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ABSTRACT
We demonstrate a method to infer the topology of a hidden 
nonlinear network of cable-like links (elements that can sustain 
only tensile loads) given limited data on the hidden network. The 
hidden networks are based on two classical representations of the 
tendon network of a human finger, containing 11 and 16 links, 
respectively. The phenotype consists of a regular, mesh-like 
network of 72 links whose properties are modified by our 
evolutionary algorithm. Using 30 data points, randomly obtained 
from the hidden network, we evolved networks whose functional 
behavior reproduced that of the hidden network, and whose 
topology closely matched that of the hidden network. 

1. INTRODUCTION
We are interested in extracting the structure of hidden systems
whose behavior is observable only through observations of inputs 
and outputs; systems of this type are commonly referred to as 
“black box”. The process of developing of a model for a system 
given input and output data is known as system identification. 

Identification of a nonlinear system can be a difficult problem.
The difficulty of this problem increases as the number of 
observations permitted on the hidden system and the number of a 
priori modeling assumptions allowed are reduced. 

Numerous methods exist for identification of linear [9][10] and 
nonlinear [8] systems. Neural networks and fuzzy systems are 
commonly used to identify nonlinear systems [8]. In the field of 
system biology, the problem of genetic network inference has 
received much attention; this is a nonlinear system identification 
problem in which the structure of a network is sought. Myriad 
methods, such as Bayesian network inference algorithms [11], 
simulated annealing [11], clustering [3], and evolutionary 
algorithms [1][5], have been employed in this problem.

A limitation of some nonlinear system identification methods, 
such as neural networks, is that the resulting models
mathematically map inputs to outputs but provide little insight 
into system function. Another limitation is that some methods, 

such as Bayesian networks, infer correlation but not causality.

In contrast, we seek functional models that provide insight into 
the system’s inner workings. For example, a functional model of a 
mechanical structure describes the components of that structure, 
as well as their layout and parameters. This type of model thus 
allows its user to gain insight into the effects of changes on the 
system being modeled.

In this work, we limit our systems of interest to networks of 
cables, which are inherently nonlinear. Since cables can sustain 
only tensile loads, their force-length relationship is nonlinear. 
Thus, depending on the layout and loading of the network, some 
cables may carry no load, rendering those cables unobservable 
under that particular loading condition.

We also seek to perform system identification using limited, 
sparse data. For some systems, such as biological systems, only 
limited data can be obtained. Also, the properties of the system 
may change with time, adding additional dimensionality to the 
problem. Thus, methods that can perform system identification 
with sparse data are desirable for certain classes of problems.

We use a genetic algorithm (GA) to evolve virtual networks of 
cables whose functional behavior is identical to that of a virtual 
target network of cables. The target network is hidden from the 
genetic algorithm because the fitness of individuals in the GA 
depends only on the inputs and outputs of the target network; the 
individuals have no knowledge of the target system’s structure or 
internal state. 

Our inference method alternates between testing of the target 
system and evolution of new networks. After a test (a set of inputs 
and the resulting outputs) is performed on the hidden network, the 
GA evolves networks to explain that and all previous tests. Since 
we seek to reduce the number of tests on the target system, this 
method allows us to observe the performance of the evolved 
networks after each test and decide whether to stop. It also 
provides the opportunity to design new tests based on the 
performance of the GA during previous tests. By contrast, a 
method that performs batch testing on the target system may 
unnecessarily tax the target system if some tests uncover little new 
information. Also, previous research suggests that presentation of 
a batch of data to the GA may overwhelm it, increasing the time 
needed to evolve good networks [2].
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Individuals in our GA are square meshes (Figure 3); the
evolutionary process modifies the resting (free) lengths of cables 
in the individuals, thereby changing the functional behavior of the 
network. We hypothesize that a mesh can be morphed into a 
network whose functional behavior is similar to that of another 
less complicated network. This idea was inspired by biology: in 
mammals, in utero skeletal structures are sheets of cartilage. As 
loads are applied, sections of the sheet that bear the load harden 
into bones [4]. By analogy, in our virtual meshes, a cable can 
shortened to amplify its role in the network, or lengthened to 
decrease its role; if sufficiently long, that cable may never bear 
tension under admissible loading conditions. 

The resulting evolved networks exhibit functional behaviors that 
reproduce those of their target hidden networks. In addition, they 
display topologies that closely resemble those of their target 
hidden networks.

Ultimately, we plan to extend this work to nonlinear biological 
structures, such as the tendon network of a finger. For that reason 
we chose to work with cables that, like tendons, are unable to 
sustain compressive loads.

2. METHODS
In this work, we infer the topology of a hidden network of cables. 
The hidden network is a virtual, i.e. simulated, network.

2.1 Network Modeling Assumptions
A network is a planar, two-dimensional entity consisting of a set 
of massless cables, or links, connected by frictionless, massless 
hinges, or nodes (see Figure 1). At any node, the cables connected 
to it can freely rotate about the node, independent of the other 
cables. Every link is connected to exactly two nodes. Overlapping 
links incur no frictional penalty and no additional length due to 
routing.  One or more nodes in the network must be grounded, 
such that their position remains fixed regardless of the force 
applied at the node. Externally applied forces, resolved into 

horizontal and vertical components, can be applied at any 
ungrounded node. 

The constitutive relationship for a link is defined to be:
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where F is the force exerted by a link on its end nodes, E the 
elastic modulus, A the cross-sectional area, l0 the resting length of 
the link, and l the current length of the link. If l is less than or 
equal to l0, the link exerts no force on its end nodes. In this work, 
we set E and A to 1.0, and did not change them. Since, for any 
given link, l0 is also a constant, the links exhibit linear force-
length behavior in tension, and are slack otherwise.

2.2 Finding Network Static Equilibrium
Given a network and one or more applied external forces, it was 
necessary to determine the final static equilibrium configuration 
of the network. This was accomplished using a relaxation method
[6] that works as follows. At every node, calculate the residual 
force, which is the sum of the forces applied by links and the 
external forces. Displace the node in the direction of the residual 
force. Repeat until residual force on ungrounded nodes 
approaches zero within the desired accuracy. This method is 
detailed below:

1. For every link
a. Calculate tension based on the positions of the link’s 

end nodes; those positions determine the length of the 
link, and hence its tension can be calculated from its
force-length function. 

b. Increment the residual force at each end node of the 
link by the tension calculated in the previous step.

2. For every node
a. Add any external force applied at the node to the 

residual force calculated in step 1 to obtain net force

b. Calculate node stiffness (a sum of the stiffness of all 
links connected to that node)

c. Displace node by F/S in the direction of F, where F
is the net force at the node, S is the node stiffness, and 
 is a relaxation factor in the range 0<<1.

3. Calculate network error, E ≡ max(R), where R is the set of 
residual forces of all the ungrounded nodes.

4. Repeat steps 1-3 until E ≤ , where E is the network error 
and  is the desired accuracy

This method is guaranteed to converge if at least one node is 
grounded and if the links possess a monotonic force-length 
function. See reference [6] for details.

2.3 Method to Infer Hidden Network
The problem of cable network inference is one of system 
identification with sparse data. The data is obtained through 
testing of the target system. A test is defined as a set of forces 
applied at pre-specified nodes on the target network. Those forces 
are applied and the target network is relaxed using the 

Figure 1. A network that resembles the letter ‘A’. The 
bottom nodes are grounded. Gray lines show the un-
stretched configuration and red lines show the network 
under an arbitrary loading condition. The shade of red 
indicates the level of tension in the link, with dark red 
indicating higher tension.



method described in section 2.2. The set of residual forces 
remaining at the grounded nodes are the outputs. 

A data point therefore consists of a set of input forces and a set of 
output forces recorded at the grounded nodes. In the example 
shown in Figure 1, a sole input force is applied at the topmost 
node. The residual forces recorded at the bottom grounded nodes 
after relaxing the network constitute the output. 

Testing of the hidden system and evolution of new networks are 
alternated. A test is performed on the hidden system and its result 
stored in a database. Networks are then evolved to explain that 
test and all previous tests in the database. The process repeats 
until a pre-specified number of tests have been performed on the 
hidden system. The pseudo-code for this is shown below (see also 
Figure 2):

Here n is the number of tests to be performed on the hidden 
system. Note that during iteration t, the individuals evolved must 
explain all previous data points, 1..t. 

2.4 Genetic Encoding of the Network
In the genetic algorithm, each individual is a network of 25 nodes, 
arranged in a regular 5x5 layout, and 72 horizontal, vertical, and 
diagonal links. Thus, the individuals resemble a mesh (see Figure 
3). A direct encoding is used; the genotype and phenotype are the 
same. Depending on the problem, different nodes are grounded. In 
the example shown in Figure 3, the bottom left and right nodes 
are grounded.  Cables only connect at circled nodes.

The dimensions of the GA individuals, as well as the positions of 
their input and grounded nodes, match those of the target 
network. If the target fits within a rectangle of dimension nm, of 
arbitrary length units, the mesh dimensions will also be nm.
Also, input forces are applied to the same location in both the 

target system and the meshes. If the target system has an input 
node at the Cartesian location (x, y), then the mesh, in its resting 
configuration, must have a node at (x, y) at which an input force 
can be applied. Finally, if the target system has a grounded node 
at location (x’, y’), then the GA individuals must also have a 
grounded node at the same location.

The behavior of the network depends upon the resting (free) 
lengths of the links, and the location of the grounded nodes. In 
any particular problem, the set of grounded nodes remains
constant, as do the values of E and A, the elastic modulus and 
cross-sectional area of the links. Thus, the functional behavior of 
the network is determined entirely by the resting lengths of the 
links in the network, and the genetic operators operate exclusively 
on these resting lengths.

2.4.1 Fitness
The fitness of an individual is a function of the error between the 
output predictions of the individual and the actual outputs 
observed from the target network. To calculate the fitness of an 
individual in the GA population, the data obtained from the target 
system are used. Each data point has the form:
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where the Fi’s are input forces applied to the target network and 
the Fo’s are the output forces observed at the grounded nodes.

The input forces from a data point are applied to the individual 
whose fitness is being calculated. That individual is then brought 
to its static equilibrium configuration using the relaxation method 
presented in section 2.2. The residual forces at the grounded 
nodes are then stored as:

 onoo FFF  ,,, 21 

Since the target network and the GA individuals have the same 
dimensions and identical locations of input and output nodes, the 
force outputs of a highly fit individual should match those of the 
target network. The difference between actual and predicted 

Figure 3. Genotype and phenotype used in the genetic 
algorithm. Cables only connect at circled nodes

Figure 2. Method to infer hidden network structure

1. Perform test 
on hidden system

Database
(input, output) 

data from hidden 
system

2. Store Result

3. Evolve networks 
to explain data in 
database

For t = 1..n

Perform test t on hidden network and record its I/O data

Create a population of individuals 

Seed the population with the best 25% of the 
population from the previous iteration

Fill the remaining population with random individuals 

Calculate individual fitness based on tests 1 to t

Evolve the population until the maximum fitness reaches 
a plateau

End



forces constitutes the error of the network for that data point. The 
error for data point p, p, is given by:
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where n is the number of output (grounded) nodes in the network, 
F’ is the force predicted by the GA individual, and F is the force 
observed in the target system. Note that the forces are vector 
quantities. Therefore, if F’ and F have equal magnitude but 
different direction, the error will be nonzero. Also note that the 
error contribution from each output force is normalized.

The total error for the network is a weighted contribution of the 
average error and the maximum error calculated over all the data 
points.
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The fitness is defined to be:

totalFitness  0.1

2.4.2 Genetic Operators
We chose deterministic crowding [7] as the selection method. The 
mutation operator performs point mutations by modifying the 
resting length of randomly chosen links in the network. The 
resting length of a link is incremented by a number drawn from a 
normal distribution with a mean of zero. We chose a two-
dimensional crossover operator; it swaps all links in between two 
randomly chosen nodes of the parents.

2.5 Target Networks
We attempted to infer three different target networks. The first 
had a shape similar to that of the letter ‘A’ (Figure 1). In this 
network, the bottom two nodes are grounded and a force is 
applied to only the topmost node; the applied force is limited to 

one with an upward vertical component. The second and third 
target networks (Figures 4 and 5) are based on the Winslow’s 
tendinuous rhombus [12], a classical description of the tendon 
network of a human finger dating from the 17th century. In these 
networks, the top two nodes, which lie along the vertical 
centerline of the network and correspond to tendon insertions into 
bone, are grounded. 

External forces are applied to the bottom three nodes; these forces 
are parallel to the input tendons in their resting configuration and 
their vertical components are required to be downward.
Additionally, the force magnitudes are capped.

For the ‘A’, a total of nine tests was run on this network: applied 
force magnitudes of 0.5, 1.0, and 1.5 with angles of 45, 90, and 
135, with the angle measured from the positive x-axis. After a 
test, networks were evolved to explain that test and all previous 
tests. The force magnitude was varied in an outer ‘FOR’ loop, and 
the angle varied in an inner ‘FOR’ loop.

For the Winslow rhombuses, thirty random tests were generated. 
Since the angles of the applied external forces constrained to be 
parallel to the input tendons and downward, a test consisted of a 
set of three force magnitudes. After each randomly generated test, 
networks were evolved to explain that test and all previous tests.

3. RESULTS

3.1 Evolving an ‘A’
We evolved a network whose functional behavior and topology
resembled the ‘A’ of Figure 6d. Figures 6a-c show the evolution 
of the network. With only one data point, the genetic algorithm 
was not able to evolve a network whose topology resembled that 
of the target system. However, after only three tests on the target 
system, evolution found a network whose topology resembled the
‘A’ of Figure 6d. Notice that the network in Figure 6b displays a
kink on the right that is characteristic of the ‘A’ when pulled up 
and to the right. Also note that the distribution of tensions in the 

Figure 5. An alternative implantation of Winslow’s 
tendinuous rhombus. In this particular loading 
configuration, four links are slack.

Figure 4. An implementation of Winslow’s tendinuous 
rhombus. Red lines represent cables in tension, with 
dark red indicating higher tension. Gray lines represent 
slack cables. Note that in this particular loading 
configuration, two links are slack.



-0.2

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000

Evaluations

M
ax

 F
it

n
es

s

networks of Figures 6b and 6c are similar to that of the target 
network. 

Figure 7 shows the maximum fitness of the GA population versus 
the number of individuals evaluated for the ‘A’. Markers indicate 
points where new tests were performed on the target system. 
Notice that the maximum fitness often drops at these points as 
new data is made available for fitness calculations. The fitness of 
the network shown in Figure 6(c), the best evolved using data 
from nine tests on the target system, was 0.89.
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3.2 Evolving Winslow’s Rhombus
We were able to evolve a network whose functional behavior and 
topology were similar to the Winslow’s rhombus structure shown 
in Figure 8d. Figures 8a-c show the evolution of the network. 
With only one data point, the genetic algorithm was not able to 
evolve a network whose topology resembled that of the target 
system (Figure 8a). After ten tests on the target system, the 
topology of the best network began to resemble that of the target 
network as a rhombus began to emerge in the middle (Figure 8b). 
After thirty tests, a rhombus is clearly visible, and the network 

Figure 7. The maximum fitness of the population vs. the 
number of individuals evaluated for the ‘A’ network. 
Markers indicate a new test performed on the target 
system.

6(c) 6(d)

Figure 6. Evolution of an ‘A’. Figure 6(a)-(c) show the 
best network evolved after 1, 3, and 9 tests, respectively, 
on the target network. 6(d) shows the target network.

6(a) 6(b)

Figure 9. The maximum fitness of the population versus 
the number of individuals evaluated for the first 
Winslow’s rhombus. Markers indicate a new test 
performed on the target system.

8(a) 8(b)

8(c) 8(d)

Figure 8. Evolution of a Winslow’s rhombus. Figures 
8(a)-(c) show the best network evolved after 1, 10 and 
30 tests, respectively, on the target network. 8(d) shows 
the target network.



appears symmetric about its vertical centerline (Figure 8c). Kinks 
in the outer tendons are visible, as they are in the target network. 
However, the center tendon in the target system that runs from the 
lower ground to the middle input node is not visible in the fully 
evolved network.

Figure 9 shows, for the evolution of the first Winslow’s rhombus,
the maximum fitness of the GA population versus the number of 
individuals evaluated. Markers indicate points where new tests 
were performed on the target system. Notice that while most tests 
caused a slight dip in fitness, one test caused a precipitous drop in 
the maximum fitness. The fitness of the network shown in Figure 
8c, the best evolved using data from thirty tests on the target 
system, was 0.80.

3.3 Evolving another Winslow’s Rhombus
We were able to evolve a network whose functional behavior and 
topology were similar to the alternate Winslow’s rhombus 
structure shown in Figure 10d. Figures 10a-c show the evolution 
of the network. With only one data point, the genetic algorithm 
was able to find some of the topological features of the target 
network, such as the rhombus and the interconnections between 
the outer tendons and the rhombus (Figure 10a). After ten tests on 
the target system, the topology of the upper portion of the best 
network began to gel (Figure 10b). After thirty tests, the rhombus 
is clearly visible, and the network appears fairly symmetric about 
its vertical centerline (Figure 10c). There is also a clearer 
distinction between the outer tendons and the rhombus. 

Figure 11 shows, for the evolution of the alternate Winslow’s 
rhombus, the maximum fitness of the GA population versus the 
number of individuals evaluated. Markers indicate points where 
new tests were performed on the target system. Notice that while 
some tests caused a noticeable drop in fitness, many tests resulted
in a slight increase of the population maximum fitness. Also note 
that the fitness never fully recovers from its initial drops, and 
plateaus below 0.8. The fitness of the network shown in Figure 
10(c), the best evolved using data from thirty tests on the target 
system, was 0.78.

4. DISCUSSION

4.1 Observability and Network Equivalence
Observability and equivalence were two key issues in our minds 
at the inception of this work. A link is observable if the output of 
a target system cannot be explained unless that system contains 
the observable link. This issue is strongly related to that of 
equivalence – can networks with different topologies have 
equivalent functional behavior? 

The ‘A’ network served as a test case for these issues. If the cross 
member is sufficiently long that it can never bear tension during 
admissible loading conditions then it is necessarily unobservable. 
However, if the cross member is not excessively long, and the 
network is pulled in a direction that elongates the cross member, it 
causes a kink in the right cable. That kink will alter the direction 
of the residual force at the right ground node. Can this alteration 
of the ground force be fully explained by a network that lacks the 
cross member?
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In our tests, the genetic algorithm was not always able to evolve a 
network with a cross member. The resulting networks resembled 
an inverted ‘V’, thus lacking the cross-member, and had lower 
fitness than those networks that contained the cross member. The 
fitness of networks lacking the cross members ranged from 0.65-
0.7, versus 0.85-0.9 for networks containing the cross member. 
This suggests that much of the functional behavior of the ‘A’ can 
be explained without the cross member, but that the cross member 
is necessary to fully explain the network’s functional behavior.

Figure 11. The maximum fitness of the population 
versus the number of individuals evaluated for the 
second Winslow’s Rhombus. Markers indicate a new 
test performed on the target system.

10(c) 10(d)

Figure 10. Evolution of a different Winslow’s rhombus. 
Figures 10(a)-(c) show the best network evolved after 1, 
10, and 30 tests, respectively, on the target network. 
10(d) shows the target network.

10(a) 10(b)



Some links in the first Winslow’s rhombus (Figure 8d) are
unobservable. For example, the link that connects the middle 
input node to the bottom of the rhombus must be unobservable. If 
that link is removed and forces are instead applied to the bottom
node of the rhombus, the reaction forces at the ground nodes will 
be identical to those that would result if the link were present. To 
see this, note that the vector sum of forces at the bottom node of 
the rhombus must equal the force carried in the unobservable link; 
otherwise, that node would not be in static equilibrium. Thus, the 
link does not contribute to the functional behavior of the network 
and is unobservable.

Some links in the second Winslow’s rhombus (Figure 10d) also 
appear to be unobservable. The two diagonal links in that figure 
that are very faint never carried significant tension during a 
battery of tests that we applied. We did not test whether a 
significant shortening of those links in the target network resulted 
in an appearance of those links in the evolved networks.

The fitness function can affect the observability of links in the 
target network. Herein, we defined fitness to be a function of only 
the ground reaction forces. No topological or parameter 
comparisons were made. If, instead, the fitness of individuals 
depended on a comparison of the position of markers on the target 
network to the positions of markers on the individuals’ networks, 
thereby adding a topological comparison, then the observability of 
the network could potentially increase. 

Another concern is uniqueness of networks, as functionally 
equivalent networks with differing morphologies were found 
during our tests. For example, other networks that resemble the 
‘A’ were found. They had similar topologies, in that all had 
diagonal outer members connected by a cross member, but the 
location of the cross member varied significantly. In the target 
network, the cross member connects to the bottom left node, yet 
in some evolved networks, it originated north of that node. The 
fitness appeared to be unaffected. In one case, the cross member 
bifurcated (see Figure 12). Thus, it would appear that multiple 
networks can have nearly equivalent functional behavior, despite 
their varied topologies.

4.2 Tests as Information
The fitness graphs shown in Figures 7, 9, and 11 are revealing. 
The population evolves until its maximum fitness reaches a 
plateau, and then another test is conducted on the target system. 
The test provides an additional data point to be explained by 
individuals in the GA population. In many cases, the maximum 
fitness of the population drops after the introduction of a new data 
point. In some cases, it drops precipitously. But in the case of 
Figure 11, the maximum fitness actually increases slightly after 
the introduction of certain tests.

The number of data points needed to discover the hidden network 
varied significantly. The ‘A’ network was often discovered by the 
GA after 9 or fewer tests while the Winslow’s rhombus problems 
required 30 tests. The tests in the Winslow’s rhombus problems 
were generated randomly and the tests used in 

the ‘A’ problem were pre-specified. Yet in both cases, some tests 
did not cause a significant drop in population fitness.

This trend suggests that tests are a valuable source of information
in system identification problems. A good test provides new data 
to be explained, and can therefore lower the fitness of existing 
individuals in the population. However, a poor test provides data 
similar to that already seen, and can therefore increase fitness. 

Since one of our goals is to perform system identification using 
few tests on the target system and since good tests can yield more 
information than poor tests, we plan to co-evolve tests in future 
work. A good test will be one that discriminates between 
individuals in the population by maximizing the variance of their 
predictions. This approach has been successfully applied to other 
system identification problems [2], but never to the inference of 
cable network topology.

4.3 Subjective vs. Objective Fitness
The fitness measure used herein is subjective; fitness is based only 
on previously observed data from the target system. Because the 
fitness of a network individual is based only on limited 
observations, it may not reflect the true, or objective, fitness of the 
individual. 

Defining objective fitness is a non-trivial problem in the case of 
network inference. One possible measure of objective fitness is 
the performance of the individual over a battery of exhaustive 
tests that are also performed on the target system. This type of 
fitness measures functional equivalence; it can be computationally 
expensive but is relatively straightforward to define. Another 
possible measure of objective fitness is structural equivalence, 
which compares the morphological equivalence of a network to 
the target network; structural equivalence is more difficult to 
define.

Direct measurement of objective fitness is usually impossible 
when attempting to identify real, physical systems. However, 
while working in simulation on test problems, defining and 
measuring objective fitness can provide valuable information 
about the performance of our method.

Figure 12. Evolved ‘A’ with bifurcated cross member



5. CONCLUSIONS AND FUTURE WORK
This paper described a genetic algorithm-based method for 
inferring networks using sparse data and few assumptions about 
network topology. The method alternates between testing the 
hidden network, and evolving new networks that can explain all 
previous tests on the hidden network.

We were able to infer a network that resembled the letter ‘A’, as 
well as two more complex networks based on a classical 
representation of the tendon network of a finger, known as 
Winslow’s tendinuous rhombus. 

We found that the quality of the evolved structures depended on 
the information gleaned from the tests performed on the target 
network. By maximizing the information from each test, we 
believe that we can minimize the number of tests required on the 
target network, as well as the time needed to evolve a network 
equivalent to the target.

In future work, we plan to apply co-evolution to the problem of 
generating good tests [2]. Ultimately, we plan to extend this 
method to the inference of anatomical structures, such as the 
tendon network of the human hand.
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