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ABSTRACT 
This paper presents a genetic algorithm for automating the design 
process for underground tunnels. The tunnel cross-sectional 
profile must enclose a prescribed minimum space polygon, and 
for stability the bending moments in the shotcrete lining must not 
exceed certain limits. The engineer seeks to achieve these aims 
while minimizing the volume of rock to be excavated. We 
describe the five parameters defining the tunnel profile, and 
develop a fitness function to model these design objectives. The 
genetic algorithm package, FTO, includes 2D finite element mesh 
generation and analysis modules, and sophisticated graphics using 
Microsoft .NET technology. A realistic example is solved in 30 
generations, and the result compared with engineering experience.  

Categories and Subject Descriptors 
G.1.6-Constrained optimization; G.1.8-Finite element methods; 
J.2-Engineering 

General Terms 
Algorithms, Design, Languages 

Keywords 
Genetic algorithms, tunnel design, finite element method. 

1. INTRODUCTION 
Evolutionary algorithms have been applied to engineering 
optimization problems since the late 1980’s. The overwhelming 
majority of these applications have been in electronic engineering 
(e.g. circuit design) and mechanical/structural engineering, 
however; relatively little use has been made in civil engineering, 
although this is now changing. Pichler et al [1] recently developed 
a soft-computing-based parameter identification method for the 
determination of material properties of the surrounding rock mass 
during a tunnel construction project. A neural network was used 
to back-analyze the rock properties from the tunnel wall 
displacements measured during construction. The learning 
weights of the NN were optimized by a genetic algorithm.  

The present paper describes another, more direct application of 

genetic algorithms in the field of geotechnical engineering, 
namely to optimize the cross-sectional profile of an underground 
tunnel at the design stage. 

 

2. TUNNEL PROFILE 
The major constraint when designing a road or rail transport 
tunnel, is a set of minimum width/height requirements to 
accommodate the traffic. A typical situation is shown in Figure 1, 
where the prescribed points P1P2P3P4P5 define a minimum 
polygon which the tunnel must enclose (Assuming symmetry 
about the centerline P1P5 we deal with only the right-hand half-
plane). In this graph the coordinate origin is at O. However, the 
centre of the tunnel can be vertically offset up or down from this 
point by a distance  z; the tunnel shown is centred at O′.  
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Figure 1: Tunnel profile with enclosed minimum polygon 
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Once the tunnel centre-point O′ is chosen, the profile is 
constructed as shown in Figure 2; it consists of upper, corner and 
lower arcs. The upper profile is an arc AB of radius  r1, centre O′; 
this extends to an angle  α  below the horizontal. On the radius 
OB a distance  r2  back from B is measured, giving the point E. 
The corner arc BC is from a circle centre E, radius  r2, subtended 
by an angle  β. Finally, we project CE back to the centerline at F, 



and construct the lower arc CD centred at F, subtended by the 
angle γ. This profile algorithm is the standard cross-section design 
employed in Austria in conjunction with the New Austrian 
Tunnelling Method [2].  
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Figure 2: Geometric construction of tunnel profile 

An individual tunnel is thus defined by the independent variables 
{r1 , r21 , α , β , z}, where  r21 = r2 / r1 . The constraints on these 
variables are: 

r1 > 0  ,  0 < r21 < 1  ,  -90° < α < 90° ,  α + β ≤ 90°. 

The  third constraint allows the corner arc BEC to lie above the 
centre level, if  α < 0. 

The optimal tunnel profile depends on the horizontal and vertical 
in situ stresses in the surrounding rock mass, and the rock material 
properties (Young’s modulus E, Poisson ratio ν, yield strength σc, 
etc). It is also affected by the elastic properties and thickness  t  of 
the reinforced shotcrete lining installed to support the tunnel; this 
lining is the shaded area in Figures 1,2.  

The design engineer is concerned to reduce cost by minimizing 
the volume of rock to be excavated, while keeping the stresses in 
the lining – and more particularly the bending moments through 
the lining thickness – within safety limits for the thickness and 
reinforcement used. The problem can thus be characterized as one 
of multi-objective optimization.  

3. FINITE ELEMENT ANALYSIS 
In a conventional design process, the engineer chooses the profile 
based on the rock properties and in situ stress field, using his/her 
experience (e.g. a low vertical stress in the rock permits a flatter 
base to the tunnel). The finite element method (FEM) is then used 
to model the construction numerically. The tunnel profile and 
rock geometry (e.g. strata, fractures) are used to generate a finite 
element mesh. The FEM takes as input the mesh (defined by 
nodal coordinates and connections), the material properties of the 
different soil or rock strata and the shotcrete, and the applied 
loads (including in situ stresses); it outputs the displacements of 
the nodes, and the stresses at the Gauss points in the elements [3]. 
If the stresses in the lining elements are within safety limits, the 
design is accepted. 

 
Figure 3: Typical FEM mesh (300 elements) 

We have incorporated a FEM analysis within our genetic 
algorithm: the FELIPE [4] package combines 2D graphical pre- 
and post-processors with a suite of finite element ‘main engines’ 
written in Fortran77, for 2D elastic, elasto-viscoplastic and other 
applications. We have so far restricted attention to a 
homogeneous, isotropic elastic rock mass, and an in situ stress 
field defined by a vertical overburden stress  σV  and horizontal 
stress  σH = K0.σV  (K0  is the lateral stress ratio). Figure 3 shows 
an example of a mesh generated within the GA program.    

The FELIPE mesh uses eight-noded quadrilateral elements for the 
lining and rock mass, with mapped infinite elements where the 
rock extends beyond the mesh boundaries. There are four Gauss 
points in each element, and Figure 4 indicates how the Gauss-
point stress values in the shotcrete lining (modeled by 3 layers of 
elements in this example) are extrapolated along a “spoke” AA 
through the lining to obtain the circumferential or hoop stresses 
on the inner and outer edges of the lining,  σi  and  σo. These are 
used in the calculation of the fitness function (see section 4.2). If 
there are N h elements around the tunnel, there will be 2N h such 
“spokes”. 

4. THE FTO ALGORITHM 
4.1 The GA chromosome 
We showed in Section 2 that a tunnel profile is defined by the 
offset distance  z , the upper radius  r1 , the ratio  r21  and the 
angles  α  and  β . The FTO program contains an algorithm to 
generate a graded finite element mesh using these five 
parameters, plus the tunnel lining thickness  t , as illustrated in 
Figure 3. The FELIPE elasticity analysis then produces the 
Gauss-point stresses, which are used to evaluate the fitness 
function (see next section). This simulation forms the fitness-
evaluation component of the FTO (FELIPE Tunnel Optimisation) 
genetic algorithm package.  



 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Extrapolating stresses in the shotcrete lining 

 

Early experiments used such a five-parameter chromosome           
{r1 , r21 , α , β , z} to define individuals in the GA population; 
however, a serious problem arises. Although both parent 
chromosomes may define tunnels which enclose the prescribed 
minimum polygon P1...P5 in Figure 1, there is no guarantee that 
this property will be preserved after crossover or mutation.  

The solution used in FTO is to define an individual chromosome 
using {r21 , α , β , z} only. In evaluating the fitness of this 
individual, the simulation first determines the minimum value of  
r1  required in conjunction with these four parameter values in 
order to produce a tunnel profile enclosing the P1…P5 polygon as 
in Figure 1. This approach also ensures that each individual 
produces a tunnel profile which is close to the polygon (touching 
it at one or more places), and so of higher fitness than a tunnel 
which is unnecessarily large. The average quality of the next 
generation of tunnels is thus kept high.  

4.2 The fitness function 
The primary quantity determining the tunnel stability is the total 
bending moment M in the shotcrete lining. This is given by   
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where the summation is over the 2Nh Gauss-point “spokes” AA 
through the lining as shown in Figure 4, and 

∆σ = σi  -  σo . 
Here,  t  is the lining thickness, and  b  is the out-of-plane 
dimension (usually taken as 1 metre); these are constants for the 
tunnel. The mean distance between spoke  k  and its neighbours is 
denoted by  dk .  
We seek to minimize  M  and also the area  A  enclosed by the 
tunnel (subject to enclosing the minimum polygon); this area  can 
be calculated from the geometric construction in Figure 1.  These 
parameters are combined in a function  F : 

F  =   fA . A  +  fM . M 
where the weights   fA , fM  are chosen empirically.  The fitness 
function to be maximized is then constructed as: 

f ( r1 , r21 , α , β , z )  =  F0 / ( F0 + F )  
with a scaling parameter  F0 . 
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4.3 Genetic operators 
Two standard crossover operators for real-valued GAs, namely 
arithmetic crossover and discrete crossover [5, p. 190], have been 
employed. A nonuniform mutation of a single parent [5, p. 205] is 
also programmed. Each operator is associated with a probability 
of 0.32, together with a reproduction operator having a probability 
of 0.04. This latter probability is set low to prevent a relatively 
high-quality solution swamping the population with clones at an 
early stage of the run. Children from these genetic operations are 
subject to a 2% mutation rate.  

A niche technique is also used to prevent premature convergence 
to a local optimum. Many such techniques have been developed – 
see for example [6,7]. The approach here is to cluster the initial 
population into “villages”; each village contains between 5 and 50 
individuals (villagers) with very similar parameters. The 
minimum distance between villages decreases as the run 
proceeds. A member of a village can only perform crossover with 
another member of the same village, or with the current best 
individual in the population. Individuals not belonging to a village 
can perform crossover with any other individual.  

4.4 Implementation 
The main FTO program is written in Fortran95, compiled with the 
Salford compiler, and runs as a console application. Good results 
are obtained from a population of size 200, producing 200 
children at each generation. Normally 30-50 generations, which 
corresponds to about 12000 fitness evaluations, are enough to 
reach convergence. A single fitness evaluation using a Pentium P4 
PC takes about 230ms, and a whole run approximately 40 
minutes. These timings depend greatly on the platform being 
used, and the size of the finite element meshes. 

A separate program, FTOview, monitors the dynamically updated 
results file, and produces graphical output. It is programmed in 
C#, which is part of the new Microsoft .NET technology.  Output 
from FTOview is contained in the next section. 

5. RESULTS 
To illustrate the application of FTO, we consider the following 
tunnel design problem. A tunnel is to be built at a depth of 55 
metres, in rock with an overburden stress due to a rock density of 
25 KN/m3, and a lateral stress ratio K0 = 0.6. The material elastic 
parameters are: 

 E = 5×107 KN/m2 ,   ν = 0.25   (rock) 

 E = 3×107 KN/m2 ,   ν = 0.25   (shotcrete) 

The tunnel is required to enclose the polygon shown in Fig. 1(a) – 
maximum width 9.5 metres, and height 5.95 metres.  

The weighting parameters  fA , fM , F0  used in the definition of the 
fitness function (Section 4.2) are 5.0, 1.0 and 500 respectively. 

Figure 5 shows the population of random-parameter tunnel 
profiles in the initial generation of the GA. We recall that each 
individual is defined by the parameters  {r21 , α , β , z}, and the 
upper radius  r1  is calculated to ensure that the tunnel touches the 
minimum enclosed polygon at one or more points. However, 
many of the tunnels are completely impractical, enclosing large 
areas of “wasted space” outside the polygon. 

Figure 6 shows the population after 5 generations, by which stage 
all the poor-quality individuals have disappeared. The corner 
sectors BEC and vertical offset distance  OO′  in the construction 
in Figure 2 are also shown. From these we see that there is still 
wide population diversity. 

 

 
Figure 5: Initial population of tunnel profiles 

 

 
Figure 6: Population after 5 generations 

 



Figure 7: Final population (after 30 generations) 

The final solution, reached after 30 generations, is shown in 
Figure 7. For comparison, Figure 8 shows the solution reached 
when a deeper-level tunnel is required (100m below the surface 
instead of 55m below). The higher in situ stresses result in an 
optimum profile which is more circular in shape. This accords 
with engineering experience. 

 

Figure 8: Tunnel at depth of 100 metres. 

 

6. CONCLUSIONS 
Genetic algorithms, coupled with finite element analyses for 
fitness evaluation, have proved highly successful in automating 
the design optimization process for underground tunnels. The 
empirical parameters in the fitness function (Section 4.2) can be  
adjusted to reflect the relative cost factors for excavation and 
reinforcement in the construction project. Experiments have found 
that the solutions found by the GA are in good accord with 
engineering judgement over a wide range of conditions (the in 
situ stress field, rock stiffness, etc).  
 Experiments have so far been limited to elasticity analyses; 
however, the practical use of this technique would be in models 
involving material or geometric nonlinearity, e.g. elasto-plastic or 
fractured rock.  
Most of the CPU time required in a GA run has been taken by the 
finite element solutions; this aspect will become even more 
important when nonlinear models are used. These could be 
greatly speeded up by the use of iterative solution algorithms such 
as preconditioned conjugate gradients, in place of the direct 
frontal solver used here, since the solution obtained from the first 
mesh would provide a good starting-point for subsequent FEM 
solutions.     
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