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ABSTRACT
Finding motifs — patterns of conserved residues — within
nucleotide and protein sequences is a key part of understand-
ing function and regulation within biological systems. This
paper presents a review of current approaches to motif dis-
covery, both evolutionary computation based and otherwise,
and a speculative look at the advantages of the evolution-
ary computation approach and where it might lead us in the
future. Particular attention is given to the problem of char-
acterising regulatory DNA motifs and the value of expressive
representations for providing accurate classification.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; J.3 [Computer Applications]: Life
and Medical Sciences—Biology and genetics

General Terms
Algorithms, Design

Keywords
Evolutionary computation, Biological sequence understand-
ing, Motif discovery

1. INTRODUCTION
A motif, in the context of biological sequence analysis, is

a consensus pattern of DNA bases or amino acids which ac-
curately captures a conserved feature common to a group
of DNA or protein sequences. DNA motifs are sometimes
termed signals: examples are regulatory sequences, scaffold
attachment sites, and messenger RNA splice sites. Examples
of protein motifs, which are also known as fingerprints, in-
clude enzyme active sites, structural domains, and cellular
localisation tags. Motif discovery is the act of identifying
and characterising motifs, and underlies a number of im-
portant biomedical activities. For example: the identifica-
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tion of regulatory signals has applications for gene finding in
sequenced genomes, understanding of regulatory networks,
and the design of drugs for regulating specific genes; and
protein motifs are routinely used to identify the function
of newly-sequenced genes and to understand the basis of a
protein’s cellular function.

Evolutionary computation (EC) has certain advantages
for motif discovery. Unlike many algorithms used in bioin-
formatics, evolutionary algorithms (EA) carry out global
search and have relatively low sensitivity to initial condi-
tions. Evolutionary algorithms are comparatively flexible in
terms of how solutions are represented and evaluated and do
not require knowledge about the problem to which they are
being applied. Since motif discovery is typically an off-line
activity, the relative low speed of evolutionary algorithms
when compared to other bioinformatics algorithms is not a
significant issue.

The remainder of this paper is divided into three sections.
Section 2 presents the biological basis of motifs, describing
the appearance and function of both DNA and protein mo-
tifs. Section 3 reviews existing approaches to motif discov-
ery, discussing the advantages and disadvantages of conven-
tional approaches, and summarising the various evolution-
ary computation approaches. Section 4 hosts a discussion
of the relative advantages of evolutionary computation for
motif discovery, highlights the issues of representation and
evolvability, and suggests future avenues of research for EC-
based approaches. Most of the material presented in this
paper should be accessible to readers with a limited biolog-
ical background.

2. THE BIOLOGICAL BASIS OF MOTIFS
This discussion is limited to two kinds of biological se-

quence data: nucleotide sequences and protein sequences. A
nucleotide sequence is a string of letters (A,C,G and T) rep-
resenting the sequence of nucleotide bases (Adenine, Cyto-
sine, Guanine and Tyrosine) present within DNA and RNA
molecules. A protein sequence is a string of letters (A–Z,
excluding B, J, O, U, X and Z, which represent ambiguity
groups) representing the linear sequence of amino acids from
which a protein is constructed.

A sequence motif can be seen as a pattern, present within
one or more biological sequences, which alludes to the pres-
ence of a particular biological characteristic. In order to
correctly characterise motifs, it is important to take into ac-
count their biological meaning. This section gives some bio-
logical background to the kind of motifs which occur within
nucleotide and protein sequences.
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Figure 1: Typical organisation of eukaryotic promoter elements within the DNA sequence upstream of the
coding region of a gene. Inset molecular visualisations show [left] a DNA-bending transcription factor bound
to an enhancer (PDB ID: 1C7U [46]), and [right] a transcription factor complex bound to the TATA promoter
element (PDB ID: 1D3U [35]).

2.1 Motifs in Nucleotide Sequences
In addition to the coding regions of genes, genomes con-

tain a host of other signals which determine interactions be-
tween DNA, RNA transcripts, and the cellular machinery.
Examples are:

Regulatory signals which determine interactions with the
transcriptional machinery and therefore how and when
genes are expressed.

Splicing signals which determine interactions with RNA
editing proteins and thus serve to delineate the coding
and non-coding components of genes.

Localisation signals which determine interactions of mes-
senger RNA transcripts with the cellular localisation
machinery and consequently the location of mature
proteins within cells.

Cell cycle signals which determine interactions with the
cell cycle machinery, facilitating DNA replication and
recombination during cell division.

In each of these cases, the corresponding motifs typically
describe protein binding sites present within DNA (or RNA)
sequences. A better understanding of DNA motifs can be
gained by looking at an example. Figure 1 presents a con-
ceptual diagram of the regulatory elements upstream of a
gene’s coding region. In order for a gene to be transcribed,
it is necessary for the RNA polymerase enzyme to bind to
the start of the gene. In eukaryotes, there is little direct
binding affinity between the gene start site and RNA poly-
merase. Consequently, transcription requires the presence

of ‘helper’ proteins which stabilise the interaction between
RNA polymerase and the DNA molecule, forming a tran-
scription complex. These transcription factors function ei-
ther by directly stabilising the interaction between DNA and
RNA polymerase or indirectly by, for instance, stabilising
the interaction between DNA and another transcription fac-
tor. This is achieved by transcription factors either acting
as ‘glue’ — binding one thing to another by binding to both
of them — or by changing the shape of other elements of
the transcription complex, making them fit together better.

Many of these transcription factors bind to the DNA se-
quence upstream of a gene’s start site. As figure 1 illus-
trates, this behaviour is reflected by a pattern of DNA reg-
ulatory elements upstream of the first exon. Broadly speak-
ing, there are two kinds of regulatory element: promoters
and enhancers. Promoters are located within the region up
to about 300 base pairs upstream of the first exon, providing
binding sites to transcription factors which have fairly direct
roles in forming the transcription complex. Enhancers, by
comparison, can be found at distances of many kilobases
upstream or downstream of the first exon, and serve to ‘en-
hance’ the binding of transcription factors to promoter el-
ements. Promoters can be divided into several categories.
The core promoter is the site where RNA polymerase ini-
tially binds to the DNA, and covers the area just upstream
of and a few bases into the first exon. The core promoter
often (but not always) includes an element known as the
TATA box. The core promoter is necessary, but not nor-
mally sufficient, to support transcription. Upstream pro-
moter elements are usually found just upstream of the TATA
box. These bind transcription factors which are key to the
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Figure 2: Sequence logos for SwissProt entries matching PROSITE motifs, indicating the relative prob-
ability of particular amino acid residues occurring at each position in a sequence. Positions with taller
letter stacks are more significant. Left to right then top to bottom: BAR (PROSITE ID PS51021, covers
two lines), FTSW RODA SPOVE (PS00428), IGF BINDING (PS00222), IMP DH GMP RED (PS00487),
INSULIN (PS00262), IQ (PS50096), KAZAL (PS00282), MYELIN MBP (PS00569), ROK (PS01125) and
SAND (PS50864).

formation of a stable transcription complex, and are usu-
ally required for efficient transcription to take place. The
CCATT box and the Sp1 box (which has consensus sequence
‘GGGCGG’) are common examples of upstream promoter
elements. Response promoters and tissue-specific promoters
are also found upstream of the TATA box. Both bind tran-
scription factors which mitigate gene expression depending
upon the current state of the cell or its environment. Exam-
ples of response promoters are HSP70, which causes expres-
sion when heat shock signals are present in a cell and MRE
(metal response element) which induces expression in the
presence of heavy metals. An example of a tissue-specific
promoter is the sequence ‘ATGCAAAT’, which promotes
the expression of immunoglobin genes in B cells.

Enhancers are generally harder to characterise than pro-
moters, not least due to the magnitude and variance of their
distance from the core promoter. Enhancers can appear as
one or more copies of a particular sequence on either DNA
strand and often this sequence resembles that of the pro-
moter elements with which they interact. Given their distal
location, it is not always obvious how enhancers interact
with the transcription complex. However, many enhancers
are known to bind factors which bend DNA, forming large
loops which bring enhancer-bound factors into association

with promoter-bound factors. Enhancers can be general or
specific, enhancing promoter activity in all or only certain
cell types. Enhancers may also act to repress transcrip-
tion, by binding disruptive transcription factors. These are
known as silencers.

Whether or not, and how much, a gene is expressed can
be the result of interactions between a wide range of tran-
scription factors. Each regulatory element contributes either
positively or negatively to expression and groups of regula-
tory elements carry out analogues of Boolean functions. For
these reasons, gene regulatory regions have been compared
to both logic circuits and McCulloch-Pitts neurons, e.g. [38].
Whilst understanding of regulatory motifs is important for
predicting when genes will be expressed and consequently
what they might do, regulation is not determined by these
factors alone. Other factors which need to be taken into
account include: the expression levels of transcription fac-
tors, which requires understanding of genome-wide regula-
tory networks or access to transcriptome data; the presence
of transcription factors which do not bind to DNA but which
effect whether or not a transcription complex can be assem-
bled; the presence of insulators (DNA motifs which limit the
action of enhancers to certain regions of DNA); chromatin
state, the presence of chromatin remodelling factors, and



histone acetylation — all of which affect the accessibility of
DNA to transcription factors; and post-translational locali-
sation and modification of messenger RNA transcripts and
proteins [15]. For more information about regulatory motifs
see, for instance, [43,54,69].

2.2 Motifs in Protein Sequences
A protein motif is usually considered to be a pattern of

amino acid residues which are conserved between members
of a protein family. The presence or absence of a motif can
be used to determine whether a particular protein belongs to
a family and therefore determine whether or not it is likely to
carry out a particular function. Like DNA motifs, protein
motifs often correspond to binding sites, since these tend
to be well-conserved regions of protein structure. Protein
motifs may also correspond to structural domains, especially
in protein families with a structural rather than enzymatic
role. Many proteins belong to multiple protein families and
hence contain sequences matching multiple motifs.

GIVEQCCTSICSLYQLENYCN

C-C-{P}-x(2)-C-[STDNEKPI]-x(3)-[LIVMFS]-x(3)-C

1ary:

2ary:

3ary:

4ary:

Figure 3: Correspondence between the insulin
PROSITE motif and the structure of the human in-
sulin hexamer molecule. Dashed lines indicate disul-
fide bonds between cysteine residues.

There are numerous databases of protein motifs, e.g. Blocks
[30], PFam [6], PRINTS [2], ProDom [11], PROSITE [22],
and the integrated resource InterPro [48]. A selection of
motifs from PROSITE are depicted in Figure 2 as sequence
logos. These represent motifs from a diverse range of protein
families and show how protein motifs vary widely in terms
of both length and conservation. Figure 3 illustrates how
the insulin PROSITE motif — a regular expression — cap-
tures structural features of insulin, including the cysteine
residues which form key disulfide bonds holding together
both the tertiary and quaternary structure of the protein.
This also highlights the fact that protein motifs attempt to
capture facets of three dimensional structure within a one

dimensional sequence. For more information about protein
structure and composition see, for instance, [45].

3. APPROACHES TO MOTIF DISCOVERY
The most common approach to locating and character-

ising conserved regions in groups of biological sequences is
multiple sequence alignment. A multiple sequence align-
ment, or MSA, is a group of sequences vertically aligned
such that regions of similarity in each of the sequences occur
in the same columns of the alignment. MSAs are typically
found using dynamic programming approaches. Dynamic
programming is a divide-and-conquer algorithm which can
efficiently find the optimal alignment of two sequences. For
larger numbers of sequences, dynamic programming can not
be used directly to find optimal alignments, since the com-
putational complexity of the approach rises exponentially in
respect to the number of sequences in the alignment. In-
stead, alignments are built up in a piece-wise fashion from
alignments between smaller groups of sequences. Cluster-
ing techniques are used to determine the order in which se-
quences should be aligned, based upon the heuristic that
similar sequences should be aligned before less-similar se-
quences (e.g. [62]). This process does not guarantee optimal
alignments, but is widely used by biologists to determine se-
quence homology. The advantage of MSAs for motif discov-
ery is that they do not lose any of the information contained
in each sequence. However, they have several disadvantages:
they do not generalise the sequence data, and therefore are
of limited help for biological understanding; they can not be
directly used to classify other sequences; and they can be
very large.

A more common way of representing motifs is to use con-
sensus sequences. ‘TATAAT’, for instance, captures the
most likely form of the bacterial version of the TATA box
[55]. However, many regulatory motifs are not well con-
served and can not be adequately described using a deter-
ministic expression such as this. Consequently, regulatory
motifs are normally described using probabilistic expressions
such as weight matrices which give the relative likelihood
of each symbol appearing at each position in a sequence.
Consensus sequences, whether deterministic or probabilistic,
have the advantage that they can easily be used to classify
new sequences by measuring the distance from a consensus
sequence. For deterministic expressions, this distance is usu-
ally calculated using a substitution matrix which captures
the relative likelihood of one symbol mutating into another
during the course of evolution. Consensus sequences are
commonly derived using statistical techniques (see [61] for
a review). An example is Expectation-Maximisation (EM),
a hill-climbing algorithm which iteratively derives a weight
matrix using measures of information content and entropy.
Whilst efficient, this approach does not guarantee optimal-
ity and is sensitive to initial parameter settings; although
improved performance can be achieved through the use of
Gibbs sampling. A recent statistical approach to regulatory
motif discovery is described in [4].

More generally, motifs can be described using regular ex-
pressions. Rather than describing a single consensus se-
quence, these are able to capture a set of related sequences.
For instance, the expression ‘C-C-{P}-x(2)-C-[STDNEKPI]-
x(3)-[LIVMFS]-x(3)-C’ (the insulin motif from Figure 3)
captures all amino acid sequences beginning with two cys-
teine residues, followed by a residue that isn’t proline, two
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Figure 4: A profile hidden Markov model. Box states represent conserved sites. Diamond-shaped and circular
states represent insertions and deletions, respectively. Numerical values indicate symbol emission and state
transition probabilities.

arbitrary residues, another cysteine residue, a residue from a
specified set, three arbitrary residues, another residue from
a set, three more arbitrary residues, and a final cysteine
residue. There are various kinds of regular expression. Each
of these has the same expressive power, but differences in
syntax lead to differences in how easily certain patterns can
be expressed. Sometimes it is also desirable to use more
constrained forms of expression: for instance, only allow-
ing expressions of the form ‘R-x(n0, n1)-R-x(n0, n1)-. . . ’ i.e.
a simple consensus sequence with optional variable-sized
gaps between each pair of specified residues. A classifica-
tion of regular expression languages for biosequences can be
found in [10]. All regular expressions can be represented
by equivalent finite state automata, which can be used to
efficiently search for matches within sequences. Regular ex-
pressions can be derived using either a sequence-led or a
pattern-led approach. Sequence-led approaches attempt to
generalise patterns from sequence data, whereas pattern-led
approaches generate-and-test all patterns up to a certain
length, checking for correspondence with the data. The lat-
ter approach is obviously intractable for motifs with long
defining lengths.

For motifs with low levels of conservation, probabilistic
regular expressions are more appropriate. Hidden Markov
Models (HMMs) have proved particularly useful for describ-
ing conserved sequences, being both flexible and better able
to identify distant homologues than other approaches [21].
Figure 4 illustrates a profile HMM, the form of HMM which
is used most often to represent conserved sequences. This
model, which has a fixed architecture, improves upon weight
matrix expressions by explicitly identifying the likelihood of
insertions and deletions within a conserved sequence. The
emission and transition probabilities of HMMs are typically
learnt from sequence data using the Baum-Welch algorithm,
a variant of dynamic programming. Whilst efficient, this
procedure is sensitive to initial parameter values and does
not guarantee an optimal model of the sequence data. See
[23] for an example of an HMM-based approach to regula-
tory motif discovery.

Neural networks have also been used to recognise and clas-

sify patterns in biological sequences [8]. The benefits of a
neural approach are best demonstrated by their application
to protein secondary-structure prediction, where neural ar-
chitectures are able to give a prediction accuracy of around
80% from the amino acid sequence data alone [5]. How-
ever, neural networks pose two significant problems when
applied to motif discovery: (i) their relative inflexibility
when mapping sequence data to inputs; and (ii) the diffi-
culty of interpreting neural models, particularly when hid-
den layers are present within the network. The first of
these problems can be somewhat overcome through the use
of hybrid approaches; for instance, placing an HMM be-
tween the sequence data and the neural inputs [31]. For
general overviews of motif discovery approaches see, for ex-
ample, [10,67,70].

3.1 Evolutionary Computation Approaches
There have been numerous applications of evolutionary

computation to consensus biosequence discovery. Most of
these have been concerned with multiple sequence align-
ments [1,12,13,17,18,25,27,32,36,37,42,44,50–53,57–59,64,
66,68,73], although a number have targeted other represen-
tations [20,28,29,33,34,39,40,56,60,63,65,71,72]. Most MSA
approaches can be divided into two classes: those which di-
rectly evolve alignments e.g. [52], and those which evolve
the order in which sequences will be aligned using conven-
tional techniques e.g. [44, 58]. Exceptions are [64], where
an EA is used to post-process alignments generated by the
popular alignment program CLUSTAL, and [53], in which
an EA is used to generalise patterns extracted from MSAs.
EA-based approaches to MSA have been shown to outper-
form conventional techniques in terms of alignment quality,
though usually with a significant speed disadvantage. Re-
cent reviews can be found in [59] and [18].

Of more relevance to this review are EC approaches in
which structures more general than MSAs have been evolved.
In [20], a GA is used to evolve consensus sequence strings
and weight matrices, with promising results. Regular ex-
pressions have been evolved by both Hu [34] and Heddad et
al. [29] to describe protein motifs, producing results compet-



itive with conventional approaches, and in [56], the author
describes how grammatical GP can be used to evolve prob-
abilistic regular expressions which can effectively describe
PROSITE motifs. Particle swarm optimisation (which is in
many ways similar to EC) has also been used to design reg-
ular expressions, improving upon standard PROSITE mo-
tifs [14]. A number of studies have looked at how EAs may
be used in the design of HMMs. In [72], a GA is used to
evolve the topology and initial parameters of HMMs, which
are then trained using Baum-Welch. This approach was
shown to generate reliable models of the CCAAT and TATA
boxes and other simple motifs. Thomsen [63] and Won et
al. [71] have used similar approaches for other biosequence
applications. EAs have also been used to evolve HMMs for
non-biological sequence classification problems [16, 41, 60].
In [16], a GA is used to optimise HMM parameter values,
and in [41] a GA is used to optimise both topology and pa-
rameter values — in both cases leading to more accurate
models than those produced using Baum-Welch.

EC approaches have also been used to evolve a number of
unconventional structures for representing and recognising
sequence motifs. Howard and Benson [33] describe a classifi-
cation architecture which they call GP-automata, consisting
of a finite state automaton in which each state has an asso-
ciated regular expression parse tree and each transition has
a distance measure and a Boolean decision function. This
architecture is designed to recognise regulatory sequences:
using the distance measure to guide the movement of a
reading head along the sequence, the regular expressions
to recognise individual promoter motifs, and the Boolean
functions to determine whether there is a suitable combina-
tion of promoters within the sequence to lead to gene ex-
pression. No direct comparison has yet been made against
other promoter finding algorithms. A number of other re-
searchers have also looked at how programmatic classifiers
may be used for motif discovery [28,39,40,65]. Handley [28]
has evolved GP expressions consisting of continuous numer-
ical functions and left/right relative movement commands
to recognise promoter regions in the E. coli genome. This
approach produced results competitive with contemporary
approaches without (unlike the other approaches) requir-
ing biological knowledge. However, the evolved expressions
are not easy to understand. Koza et al. [39, 40] have also
used GP to evolve biological sequence classifiers, produc-
ing competitive results. An alternative approach has been
demonstrated by Vallejo [65], who successfully evolved Tur-
ing machines to classify HIV sequences.

4. DISCUSSION
It is clear from the literature referenced above that evolu-

tionary computation techniques can be successfully applied
to motif discovery. However, EC approaches remain a niche
activity within this field, with practicing biologists prefer-
ring to use tried-and-tested approaches based around dy-
namic programming, statistical techniques and neural net-
works. Some of the reasons for this are quite evident. It
is only recently that the EC community has begun to focus
on biological applications, with special sessions and work-
shops becoming common-place at the larger conferences.
Certainly much of the output in the area of motif discov-
ery has been fragmentary, resulting from short-term projects
and not well advertised in the biological community. For in-
stance, most of the EC publications cited in this paper were

published in evolutionary computation and artificial intelli-
gence conference proceedings and journals: only a handful
are available in publications accessible to biologists. There is
also a lack of bioinformatics software (with a few exceptions)
based around EC techniques. Relatively few biologists are
programmers and many bioinformaticians are from a bio-
logical rather than computational background. Hence, most
practitioners are unlikely to be aware of — let alone will-
ing to implement — computational methods which are not
currently in the bioinformatics mainstream.

4.1 Why use EC for Motif Discovery?
Whilst EC is certainly not a panacea, EC approaches do

have particular advantages for motif discovery. One of the
foremost criticisms of machine learning approaches to mo-
tif discovery is that often they do not produce biologically
meaningful results. One reason for this is that many con-
ventional bioinformatics algorithms (e.g. Baum-Welch and
EM) carry out local search and thus tend to converge to
solutions which are locally but not globally optimal. This is
not only a problem for classification accuracy, but also for bi-
ological meaning — since many sub-optima will not reflect
the biological truth more often associated with the global
optima. EC approaches, by comparison, carry out a global
search of the solution landscape; and do this without resort-
ing to specific heuristics (which may skew the results) or
exhaustive search (which, like dynamic programming, scale
poorly). Whilst this does not guarantee optimal solutions,
it does increase the likelihood of finding them.

EC approaches have two more advantages for generating
biologically meaningful solutions: flexibility of scoring, and
flexibility of representation. For conventional bioinformatics
algorithms, there is often a close linkage between the way
in which solutions are derived and the way in which they
are scored; meaning that solutions can only be evaluated in
regard to, for example, sum-of-distance between sequences.
For EC, there is no such linkage: solutions can be evalu-
ated by arbitrary fitness functions, and in principle these
could take into account any information, biological or non-
biological, functional or non-functional.

4.2 Representation
However, it is representational flexibility which is perhaps

the most interesting quality of EC in respect to motif discov-
ery. Motif representation is a key issue for any approach to
motif discovery: since if a motif can not be accurately rep-
resented then it can not be learnt, regardless of the learn-
ing algorithm which is used. As Section 2 of this paper
attempts to convey, motifs are not just arbitrary patterns
within biological sequences. Motifs represent functional or
structural characteristics of biological molecules. Where a
motif represents a binding site, it must implicitly capture
three-dimensional information: for instance, in the case of
protein binding sites, the motif must capture the chemical
and spatial interaction between the amino acid sequence,
its ligand(s), and any other — possibly distant — parts of
the amino acid sequence which are involved in the interac-
tion. For regulatory DNA sequences, motifs must describe
a one-dimensional image of the three-dimensional transcrip-
tion complex assembled around the DNA molecule. A com-
plete description of a gene’s regulatory region must capture
both the chemical bonding between the DNA sequence and
the transcription factors and the interactions between tran-



scription factors.
Many models of motifs used in standard approaches to

motif discovery are fairly simplistic. There has been an
understandable tendency to consider biological sequences
as mere strings of letters, to be processed using standard
computer science string processing algorithms. This has an
obvious advantage: it encourages the use of efficient pro-
cedures such as dynamic programming and regular expres-
sion matching. Even the more biology-motivated represen-
tations, such as profile HMMs, still remain within the uni-
verse of regular expressions and dynamic programming-like
algorithms. This status quo is due, at least in part, to the de-
pendence of certain algorithms upon certain types of repre-
sentation, and the difficulty of designing efficient algorithms
for more expressive forms of representation. Nevertheless,
regular expressions represent only a small part of the uni-
verse of languages with which classifiers can be expressed.
Regular expressions have important limitations — notably
their inability to describe long-range relationships within se-
quences — which limits the kind of biological patterns which
they are able to accurately describe.

With evolutionary computation, there is no requirement
for a certain form of representation. The mutate-and-test
(or recombine-and-test) mechanism of EAs mean that, at
least in principle, any solution representation can be used so
long as it can be represented within the memory of a com-
puter. Despite the plethora of MSA and regular expression-
centric approaches, EC methods have already shown the po-
tential benefits of non-standard forms of motif representa-
tion. Howard and Benson’s GP-automata approach [33], for
example, demonstrates a novel way of representing regula-
tory motifs and their interactions. However, more interest-
ing are those approaches which break free of the regular
expression mould, notably the use of Turing-complete clas-
sifiers by Koza et al. [39] and Vallejo [65]. In this context, a
Turing-complete classifier can be interpreted as a program-
matic model of the biological interactions which lead to a
particular motif or set of motifs; so, in essence, the GP
approach is analogous to reverse-engineering the algorithm
underlying the biological system. Unlike simple represen-
tations such as regular expressions, Turing-complete clas-
sifiers could explicitly capture the constraints of chemical
bonding, long-range interactions between parts of an amino
acid chain, and ‘hidden’ variables such as direct interactions
between the transcription factors in a transcription com-
plex. Of course, it is not a simple matter to induce complex
algorithms with GP. Other problems include choosing an
appropriate function set, understanding the evolved algo-
rithms, and whether or not it is possible to improve evolved
algorithms with respect to newly acquired data.

4.3 Evolvability
Whilst there is no explicit requirement for a certain form

of representation in EC, all representations are not equally
appropriate for evolutionary search. Ideally the solution rep-
resentation should be evolvable: it should engender “the
ability to reach ‘good’ solutions via evolution” [49]. From a
representation viewpoint, evolvability is a set of character-
istics which encourage better solutions to be explored as a
consequence of random changes enacted by variation oper-
ators. One of these characteristics is solution locality: that
small changes made to a solution’s representation should
generally lead to small changes in the solution it represents.

C C G

A C G

A(CA)*G*

C G A

A(CA)*G*

A C GG A

AA*G*

crossover

Figure 5: One-point crossover between equivalent
finite state automata. Initial states are indicated by
unconnected arrows and final states by double cir-
cles. The second child solution carries out no useful
behaviour since it has no initial state.

If this is not the case, then mutations are most likely to lead
to unrelated solutions — most of which will have relatively
low fitness, assuming that the solution being mutated has a
high fitness relative to the search space average.

Unfortunately many types of solution representation have
poor solution locality, especially when crossover operators
are used. Ideally crossover should produce new, fitter, so-
lutions by recombining the components of existing fit so-
lutions. In practice this rarely happens because most solu-
tions are not compatible at the representation level. Figure 5
shows a typical example of this problem. Here, the same reg-
ular expression is represented by two finite state automata:
each containing the same states, but in a different order.
Because the states are in a different order, their contexts
are not preserved when the two finite state automata are re-
combined using one-point crossover, resulting in child solu-
tions with behaviour considerably different to their parents.
Clearly if two equivalent solutions can not be meaningfully
recombined, then it is unlikely that crossover will lead to
meaningful behaviour in the situation where parents do not
represent the same solution. This kind of problem is found
in all representations where a component’s context is de-
termined by its position (such as sequences, matrices and
programs), and is particularly a problem for variable-length
representations [47].

A number of strategies have been looked at for improving
the evolvability of solution representations in EC. Many of
these are motivated by the organisation of biological genomes,
which Conrad [19] has described as having three character-
istics which reflect a balance between the need for pheno-
typic stability on the one hand and the pressure towards
genetic exploration on the other: redundancy, compartmen-
talisation, and weak linkage. Of these, redundancy is the
characteristic most often introduced to EC representations
to promote evolvability (see [47] for a review). A number
of authors have also tried to improve context preservation
by removing positional-dependence from solution represen-
tations, e.g. [3, 24, 47]. Most of these ideas are applicable
to the kind of representations commonly used to represent
sequence motifs.



4.4 Future Directions
Existing approaches to motif discovery have made use of a

fairly narrow selection of motif representations; a situation
in large part due to limitations of ‘traditional’ approaches to
sequence analysis. Considering its flexibility with regard to
how solutions are represented and evaluated, EC appears
to offer the opportunity to explore motif representations
other than the standard sequence alignments, weight ma-
trices, regular expressions and hidden Markov models of the
bioinformatics world. Existing work in the area suggests the
benefits of this approach, but there remains a lot of work still
to be done. The main issues which need to be addressed in-
clude accuracy, interpretability, and evolvability.

The accuracy of a classifier depends upon its ability to
capture all the constraints upon all appropriate variables
(such as chemical bonds). For biological classification, the
appropriate variables are often not known in advance, so
it is desirable that the classifier can learn new variables as
well as learning their constraints. EAs using expressive rep-
resentations such as Turing-complete classifiers are able to
build models of unknown variables so long as the necessary
information is available. However, this is by no means a
simple task and it would seem beneficial to introduce more
knowledge into the process to help identification of appro-
priate variables. In GP, biological knowledge could be in-
troduced via extra functions and terminals: for example,
a function which uses an external program to calculate sec-
ondary structure for a region of a protein, removing the need
for GP programs to rediscover the mapping from sequence
to secondary structure (which would be a major task in it-
self). This mechanism could also be used to introduce non-
sequence data such as X-ray models of protein tertiary struc-
ture, known post-translational modifications, metabolomics
and transcriptome data, and details of epigenetic factors,
such as local chromatin structure arrangement, for DNA se-
quences. In this way, EC approaches could offer a framework
with which to relate sequence data to the increasing amounts
of post-genomic data (data to which GP has already been
applied [26]).

However, there is also scope for more disciplined represen-
tations. Where a biological model — or aspects of the model
— is fairly well understood, it would seem more appropriate
to represent the model explicitly rather than rely on evo-
lution to find its gross structure. This could certainly help
make evolved solutions more interpretable, and would still
allow room for evolutionary exploration within the bounds
of the model. A representation for genetic regulatory re-
gions, for example, could represent explicit promoter and
enhancer regions, their ordering, the degree of variance al-
lowed in their relative positionings, and relate this to an
evolved model of the relationships between corresponding
and ‘hidden’ transcription factors. Individual promoter mo-
tifs could be represented using conventional motif represen-
tations or more exotic representations; and, as previous ap-
proaches have shown, hybrid representations and the use of
local search algorithms as variation operators both provide
attractive options.

Finally, there is the issue of evolvability. Evolvability is
key to the effective behaviour of EAs yet, in application-led
research especially, it is often over-looked as a significant
consideration. There is a growing amount of general theory
regarding how evolvability may be introduced to solution
representations, much of which has only been applied within

limited domains, often to toy problems. Since motif discov-
ery is a difficult problem, applying this research to motif
representations could be of benefit to both motif discovery
and EC theory.
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