these vectors by reporting
the mean, standard deviation, and minimum and maximum
values out of the total number of runs. Because of compu-
tational limitations, we report fewer than 100 runs on some
problems. More runs would have meant a more accurate
mean and may have extended the maximum and minimum
values, but we do not believe that they would have altered
the general results significantly.

A practical optimization task for evolutionary algorithms is
to train neural networks. We adopt this as a test problem.
Our training data is made from networks with randomly
generated weights. Networks that we train should appprox-
imate the performance of the old networks. The networks
we use are feed-foward, fully-connected, and 3-layered with
arctan as the node function. For our preliminary tests, we
use 2 networks: one that has 2 input nodes, 1 hidden node,
and 1 output node, and another that has 3 input, 3 hidden,
and 3 output nodes. The job of the search algorithms, given
the random inputs used to train the networks, is to find the
network weights. The score that is produced is the sum of
the deviation between the output values and the training
data output values. If the search algorithm can generate a



score of 0 (or very near ) because of rounding done through-
out the process), we say that the algorithm has generated
an optimal network. Our weights are restricted to numbers
between -5 and 5.

In our tests the two algorithms we use two neural networks.
Because of the simplicity of the 9-dimensional neural net-
work, both the DES and the GA reached the optimum, a

score of 0.00808877. However, the more complex 54-dimensional

network did not reach an optimal score in 10% evaluations.
Because the DES and the GA were both able to find the
optimum for the simple neural network problem, we can
compare their performance using the number of evaluations
it took for the algorithms to get to that specific score. The
DES was able to reach that optimal score in 14029 evalua-
tions (standard deviation of +£12421.65) while the GA found
that same score in 124875 evaluations (standard deviation
of £194825).

We also test the DES using the problems mentioned in sec-
tion 4. We allow it to mutate up to three components at
once. For each run, the DES performs 107 iterations. In
most cases, the DES outperforms the GA. In all other cases,
the DES performs comparably well.

6. SUMMARY AND CONCLUDING REMARKS

This study was motivated by the discovery of the DES Theo-
rem, which indicates that there are cases in which ”exhaus-
tive search algorithms” can perform nearly as well as, or
potentially outperform, evolutionary algorithms. Suitably
designed ”exhaustive algorithms” might be designed based
on the very operators that their evolutionary counterparts
use, and would seem to have the potential to outperform the
evolutionary algorithm counterparts in terms of their relia-
bility and, in some cases, speed. This raises the question
of whether or not it is possible to remove some of the in-
efficiencies in evolutionary algorithms by constructing their
”exhaustive counterparts”.

We have seen that much of the performance of evolution-
ary algorithms can be reproduced using our DES. As an
example, we have noted that the performance of the DES
is comparable to or superior to its evolutionary counterpart
in the same number of function evaluations. We have also
seen, anecdotally, that longer runs in the DES tend to pro-
duce better results, in agreement with a recent study from
Canti-Paz and Goldberg [1]. Future work can proceed in
a number of ways. One might be to explore the class of
functions over which the DES seems to outperform the EA
(which might be those classes with small P values and nar-
row path bundles). Another might be to explore for which
functions various methodologies found in the literature can
be brought over to DES, and which cannot (one which can-
not is Uniform Crossover [8]). Finally, one potential use of
this algorithm might be to apply it to practical problems to
which EAs have been applied and report on its comparative
performance. We intend to pursue all of these fronts.
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SIMULATION DATA

| Problem | GA/DES | dim | min/max mean +stdev
Griewangk DES 5 0, 0.008025 0.004170 +0.002011
Griewangk GA 5 0, 0.02297 0.008589 +0.004093
Griewangk DES 10 0.001403, 0.01038 0.006851 +0.004366
Griewangk GA 10 0.001768, 0.07274 0.01939 £0.01528
Rastrigin DES 5 0, 0.0006241 0.0002496 +0.0001861
Rastrigin GA 5 0, 0.001041 0.0005084 +0.0002394
Rastrigin DES 10 | 0.0004160, 0.0008321 | 0.0006241 £0.0002942
Rastrigin GA 10 0.0002060, 0.001665 | 0.0009979 £0.0003197
RHE DES 5 0.0001760, 0.001056 | 0.0003813 +0.0001999
RHE GA 5 0.000172, 0.002576 | 0.0005667 +0.0003780
RHE DES 10 | 0.0007039, 0.007743 | 0.002816 +0.0033295
RHE GA 10 | 0.0005150, 0.004293 | 0.001238 +0.0006487
Neural Network DES 9 0.008089, 0.008089 0.008089+0
Neural Network GA 9 0.008089, 0.008089 0.008089+0
Neural Network DES 54 0.1290, 0.2099 0.1551 £0.1315
Neural Network GA 54 0.1287, 0.7034 0.1627 +£0.0556

Table 1: This Table reports the performance of the GA and DES on various problems for

several different dimensions.




