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ABSTRACT 
Asphalt pavement distress, the various defects such as 
holes and cracks, represent a significant engineering and 
economic concern. It is estimated that pavement defects 
cause damage costing $10 billion each year in the United 
States alone [10].  One important step in managing  this 
problem is accurately assessing the pavement condition 
and its change over time.  In this paper we compare three 
methods for automatically classifying pavement cracks, 
genetic algorithms, multilayer perceptrons, and self-
organizing maps.  We also discuss the impact of feature 
representation on the resulting classification.  Our best 
classifiers demonstrated accuracies between 86 and 98% . 
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1. INTRODUCTION 
 
Large structures are usually constructed with materials 
that exhibit distress over time due to loading, 
environmental conditions, and normal wear.  These large 
structures include pavement, chimneys for nuclear power 
plants, skyscrapers, and pipelines among others.  Often 
the distress are present in the form of surface cracking [1]. 
For this investigation, we focus on asphalt pavement. 
Since pavement forms a large part of our transportation 
infrastructure, a number of distresses have been identified 
and their characteristics cataloged [5].  Four common 
pavement crack types are illustrated in Figure 1.1, and 
form the target of our classification system.  
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Figure 1.1 Types of pavement cracks 
 
Motivation  
 
Observing methods employed by experts in the pavement 
assessment industry [2] we note the following limitations 
in current practice: 
 
§ They involve computationally expensive features of 

crack objects. 
§ A hard coded criterion is not likely to perform well in 

the harsh crack-pavement environment, which 
includes a significant amount of noise and stochastic 
distribution and geometry of cracks. 

§ The processing speed is important, since the project 
of pavement assessment involves surveying 100% of 
target pavement. Processing time per image plays an 
important factor in motivating us to design more 
efficient techniques, especially if the analysis 
application required real-time processing. 

 
Given these limitations, we believe that pavement crack 
analysis  provides a viable test case for a real-world 
classification comparison.  In this case, we compare the 
results of two supervised approaches, a genetic algorithm 



(GA) and the multilayer perceptron (MLP) with the 
unsupervised self-organizing map (SOM).  
 
We introduced three new methods to improve the overall 
system efficiency. Linear regression technique was used 
for crack objects detection. This method reduced the 
original image space into two-dimensional boolean 
matrix. The projection method was used for image 
representation. This method constructed the feature 
vectors with only two components to characterize the 
different crack types. The class map, and the GA 
encoding method were used to evolve an efficient GA 
classifier by evolving a crack-type map of two-
dimensional matrix. The classification model used the two 
components of feature vectors as a lookup coordinates on 
the space of the evolved map. 
 
 
2. PREVIOUS WORK 
 
Chou et al. [6] approached the problem of pavement crack 
classification using moment invariant and neural 
networks.  After preprocessing and thresholding into 
binary images, they calculated Hu, Bamieh, and Zemike 
moments.  Eighteen moments were supplied as an input 
vector to a multilayer perceptron with seven nodes 
indicating the output.  After training and testing, they 
report a one-hundred percent classification accuracy. 

 
Mohajeri and Manning [2], as part of a fully automated 
pavement management system, describe a rule -based 
system that incorporates knowledge about individual 
crack patterns and classifies by the process of elimination.  
In addition to classifying cracking by type, it is also 
capable of quantifying the crack severity with parameters 
such as length, width, and area. 
 
Lee and Cheng [3] concentrate on image preprocessing 
and representation for input to a neural network.  After 
tiling the image, they use local statistics to tag tiles which 
contain cracks, thus forming a binary  crack matrix.  This 
matrix is then summed along the X and Y axes, forming 
two histogram vectors.  After additional processing these 
vectors are presented to an MLP for classification.  They 
report ninety-five percent accuracy. 
 
Wang et al. [4] describes an automated system capable of 
real-time assessment.  Using analytical descriptions of 
pavement stress, they compare the images under 
consideration with a pre-defined database of typical crack 
characteristics such as location and geometry, ultimately 
producing surface crack indices. 
 
Hsu et al. [12] described a moment invariant technique for 
feature extraction and a neural network for crack 
classification. The moment invariant technique reduces a 
two dimensional image pattern into feature vectors that 
characterize the image such as: translation, scale, rotation 
of an object in an image. After these features are extracted  

The overall results of this study were satisfactory and the 
classification accuracy of the introduced system was 
eighty-five percent. 
 
 
3. METHODOLOGY 
 
This paper describes an approach, which accepts binary 
images, processes them into an appropriate representation, 
and presents them to a variety of classifiers. 
 
3.1.    Preprocessing 
 
First, the pavement images are manually thresholded to 
form a binary image containing the crack as illustrated1 in 
Figure 3.1.  The resulting binary image is then passed 
through a median filter to reduce noise, forming the image 
of Figure 3.2. The resulting filtered, binary, image is then 
subdivided into square tiles.  A linear regression is 
applied to the pixels within each tile. The resulting 
correlation factor and number of pixels per tile are  
compared with pre-determined thresholds, ultimately 
forming a Boolean matrix, which indicates which tiles 
probably contain a distress fragment as illustrated in 
Figure 3.3. The projected vectors are shown in Figure 3.4. 
 

 
Figure 3.1. Thresholding 

 

 
Figure 3.2. Median Filtering 

                                                 
1 All images have inverted grayscale for printing.  



 
Figure 3.3. Tiling and Linear regression 

 

 
Figure 3.4.  Vector projection 

 
 
3.3.    Feature Representation 
 
We compared two different representations to reduce the 
data supplied to the classifiers, one based on the Hough 
transform, and one based on projecting the tile matrix 
along its major axes.  
 
For the Hough method, a Hough transform was calculated 
for each image.  Feature vectors were then formed from 
average angles in Hough Space, along with the total of the 
true-boolean values for each matrix.  
 
Alternately, we applied a projection-based approach that 
creates a pair of binary vectors by projecting the Boolean 
matrix on the X and Y axes. This forms vectors with the 
following characteristics as illustrated in Figure 3.5. 
 
§ Alligator cracks: have projection points on both X 

and Y axis with higher frequency than block cracks. 
§ Block cracks: have projection points on both X and Y 

axis. 

§ Longitudinal cracks: have projection points mainly 
on the X-axis  

§ Transverse cracks: have projection points mainly on 
the Y-axis. 

 
Figure 3.5. Feature vectors 

 
The input vectors used in training and testing the three 
classifiers were formed as follows: in the projection 
method, the summation of the ‘1’s (true) in each sub-
vector then is used to form two dimensional vectors (x-
sum, y-sum). In the Hough transform, the average of the 
angles in the Hough space, and the total number of crack-
hits in the hit-patterns matrices were used to construct 
two-element vector for each image. In the GA classifier 
we used these input vectors with no further modification, 
where as in the MLP and SOM classifiers, the vectors 
were normalized. 
 
3.2    Crack Classification 
  
We compared three classifiers for this study, the GA, 
MLP, and SOM.  To ensure comparable results we 
formed training and testing data as follows: 
 
1. Five-hundred images representative of the four crack 

types were collected and independently classified by 
an industry expert [2]. 

2. The classified images were preprocessed.  This stage 
produced two master files of vectors: one for 
projection technique, and the other one for the Hough 
transform. 

3. For each master file, five different files   for training 
(400 vectors each) and five different files (100 
vectors each) for testing were generated, using the 
cross validation technique [11]. 

 
3.2.1.    MLP Classification 
 

The MLP consisted of two input units, one output unit for 
each of the four possible crack types, along with a 
variable number of hidden units.  The number of hidden 
units was assessed empirically with both the Hough and 
projection representations, resulting in three hidden units 
being chosen for this study. 
 
3.2.2.    GA Classification 
 

We approached the genetic classification by evolving a 
classification matrix that would map the target classes 
into distinct regions on a matrix that could then be 
indexed by feature coordinates from the testing set. A 
typical evolved GA matrix is illustrated in Figure 3.6. 



3.2.3.    SOM Classification 
 
In addition to providing a similar output representation as 
the genetic approach described above, the SOM is an 
example of an unsupervised neural network. A typical 
trained map is shown in Figure 3.7. The same method for 

classification and resolution used in GA, was used in 
SOM. 

 
The methods used for classification are publicly well-
known, and further information about these methods can 
be found in [7], [8], and [9]. 

 

 
Figure 3.6. Typical GA classifier matrix 

 

 
Figure 3.7. Typical trained SOM

4. RESULTS AND DISCUSSION 
 
The tables Figures 4.1-4.3 of the aggregate results have 
the following uniform format: 

 
§ MLP_hough: is the label of the table, which 

combines the name of the classifier (MLP), and the 
image representation method used in this particular 
experiment. 

Block 

Alligator 

Longitudinal 

Transverse 

Alligator 

Block 

Transverse 

Longitudinal 



§ For each crack type, the table lists the classification 
distribution of the 125 test images. Image 
representation method, and gives the aggregate C/T 
for each crack type. The column chart plots the crack 
type vs. the C/T for that crack type. 

 
The final stage in the system were classification and 
testing. Of the classification models, GA and MLP 
representing supervised learning and the SOM an 
example of an unsupervised approach.   The testing phase 
produced a set of thirty classification results, ten for each 
 approach.  These are summarized and presented in 
Figures 4.1-4.3. 
 
From Figures 4.1-4.3 we observe that the projection 
representation for our images produced consistently better 
results than the Hough representation.  This suggests that 

simple representations should be considered among 
alternatives when exploring classification. 
The best classifier was the MLP with the projection 
representation, with an overall accuracy of 98.6%.  The 
other classifiers demonstrated similar accuracy, with the 
GA at 98.2% and 98.4% for the SOM.  Both the 
supervised and unsupervised models produced similar 
classification performance. 
 
While not perfect, since we used different image sets, it is 
still useful to compare our approach and results to other 
approaches presented in previous work. In [6], although 
their results were perfect, we noticed that their feature 
extraction method was computational expensive. It 
involves producing a vector of eighteen features 
computed by variety of moments. These moments range 
from 1st to 3rd order equations. 

 

   

 
Figure 4.1-a Aggregate results of MLP/Hough   Figure 4.1-b Aggregate results of MLP/Projection 
 

 
Figure 4.2-a Aggregate results of GA/Hough   Figure 4.2-b Aggregate results of GA/Projection 
 

 
Figure 4.3-a Aggregate results of SOM/Hough   Figure 4.3-b Aggregate results of SOM/Projection



In [12] the reported accuracy for a similar system was 
85%, and [3] reported a 93.7% overall accuracy.  Since 
we used a similar approach to tiling the images as [3], it is 
worth comparing them on a variety of crack types, as in 
Table 4.1.  In addition to obtaining higher overall 
accuracy, we note that our MLP classifier used far fewer 
hidden layer nodes which should enhance real-time 
performance. 
 
 

Table 4.1. Accuracy Comparison 
 

Lee and David Rababaah
Alligator 88.00% 100.00%

Block 88.00% 97.60%
Longitudinal 98.00% 98.40%  

 
 
 
5. FUTURE WORK 

 
Given the performance of this system we believe that 
there is potential for future work.  Specifically, we see the 
following as important extensions leading to deployment: 
 
§ To fully automate the system we need to incorporate 

adaptive thresholding into the process. 
§ The system should incorporate other subsets of 

pavement dis tress such as pot-holes, patching, 
polished aggregate, etc. 

§ Real-world assessment images often contain foreign 
objects such as oil residue, dirt, lane markings, 
vegetation debris, and other non-pavement artifacts. 
 Algorithms need to be explored to distinguish them 
from legitimate cracks. 

 
 
6. SUMMARY AND CONCLUSION 

 
We have presented a comparative study of three 
approaches to automating pavement crack classification. 
 The system consists of four phases: Image preprocessing, 
crack detection, crack representation, and crack 
classification.  Two approaches to image representation 
were explored.  The results indicate that the MLP proved 
the highest accuracy, 98.6%, and that the projection data 
representation was more effective in all classifiers 
studied.  We believe that this system, in addition to 
producing competitive accuracy, has the positive 
attributes of design simplicity and computational 
efficiency. 
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