
Challenges for Biologically-Inspired Computing

Russ Abbott
Dept. of Computer Science

California State University, Los Angeles
and

The Aerospace Corporation
El Segundo, California

0-310-621-3805

Russ.Abbott@GMail.com

ABSTRACT
We discuss a number of fundamental areas in which biologically
inspired computing has so far failed to mirror biological reality.
These failures make it difficult for those who study biology (and
many other scientific fields) to benefit from biologically inspired
computing.

1. The apparent impossibility of finding a base level at which to
model biological (or most other real-world) phenomena.
Although most computer systems are stratified into disjoint
and encapsulated levels of abstraction (sometimes known as
layered hierarchies), the universe is not.

2. Our inability to characterize on an architectural level the
processes that define biological entities in both enough detail
and with sufficient abstraction to model them.

3. Our inability to model fitness except in terms of artificially
defined functions or artificially defined fitness units. Fitness
to an environment is not (a) a measure of an entity’s
conformance to an ideal, (b) an entity’s accumulation of what
might be called “fitness points,” or even (c) a measure of
reproductive success. Fitness to an environment is an entity’s
ability to acquire and use the resources available in that
environment to sustain and perpetuate its life processes.

4. Our inability to build models that allow emergent
phenomena to add themselves (and their relationships to
other phenomena) back into our models as first class citizens.

These failures arise out of our inability as yet to fully understand
what we mean by emergence.

As an initial step towards surmounting these hurdles, we attempt
to clarify what the problems are and to offer a framework in terms
of which we believe they may be understood. We also offer a
definition of emergence as the appearance of a persistent process
that produces a area of relatively reduced entropy.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence,
D.0 [Software]: General, I.6.0 [Simulation and Modeling]:
General, J.3 [Life and Medical Sciences], J.4 [Social and
Behavioral Sciences], F.1.0 [Computation by Abstract
Devices]: General

General Terms
Algorithms, Design, Economics, Reliability, Experimentation,
Languages, Theory.

Keywords
Emergence, epiphenomena, evolutionary computing, fitness,
modeling, process computing, simulation.

1. INTRODUCTION
Although there is now a complex network of conferences and
journals through which a torrent of evolutionary computing
papers flows, a number of fundamental modeling problems (listed
in the abstract) remain unsolved. The problems pertain to the
following interconnected collection of issues: what is emergence;
what is an entity; how do entities depend on their environments.

1.1 What is Emergence, and How can we
Model it?
How can we build models in which emergent phenomena, once
they emerge, play roles in the model as central and concrete as the
phenomena initially built into the model?

Emergence has been the holy grail of biologically inspired
computing. We think of emergence informally as a macro
phenomena that appears as a by-product of a (generally but not
always large) collection of micro phenomena. In attempting to
understand what we mean by emergence, we (see Bedau [6]) have
categorized emergent phenomena as

• nominal (or benign, see Seager [18]), e.g., the emergence of
an automobile from its components when they are put
together in the right way;

• weak (the interesting type), e.g., the emergence of foraging
effects from the activities of ants—or see Bedau, who uses
the glider in the Game of Life as his prototypical example of
weak emergence; and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BioGEC’05, June 25–26, 2005, Washington, D.C, USA.
Copyright 2005 ACM 1-59593-097-3-3/05/0006.

• strong, e.g., vitalism, the emergence of “life” from “lifeless”
chemicals. Were strong emergence to be established as a real
phenomenon, it would be considered spooky and mysterious,
and it would violate currently accepted scientific principles.
Strong emergence requires the emergent result to possess
new and irreducible causal powers. (See Horgan [10].) From
here on, we dismiss the possibility of strong emergence.

Also, see Abbott [1] where we define an aggregation to be an
(emergent) entity if (a) it has properties that do not apply to its
components (e.g., mile-per-gallon for a car) and (b) those
properties depend on how the aggregation is held together (again,
consider a car).

Just as we have produced nominally emergent objects and systems
for centuries, we have been able to write computer simulations
that produce examples of weak emergence (such as “boid” flocks)
for two decades. (See Reynolds [17].)

As gliders1 and boid flocks illustrate, emergent phenomena are
often produced and are understood as epiphenomenal by-products
of some underlying phenomena, i.e., they are considered to be
causally powerless. A flock (as distinct from the boids in it) has
no causal role in a boids simulation. A glider (as distinct from the
cells that compose it) has no causal role in a Game of Life run.

Yet epiphenomenal gliders can be used to do real computation.
See Rendell [16] which proves that by using gliders and other
Game of Life patterns, the Game of Life can be shown to be
Turing complete. And flocks are real entities for those who study
migratory behavior patterns.

So this is a fundamental problem. We don’t know how to produce
computational systems in which emergent phenomena (that are
not explicitly anticipated) can, once they emerge, participate in
the system as if they had been built in from the start. Yet that is
exactly what happens in the real world: emergent phenomena are
for us as real and concrete as any other.

1.2 What an Entity?
Fundamental and philosophically slippery as this question is, it
can’t be avoided. For example, are gliders and flocks entities?

This issue is especially relevant in the case of biological, social,
and other “higher level” entities. A fundamental difference
between “higher level” entities and more primitive physical and
chemical entities (such as atoms and molecules) is that “higher
level” entities require energy from the environment to sustain
themselves. “Higher level” entities are what have been referred to
as “far from equilibrium”2 systems—in contrast with more
primitive physical entities, which are at an energy equilibrium.

1 A glider as an emergent phenomenon illustrates that the number

of micro phenomena required to produce what are considered
emergent macro phenomenon need not be orders of magnitude
larger than the number of macro phenomena

2 This is not the same as Prigogine’s [14] notion of dissipative
structures, which suggests that a system into which energy is
pumped at a moderate level will (almost inevitably) form
structures to dissipate that energy. Our conception is that of a
non-inevitable process that perpetuates itself by extracting
energy from its environment.

Unfortunately we do not know how to build computer models in
which the fundamental elements are far-from-equilibrium systems.

(For a longer discussion of the distinction between entities that
are at equilibrium and those that are far from equilibrium see
Abbott [1].)

For an entity to be far-from-equilibrium requires that it is not
static, i.e., something is happening to keep it stable even though it
is not at an equilibrium state. Thus far-from-equilibrium systems
are best understood as processes. A hurricane and a river (both of
which are discussed below) are nice examples of non-biological
but self-perpetuating far-from-equilibrium systems. They are not
the particular molecules of air and water of which they are
composed at any one time. (You can step into the same river
twice; it just won’t have the same water in it each time.) Thus
both are better understood as processes than as things. Like rivers
and hurricanes, biological entities are also self-perpetuating far
from equilibrium processes—but much more complex.

1.3 How do Entities Depend on and Interact
with their Environments?
What does fitness really mean? How does evolution really work?

Most evolutionary computational models depend either on fitness
functions or on “health” or “energy” tokens as in computer games.
That just won’t do. Fitness is not a measure of an entity’s
conformance to an ideal, a measure of its internal bank account,
or, in our opinion, a measure of its reproductive success—which
is a consequence of fitness rather than a measure of it. In our view
fitness of an entity (at least a far-from-equilibrium entity) to an
environment refers to the entity’s ability to acquire and use the
resources available in that environment to sustain and perpetuate
its life processes.3

Process entities (i.e., far-from-equilibrium systems) extract and
use energy and resources from their environment to run the
processes through which they perpetuate themselves. Fitness is
the ability to do this. Yet until we are able to build reasonable
models of the processes that sustain process entities, we will not
be able to build models of how these process entities depend on
their environments and of how changes to their processes or their
environments cause their processes either to fail or to be more
successful. When we ask our biologist friends if there is a book
like Bacteria Maintenance for Dummies: what to do when your
pet bacterium breaks that will tell us how the simplest biological
entities perpetuate themselves, we are told there is none. The same
is true, although to a lesser extent, of social entities.

A nice illustration of why it is important to be able to work with
entities as processes is the challenge of modeling a biological
arms race. Other than Tierra (see Ray [15]) and its successors,
which seem to lack the richness to get very far off the ground, as
far as we know, there are no good computer simulations of
biological arms races. We believe that the reason for this is that a

3 Fitness of an entity at equilibrium, e.g., an atom, may be framed

similarly. Such at-equilibrium entities depend for their self-
perpetuation on the availability in the environment of the
processes whereby virtual particles, i.e., the carriers of
elementary forces, hold the entity together. Apparently these
resources are always available.

biological arm race consists of a sequence of creative
interventions in the processes of the combatants, i.e., attempts by
the two sides either to exploit or to gum up the other side’s
processes. Since we don’t know how to model processes except
on an ad hoc case-by-case basis, we don’t know how to build
generic models in which interventions in and evolutionary
changes to such processes may succeed or fail.4

Besides the fact that biological processes are very complex,
another reason we have difficulty modeling them is that they span
the range of physical, chemical, and biological phenomena.
Geckos climb walls by exploiting the VanderWaals force, an
obscure quantum physics effect, and biological arms races rely on
effects at multiple levels. How can we possibly model biological
systems if we don’t know which fundamental physical forces we
can safely leave out of our models? How can we build models that
will yield surprising results if the surprise is often in which feature
of the world was exploited to produce the surprise? We are in
deep trouble if we have to build models that include all of physics
and chemistry before they can be expected to yield significant
results that weren’t built into them.

1.4 Preview
The rest of this paper discuss these issues in more detail.
Although we present some suggestions about how to deal with the
issues raised, we do not claim to offer complete solutions. Rather,
we are attempting to identify and clarify some of the problems and
to outline a perspective in terms of which solutions might be
developed. Section 2 explores the importance of grounding
computation in real world processes. Section 3 looks at what
fitness in a world of processes means. Section 4 discusses
emergence and the problem of incorporating emergent phenomena
back into our computational models.

2. NIHIL EX NIHILO: HOW COMPUTER
SCIENCE ORIGINATED THE PROBLEM,
AND HOW IT HAS PERPETUATED IT
Nothing operates for free: nihil ex nihilo. One can’t get a
computational process from nothing. To run a computer program
(or any computation) in the real world one needs a process
powered by a source of energy.

Yet in computer science we typically assume that we can create
abstract computational devices or processes from nothing. We
say: let T = <…> be a Turing Machine, or let F = <…> be a finite
automaton, or let P = … be a computer program. We then proceed
to analyze how that Turing Machine, finite automaton, or
computer program would operate.

In other words, we in computer science allow ourselves to
presume that we can postulate the existence of fully powered
processes such as the Turing Machine—that all we have to do is
specify how a particular Turing Machine will operate, and we will
have one that operates that way.

4 Genetic programming would seem like a good starting point for

investigating this sort of competition, but we have not found
any work in this area.

2.1 Computing as Stigmergy, an Emergent
Process
Turing Machines are fine for analyzing computability, but when
we use them as our basic framework for thinking about
fundamental real world computational issues we ignore the fact
that in reality a computation exists only if there is some energy-
driven process that is doing the computing. In the real world, such
computing processes are typically provided by the operation of a
general purpose computer. Familiar as it is, it is worth looking
briefly at how a general purpose computer creates a computation
or what might be considered acomputation..

In simplest terms, a general purpose computer is simply a device
that executes individual (machine) instructions, one after another.
There are only a finite number of operations5 that a general
purpose computer is capable of performing, and each one is
generally quite simple. The instruction execution cycle repeats its
simple process over and over: fetch an instruction; execute it;
fetch another instruction; execute it; etc.

A computation (or algorithm execution) results when a sequence
of instructions is executed. Algorithm executions are not built into
the computer. They are emergent phenomena in much the same
way that a glider is an emergent phenomenon in the Game of Life.

In both cases—a glider and an algorithm execution—one has a
simple underlying process—or in the Game of Life a grid of
identical processes. The processes that are built into a Game of
Life grid are defined by the Game of Life rules. The process that
is built into a general purpose computer is its instruction
execution cycle. Depending on the instructions that the instruction
execution cycle encounters, one or another algorithm execution
may emerge—just as given the states of the grid cell states that a
Game of Life run may encounter, one or another pattern (such as a
glider) may emerge.

What’s important about this is that in both cases new (emergent)
phenomena (either an algorithm execution or a glider) result when
existing processes encounter elements in their environments.

The phenomenon of controlling a process by changing the
environment in which it operates has been referred to in a
computational biology context as stigmergy–think ant foraging
pheromones. (See, for example, Bonabeau [7].) Although one
typically doesn’t think of the program that one loads into a
computer in the same way that one thinks of markers left in a
biological environment, they are quite similar.

• A computer’s CPU (the process) is to the computer’s
memory (the environment) as

5 If one counts the address field as part of an instruction, and if

one wants to ignore the fact that a general purpose computer
has finite memory, then one might argue that there are an
infinite number of instructions. But no matter how one thinks
about memory issues there are still only a finite number of
operations. A Turing Machine might be a clearer example of
this point in that it has only a finite number of states, a finite
number of symbols it is capable of reading and writing, and a
finite number of direction in which it is capable of moving.

• A Turing Machine’s head and finite state machine (the
process) is to its tape (the environment) as

• The Game of Life Rules (the process) are to the Game of Life
Grid cells (the environment) as

• Ant-colony agents (the process) are to their geographic and
pheromone-bearing environment.

In all of these cases, simple processes are shaped by what they
find in their environments. By controlling the environment, one
can “program” the process.

2.2 Process Programming
We believe that this model—a model in which new processes
(such as gliders and algorithm executions) emerge as the
environment shapes existing processes—is not only fundamental
to computing but that it reflects how the world actually works. We
also believe that computer science has done itself (and the
disciplines that use its insights) a disservice by not paying more
attention to this model.

To illustrate further it is worth noting that a computer’s
instruction execution cycle may itself be understood as an
emergent phenomenon that results when a lower level process is
shaped by what it finds in its environment. When building a
general purpose computer, computer engineers make use of a pre-
existing source of energy in the form of an electrical voltage—or
when conceptualized as a process, a flow of electrons. By shaping
the environment in which those electrons flow, computer
engineers build a framework within which the instruction
execution cycle emerges.

Like the Game of Life, whose rules know nothing about gliders,
and like the instruction execution cycle, which knows nothing
about algorithm executions, the physical laws that control how
electrons flow through wires and gates know nothing about
computer instructions. But through the clever manipulation of the
environment through which electrons flow, computer engineers
use the process of electron flows to create an instruction execution
cycle process. Like gliders, which are emergent phenomena of the
processes that operate in Game of Life cells, and like algorithm
executions, which are emergent phenomena of the instruction
execution cycle, the instruction execution cycle is itself an
emergent phenomenon of an underlying electron flow process.

We believe that the most appropriate model for computing (and
for many other physical phenomena) is one in which processes are
built up in the manner illustrated above. A model such as this
starts with existing fully powered processes (not with nothing)
and builds processes on top of them.6

6 Speculatively, one might be able to build such a model in

which the most primitive processes are those in which virtual
particles implement the fundamental forces of physics. All
other processes would then appear as emergent phenomena that
come into existence as previously existing processes are shaped
by their environments. Of course, it’s not all that simple. For
example, it’s not clear what the primitive environment is that
shapes the primitive processes as they encounter it.

2.3 Programming as Emergence
Emergence is what happens when existing (computational and
non-computational) processes are shaped by their environments.
The Game of Life is simply a grid of ongoing processes. The rules
governing how those processes operate are given; we cannot
change what makes Game of Life grid cells turn on and off. But
clever (or lucky) hackers that we are, we have discovered that
particular configurations of grid cell states result in a glider.

When you think about it, this is quite amazing—so amazing that
as we indicated above, Bedau uses the glider as his prototypical
example of emergence. Gliders seem amazing because there is
nothing in the Game of Life rules that mentions patterns of cell
state configurations that travel across unbounded areas of the grid.
Yet there is a menagerie of such Game of Life patterns. And as we
know (see, for example, Rendell [15]), it is even possible to use
such Game of Life patterns to simulate a Turing Machine.

Wolfram [21] uses the same sort of thinking, i.e., setting up
conditions that affect how an underlying process will proceed, in
his tour de force demonstration that a 1-dimensional cellular
automaton (CA) running what he calls rule 110 is universal.

Although these computational capabilities seem startling at first
glace, when viewed from the perspective of a programmer, neither
the glider nor the use of a rule 110 CA for universal computation
is all that astonishing. A glider is simple enough. Turn on the
right cells within a Game of Life grid, and one gets a glider. And
once we know how to use Game of Life processes to produce
gliders, we can use those gliders to do computations.7 One can
even build a library of Game of Life patterns with an API.8

Since we as computer scientists do this sort of programming for
our living we tend to take emergence like this—although not by
that name—for granted. We take it so much for granted that in its
standard guises, we don’t even think of it as emergence. Levels of
abstraction, functional stacks, and layered hierarchies are
emergence in practice and seem commonplace. In fact, any
executing computer program is an emergent phenomenon. Yet
since we build them every day, we find them unremarkable. (We
may find them involving, charming, entrancing, clever, sometimes
beautiful, and perhaps even addicting, but rarely remarkable.)

One might generalize this observation and say that any (creative)
product that has properties that its components lack is an
emergent phenomenon.9 Many human disciplines (the creative
arts, engineering, computer science) train their practitioners in
emergence. Consequently, we as a society tend to take emergence

7 It is worth noting that there is no glider algorithm: gliders are

not the consequence of a traditional computer program, i.e., a
sequence of instructions, that explicitly generates them. They
result when Game of Life processes are shaped by their
environment.

8 In doing so, one must take into consideration the details of how
the patterns interact, i.e., exactly which pattern cells run into
which other pattern cells when two patterns interact. The
impossibility of ever fully escaping from lowest level
considerations is a continuing theme of this paper.

9 Having properties that its components lack is our definition of
emergence in Abbott [1].

that results from human activity as relatively commonplace. It is
only emergence in nature, emergence that seems to be unplanned,
that we find mysterious. 10

Yet planned or unplanned, the phenomenon is the same:
emergence occurs through the shaping of existing processes to
create something new—and often new in a way that one would
typically not predict by looking at the underlying processes.

We suggest that it is the unpredictable and contingent nature of
emergence that Philip Anderson had in mind when in a landmark
paper [4], he contrasted reductionism11 with what he calls the
constructionist hypothesis (that the “ability to reduce everything
to simple fundamental laws … implies the ability to start from
those laws and reconstruct the universe”), with which he
disagrees. He argued that

��� ����� ��	���
�� �
�������� ��������� ��� � �
������ � ������ �� �� ����

��������������� ������� ��
� � ���� ��������� ��� ������
��
� ��� ����������������

� ������ ���� ����������� �������� �
�� ����� � ������� ��� ��	��� �� � ��
� ��� ����

��� � �
�������� ������������	����������������������������� ��� ��
��! �� �����

����� ��� ������� ��� ��
���� ����� �
�
� � ������� �
�
� � �� �� ���
�
� � �

�
������ ������� ��" � ������ �����������!
�� ��
������������� ���������� � ���� �

#$� � �� ����! � �� ������� ���%� ��� ����� � ����� ��������� ��� � ��� � � �
����� �

��! � � �������& ���
�� ���� ����� � ����� �� ' � ���
�
� �� �� � �
�� ����! �

� �
�
� � ��
�� �� � � �
�
� ������! ������� ��������(���� �
���� ��
��� ��
��

�����
��������� � ��	����! �����������
������� � ��
����� ����� ��

3. FITNESS
If our world is a world primarily of processes (rather than of
things), a central question is what keeps the processes running.
Clearly the answer is that processes operate only when they have
access to sufficient energy and materials to maintain themselves.
Our basic model then is of a world of process entities (not
necessarily biological) that must “consume” (in some loose
general sense) energy and materials that they find in their
environment in order to sustain and perpetuate themselves.

A relatively simple (and non-biological) real-world example of a
self-sustaining process that depends on energy and materials that
it extracts from the environment is a hurricane. Air and water
vapor flow through a hurricane, which persists only as long as it
can extract sufficient energy and materials from its environment.
Here is a description [12] of how hurricanes work.

10 Since at the pattern level, the Game of Life is Turing complete,

it is only partially decidable whether a given pattern will appear
when the Game of Life is started from a particular configuration
of grid cells. The property of being partially but not totally
decidable fits quite well with one of the commonly accepted
informal properties of emergence, namely that a phenomenon is
emergent if there is no simpler way to determine if it will
appear than to run the system in which it may appear and see
what happens.

11 Anderson defined reductionism, which he accepts, as the
assumption that the “workings of all the animate and inanimate
matter of which we have any detailed knowledge are all …
controlled by the same set of fundamental laws [of physics]. …
[W]e must all start with reductionism, which I fully accept.”

As [warm moisture-laden surface air] rises, it expands and cools
triggering … condensation, [which results in] the release of …
latent heat, and an … increase in buoyancy, thus allowing more
air to rise. A chain reaction (or feedback mechanism) is now in
progress, as the rising temperatures in the center of the storm
cause surface pressures to lower even more. Lower surface
pressures encourage a more rapid inflow of air at the surface,
more thunderstorms, more heat, lower surface pressure, stronger
winds, and so on.

Meanwhile air pressures near the top of the storm, in response to
the latent heat warming, … rise. In response to higher pressures
aloft, air begins to flow outward (diverge) around the top of the
center of the cyclone. Analogous to a chimney, this upper-level
area of high pressure vents the tropical system, preventing the air
converging at the surface from piling up around the center. [See
Figure 1.]

Figure 1. Anatomy of a hurricane

As this description indicates, the environmental resources upon
which hurricanes depend are (a) the energy that transfers
(b) moisture from the ocean to the relatively warm (c) surface air
(which is pumped upward) and (d) the continual dispersal of heat
in the upper atmosphere so that the heat generated by
condensation does not overly warm the condensation area. With
these environmental conditions in place, hurricanes can perpetuate
themselves indefinitely.12

Although one should not make too much of this, it is worth noting
that like a biological system a hurricane generates heat
internally—although interestingly enough, heat generation occurs
in the upper atmosphere which is where condensation takes place.
A hurricane is a form of heat engine. But unlike heat engines that
we build as human artifacts, a hurricane is self-organizing and
self-perpetuating; no external maintenance is required. Although
hurricanes generate heat by condensation rather than by oxidation,
they take in moist air as an energy resource and expel dryer air as
a waste product.

Hurricanes persist as long as the environments within which they
find themselves continue to provide the needed resources. One
might talk about the fitness of a hurricane to its environment as
the degree to which the environment supplies those resources.
When a hurricane moves out of an environment that suits it, e.g.,
to one with a cooler ocean surface or over land, it is no longer
able to sustain its internal process, and it dies. This is quite similar
to our sense of the fitness of an organism to its environment.

12 Would that we had similarly comprehensive descriptions of

how (even simple) biological organisms perpetuate themselves.

Of course hurricanes don’t have a mutable genetic code—
obviously they don’t have a genetic code at all—and hurricanes
don’t reproduce. So hurricanes don’t evolve. But in the sense in
which one can speak about the fitness of a hurricane to its
environment, hurricanes are quite like other entities that find
themselves in an environment for which one can say they are
more or less fit.

When viewed on a longer time scale, hurricanes are historical and
contingent elements of the world. To the extent that the
environment supports them, there will be hurricanes. If the
environment did not support them, they would not exist. And just
as there are biological species that depend on forest fires, there are
(presumably) species that depend on hurricanes for their
existence—although as non-biologists, we don’t know what they
are. Thus hurricanes form part of an ecosystem; they create a
niche within which other elements of the ecosystem live. As
contingent historical entities, hurricanes may be said to play a role
in evolutionary history similar to that played by a biological
species.

Without making too much of it, we are stressing the similarity
between hurricanes and biological entities as a way of pointing
out that the concept of fitness that we are urging is one that
applies to any self-perpetuating process, biological or not.

The fitness (or lack thereof) of an entity to its environment is a
fundamental feature of evolutionary biology. Yet fitness cannot be
modeled in real terms unless one is able to model how an entity
depends on and makes use of the resources in its environment. We
argue that entities are fundamentally processes that depend on
their environment for the energy that powers them and for the
materials that they use to structure and organize themselves. If we
don’t model entities as processes and if we don’t model how those
processes depend on their environments, we will not be successful
in modeling important evolutionary aspects of the world.

Populations evolve when they find new ways of extracting and
exploiting the energy and materials they find in their environment,
i.e., when they generate more clever processes. From the
perspective in which it is primarily processes rather than
structures that evolve, evolution isn’t so much a blind watchmaker
as a blind programmer, one that generates processes that are
suited to their environments.

4. THE REALITY OF EMERGENT
EPIPHENOMENA
There is a fundamental difference between how newly developed
computer programs function in the world and how emergent
phenomena in our computer models fail to function in those
model environments.

As we said above, every new computer program is an emergent
phenomenon. Yet once deployed, new computer programs take
their place in the world and function just like everything else.
Once one writes and deploys a piece of software, there it is, as
much a part of one’s world as anything else.

The same is not true of emergent phenomena in our computer
models. Consider a glider again. Gliders do not participate in a
Game of Life simulation at the same level as the rules of the Game
of Life. We as programmers can make use of gliders, but gliders
don’t enter the realm of a Game of Life simulation in anything

like the way that newly written and deployed computer programs
enter the realm of processes that users experience.

The same, as we said earlier, is true of “boids” and virtually every
other phenomenon that we take as emergent within a computer-
implemented model. These emergent phenomenon do not re-enter
the simulation from which they emerged as operational elements.
We as outside observers may see phenomena emerge, but
elements within the simulation don’t.

An important issue involves the ways in which elements of a
simulation interact with each other. In most simulations, elements
interact with each other according to rules that are built into the
simulation. But when a new type of element emerges, there are no
rules for how other elements are to interact with it. Consequently,
the elements built-into a simulation can’t and don’t interact with
emergent phenomena in terms of rules. Nor do emergent
phenomena interact with each other in terms of rules. As a result,
emergent phenomena tend to retain their epiphenomenal and
shadowy quality: they are there, but not really.

This will remain the case until we develop systems that can
recognize emergent phenomena as they emerge, incorporate them
into the system as new element types, and generate (or identify)
rules for how they interact with each other and with previously
existing element types.. Until then, emergent phenomena in
computer simulations remain ideational; they exist primarily
(only?) in the minds of the observers. Our computer models don’t
include rules for how those phenomena interact either with each
other or with elements that were built into the models originally.
Yet since our models do contain rules for how their primitive
elements interact, emergent phenomena always exist as second
class citizens, observable to those of us outside our models, but
invisible to anything within the models, even to themselves and to
each other.

4.1 Phenomena and Epiphenomena
In this subsection, we step back a bit and discuss the distinction
between the terms phenomena and epiphenomena. We also
discuss some of the implications of that distinction.

A good place to start is with Kant [10], who coined the term
noumena to refer to the thing in itself, i.e., reality as it is and
independent of our perception or understanding of it.

One step away from the noumena, the term phenomena may be
understood to refer to aspects of reality that we are able to capture
within our perceptual or conceptual framework, i.e., anything that
we can apprehend using human perception, understanding, or the
tools of science.

One of the issues that we are raising in this paper is the difficulty
(perhaps impossibility) of establishing a phenomenological (or
ontological) framework that will be satisfactory for what one
wants to model, i.e., the gecko problem. It may be that no
phenomenological framework is satisfactory for modeling all
biological phenomena. It may also be that we will never construct
a phenomenological framework that captures all of the noumena.

The term epiphenomena is best understood as referring to aspects
of phenomena. Epiphenomena are often referred to as secondary.
For example, The American Heritage Dictionary [3] definition of
epiphenomenon reads as follows.

��� ��
�! �������
���
���������� � ��� ���
����! ����
������ ���
������

��������	���
� ��� �
� ����	�� ��	��� ��� ��
��� ������ ��� 	
����� ��� �� 	
�

����
��
�
�����	��� ����
����
���� �����
�����	����������

The term by-product is also frequently used when defining
epiphenomenon. But by-product is used not to refer to a
consequence of some other phenomenon but to refer to some
other way of apprehending or perceiving the phenomenon.

Epiphenomena are typically understood to add no causal power to
exiting phenomena. Gliders may be said to be epiphenomena of
the Game of Life rules: they appear as a by-product or secondary
consequence of the operation of those rules. (The primary
consequence is simply the switching on and off of the grid cells.)

The behavior and properties of gliders are totally explicable in
terms of the Game of Life rules, i.e., gliders may be explained
reductively in terms of the Game of Life rules. Furthermore,
gliders have no causal power within the Game of Life. Their
existence has absolutely no effect on how the rules operate or on
what results the rules produce, i.e., which cells will be switched
on or off. A Game of Life run will turn out exactly the same
whether one notices the gliders or not. In some sense, then,
epiphenomena such as gliders are entirely ideational.13

This brings us to another issue: the apparent concreteness of
epiphenomena in the real world. Although epiphenomena can be
explicated in reductionist terms, in the world as we know it they
tend to fold themselves back into the world and to add something
real and new. As mentioned above, although gliders are
epiphenomena of the Game of Life rules, they can also be used to
do real computations, i.e., to simulate a Turing Machine. One can
even create what might be called a programming library of Game
of Life patterns which includes descriptions of how the patterns
interact with each other. When treated in this way, patterns, which
originate as epiphenomena of Game of Life rules, take on a
concreteness that allows us to treat them as real objects—objects
that interact with each other in terms of well-defined interfaces.

A strict reductionist might argue that Game of Life patterns are
illusory nonetheless. After all, the Game of Life consists of
nothing but a grid of cells that blink on and off. There is no such
thing as a glider. At best, gliders are conceptual conveniences and
mental shortcuts.

But that same argument could be applied to virtually everything in
our daily lives. Moreover, to relegate everything to the land of
illusion is to give up on the possibility of understanding
relationships among these illusions—unless the term illusionary
loses its meaning. Unless we want to forgo the possibility of
understanding the world in terms of objects that we recognize,
i.e., as something more than a collection of quarks or strings or
branes, epiphenomena must be understood as having a
concreteness that allows us to talk about them and their inter-
relationships.

This issue was explored nearly forty years ago by Sperry [18]
when he asked how, if one limits oneself strictly to fundamental
physical phenomena, would one explain the trajectory of a

13 A philosophical term used for this sort of situation is

supervenience. Gliders and other Game of Life patterns
supervene over the Game of Life rules. For a nice discussion of
supervenience and emergence see Seager [17].

molecule on the rim of a wheel (a non- fundamental entity) as it
rolls downhill. An explanation in terms of fundamental forces—
which would have to include a description of how the wheel holds
itself together—would be extraordinarily complex at best.

Even more interesting might be the same question but with the
rolling wheel replaced by the toenail of a fox as it chases a rabbit.
What would an explanation of that trajectory look like when
expressed in terms of fundamental physical forces?

Or consider asking for an explanation, also in terms of
fundamental physical forces, of the fact that a small black dot
appears at the end of this sentence (whatever sentence means)—
and that it does so in all copies (whatever copies means) of this
paper (whatever this paper means)—either in print or on a
computer screen and however it is formatted, e.g., one column or
two, using Times Roman or Arial font, etc.. These identical dots
are certainly not due to quantum entanglement.

Even if one had explanations of these phenomena in terms of
fundamental physical forces, of what good would they be? They
certainly wouldn’t illuminate in any useful way the phenomena
being explained.

4.2 Entities
The approach that we proposed in Abbott [1] for dealing with this
problem is to focus on entities. We tend to see the world in terms
of entities. The question is: when is it reasonable to say that some
aspect of the world is an entity—rather than, for example, simply
a collection of (lower level) components. As we said earlier, our
solution was to establish as a criterion for an entity that there be a
property (a) that applies to the putative entity and not to its
components and (b) that depends on the forces that hold the
putative entity together. This seems to work well both for low-
level physical entities at an energy equilibrium and for far-from-
equilibrium entities.

Another way of approaching the question of when to recognize
the existence of an entity is to say that an entity exists when one
can draw a boundary within which a reduced entropy level is
maintained. Again, this works well for fundamental physical
entities such as atoms and molecules. In these cases, entropy is
reduced and remains reduced as a result of an energy equilibrium.
It also works well for far-from-equilibrium systems in which the
process through which the system perpetuates itself, although one
that uses external sources of energy, keeps the internal entropy
lower than that of the environment. This approach even works
well for man-made artifacts—although the process that maintains
the reduced level of entropy, i.e., “maintenance,” is applied from
the outside, i.e., it is extrinsic to the entity rather than intrinsic as
in the other cases.

One might use this approach to define an entity as a self-
perpetuating reduction in entropy and emergence as the
appearance of a persistent identifiable process that maintains a
reduction in entropy relative to its environment. The question this
raises is whether it is possible in general to identify situations that
lead emergence or to entity formation.

At this point it is not yet clear how to apply the notion of entropy
to processes. The obvious notion is that the processes should be
required to reduce entropy. How should this be extended to a
Game of Life glider? Certainly a glider is a low-entropy pattern in

a Game of Life run. But we don’t know how to say that in better
terms.14 Another approach would be to use algorithmic
information theory Chaitin [8] to show that a process is a shorter
way of expressing information about a pattern than the pattern
itself.

4.3 What Makes a Good Explanation?
In this section we step back from the question of what is real and
focus on what terms we want to use to explain the world to
ourselves. If we are to understand the world, explications of its
functioning must be given in terms that we can use to build
intuition, insight, and understanding. And to provide such an
explanation means to provide an explanation in terms of the
relevant ontological entities.15

Quantum theory notwithstanding, and whether one agrees with
our particular criteria for entities, it seems essential to focus on
epiphenomenal entities as a way of avoiding the constructionist
hypothesis. Without higher level entities , the only elements
among which one can define relationships are the most primitive
elements of physics. When one works with higher level entities,
one at least gives oneself the possibility of describing interactions
at those higher levels.16

A strict reductionist might still argue that no matter which entities
one certifies, it is still all quarks (or strings or branes) underneath.
A Game of Life configured to simulate a Turing Machine is still
doing no more than (just) running the Game of Life rules.

That is true. Denial of constructionism is not denial of
reductionism. Denial of constructionism is simply the stance that
one cannot fully understand (in terms that we take as useful)
higher level interactions by looking only at lowest level
phenomena. Once higher level entities appear in the world, they
add their own logic to how the world operates, a logic that can’t
be explicated strictly in lowest level terms. And if one wants to
understand (which is the premise of this section) the higher level
functioning of a system, one must think about that system in terms
of higher level entities, whether or not those entities supervene
over or are epiphenomenal over some lower level.

Imagine running a complex computer simulation that displays its
progress by means of an ongoing screen animation. Then imagine
that someone asks for an explanation of that animation. Suppose
that one claimed to provide such an explanation by offering a
detailed description of electron flows within the computer and

14 The term edge of chaos has been used for similar phenomena.

A Google search of “edge of chaos” entropy returns more than
6,000 references.

15 Quantum theory suggests this is not quite true. Quantum theory
offers a way to compute predictions that are amazingly accurate
even though no one seems able to develop an intuitive
conceptualization of what quantum theory means. As Richard
Feynman famously said, “I think I can safely say that nobody
understands quantum mechanics.” [8]

16 One might argue that this is setting up a straw man, that
reductionist explanations typically attempt to explain one
phenomenological level in terms of the next lower level, e.g.,
explain biology in terms of chemistry. But if each level can be
so explained, all one is eventually left with is the stuff at the
lowest level.

phosphor excitation states on the screen. Although such an
description would be a complete explanation of how the system
functions, it obviously would not be satisfactory. No insight or
understanding is provided when one explains a computer
animation in terms of electrons flows and phosphor excitation
states.

What makes a good explanation? Suppose that we are Game of
Life “naturalists” who are examining various specimens of Game
of Life runs found “in the wild.” We do not know what the Game
of Life rules are. Some of the Game of Life executions include
gliders, which we find fascinating because they seem to traverse
the Game of Life grid. How can all this be explained?

As good scientists, one approach we take will certainly be to take
apart one of our Game of Life specimens and see if we can figure
out how it operates. After considerable analysis, we deduce the
Game of Life rules. This certainly is a significant accomplishment,
and we are justly proud to publish our findings. We are especially
happy that we can show that whenever any of a particular set of
grid cell configurations occurs, a glider will follow.

Is that the end? No. One of our specimens is a Game of Life
execution that is simulating a Turing Machine. As a result of our
analysis we can explain every step in that Game of Life execution.
What we can’t explain is why this Game of Life run is doing what
we see, which seems somehow unusually orderly. The Game of
Life rules that we discovered can’t tell us that some curious
teenage hacker had set up that run because he wanted to
demonstrate that the Game of Life could simulate a Turing
Machine. Our analysis can’t tell us that the gliders were
established in the position where we found them because our
teenager knew how gliders and other patterns interact. In other
words, what is missing from our explanation is an explanation of
how that particular Game of Life execution works at the level at
which it was designed. And without that level of explanation, we
are missing an essential element in our understanding of that and
presumably other Game of Life runs.

Does that sound too teleological, that what we claim is missing
from our explanation is a goal-based description of our entity? In
this case, we are presuming a designer/programmer, and we are
presuming that the designer/programmer had an intent, i.e.., to
simulate a Turing Machine. So not understanding that intent or
how it might be realized in a Game of Life run is a major hole in
our understanding of our Game of Life specimens.

But evolution is also a designer/programmer, albeit a blind one,
and although intent is not the right word, designs survive (both in
“the wild” and in society) if they work. An explanation of how an
entity functions without an explanation at a relevant level of how
its design works is simply incomplete.

Those of us who have taught computer programming have
encountered a similar problem when we talk about software
documentation. What is it that one documents when one
documents software? Consider the following instance of a familiar
software idiom.

temp := x;
x := y;
y := temp;

A comment such as the following is clearly not satisfactory
documentation.

// Store x in temp.

// Then assign y to x and temp to y.

Not only does this comment not tell us anything that is not already
visible in the code, it doesn’t tell us anything about why the code
is doing what it does. Obviously what we want is something like
the following.

// Exchange x and y.

Why do we want to know this? The exchange of x and y is the
epiphenomenal effect of the three lines of code, a phenomenon
that requires all three lines of code to occur. Although it is
epiphenomenal—x and y will be exchanged whether a comment
says so or not.—we believe that this sort of information is
important when documenting software.

What would be even more important would be a comment such as
the following were code such as this part of a simulation of an
agent-based bartering system.

// In these steps x and y consummate their
// bartering agreement by exchanging assets.

So clearly we think of design at all levels as important in
understanding phenomena. Explanations that don’t explain how
designs function are not adequate.

Does this sound too trivial? Are we saying that a fundamental
question of how to understand the world is comparable to the
question of how to document software? In fact we are. In many
ways software is thinking made concrete. Many of the question
that software developers have had to face are issues that we never
faced squarely until now. These are issues of ontology and
semantics that we have heretofore been able to avoid because we
did not have the tools to externalize our thoughts in anywhere
near the detail that we do now.

Software can be about nearly anything. So determining how to
document software, i.e., how to describe what the software is
about, raises very broad philosophical questions. UML [13] and
OWL [19] are two current (and only partially successful) attempts
to formalize ways of representing knowledge about what software
is about.

There is an even more abstract point to be made. Let’s consider
once again a Game of Life run that uses patterns such as gliders to
simulate a Turing Machine. Consider the following question: can
one prove that such a system simulates a Turing Machine without
using concepts such as gliders?

Presumably each step in the argument that the construction does
simulate a Turing Machine could be restated directly in terms of
Game of Life rules and grid cells. After all, nothing is really
happening other than the application of Game of Life rules. But
what would such a restatement look like? What would the
restatement be able to claim is being done?

To prove Turing universality, one must define a mapping from a
Game of Life process to a Turing Machine and then demonstrate
that when the action of the Game of Life grid cells are understood
in terms of the mapping, the result is equivalent to a Turing
Machine computation. This is really no different from speaking in
terms of Game of Life patterns. It just sounds a bit more formal.

The point is that if one wants to prove a connection between a
Game of Life process and a Turing Machine, one is forced to map
one onto the other. Moreover, the concept of a Turing Machine

can’t be avoided since it is that concept that is at the heart of the
proof. Yet once one allows oneself to speak in terms of anything
other than Game of Life grid cells, one is talking about
phenomena that are epiphenomenal to the Game of Life.

So it would seem that unless one allows oneself to think in terms
of epiphenomena, one is very limited in what one can say.
Without operating on the epiphenomenal level one cannot prove
the Turing universality of the Game of Life.

More generally, whenever we want to link abstractions to reality,
we must talk in terms of epiphenomena. Until it is linked to
reality, an abstraction is nothing more than something that goes
on in people’s mind.17 Once we connect an abstract thought to a
real physical process, the thought becomes an epiphenomenon of
the process—assuming that the connection is successful. The
thought is epiphenomenal of the reality because the process does
its thing whether the thought is linked to it or not.

A consequence of this is that if we as human beings are to
understand the world, i.e., to represent the world in terms that
work in our minds, we are forced to work in terms of
epiphenomena. Once we realize this, it would seem that on
grounds of convenience alone and ignoring the issue of the reality
of epiphenomena, we should embrace descriptions of the world,
as long as they are successful, in terms that work best for our
minds, no matter at what level those descriptions are expressed.

4.4 Emergence as a Contingent Historical
Process
A fundamental difference between emergent phenomena in the
real world and emergent phenomena in computer systems is that
computer systems tend to be organized (in fact we pride ourselves
on organizing them) as encapsulated and stratified levels of
abstraction or layered hierarchies. The best way to design (and
once designed to understand) a Game of Life run configured to
simulate a Turing Machine is in terms of layers: the lowest layer is
the Game of Life rules running on a grid; the next layer is the
library of patterns that a Game of Life run is capable of
producing; the highest layer is the Turing Machine that is built
using these patterns.18

The real world is not organized into disjoint and stratified layers.
There is only one real world, and it is not a layer cake of
independent worlds joined together by dabs of interface filling
and icing. Emergence is the result of the combining, selecting, and
shaping existing processes by the environment to build new

17 In saying this we are deliberately sidestepping the problem of

what we mean by consciousness and conscious though. We are
assuming that subjective experience, i.e., qualia, thoughts, etc.,
comprise an area that we don’t yet know how to explicate. We
are also assuming that a concept in the mind, whatever that
means, is not the same as the referent, if any, of that concept.
Unless one is a thoroughgoing Platonist, some concepts don’t
have real-world referents. Other than more concepts, what is
the referent of the concept Turing universality?

18 Many software systems are not as hierarchical as we tell
ourselves. We use class libraries, but the classes in these
libraries are not strictly stratified. In our Turing Machine
example, there may be a Turing Machine pattern that takes its
place in the library along with the glider pattern.

processes. These new processes then become part of the world
and are available, along with everything, else to be combined and
shaped into even newer processes. Because all this activity occurs
(a) in an integrated world of interacting phenomena and (b) as a
result of what are often arbitrarily circumstantial environmental
factors, and because these processes occur in time, i.e., as some
sequence of events, emergence is necessarily a contingent
historical process.

How processes will be shaped, how they will combine, which new
ones will emerge, and which will survive, all depend on both
accidents of the environment and the creativity of (intentional or
blind) programmers. Since emergence is a consequence of how
processes interact with their environment, since some processes
are fundamentally probabilistic (as well as chaotic), and since the
environment itself includes previously formed processes, there is a
contingent and historical quality to emergence that cannot be
avoided by appeals to reductionism. Emergence is a forward-
looking process in which entities, having emerged, take their
place in the world that begot them, and in so doing change that
world. In other words, the very ontological nature of the world is
contingent and historical rather than structured and hierarchical.

We rely on this process of creative emergence as we build
increasingly sophisticated software systems—and, in fact, as we
build an increasingly sophisticated society.19 Would that we could
model it in a simulated environment.20

4.5 A River as an Emergent Phenomenon
We would like to end with an interesting (although perhaps
somewhat more difficult) real-world example of an emergent
phenomenon: a river. If one looks at the fundamental laws of
chemistry and physics, there is no such thing as a river—just as
there is no such thing as a hurricane. Rivers come to exist as an
emergent epiphenomenon of the force of gravity operating on a
continually renewed supply of water within the river’s drainage
area. A river is just a continually re-supplied downhill flow of
water molecules. If one applies the laws of physics to the basic
geological and weather features of the planet, rivers will
presumably be among the phenomena that emerge. The key point,
however, is that from this perspective a river is not a thing, it is
water molecules in motion. As a persistent feature of the world, a
river is epiphenomenal

But from the perspective of its biological inhabitants, a river is a
persistent feature of the environment. As far as these creatures are
concerned, the river persists—even though at any given moment
different water molecules are flowing through it.

19 A nice example of a social process building on other processes

is the emergence of a market for virtual resources in online
games. (See, for example, BBC [5].) Apparently companies
have established businesses in which low-wage teenagers play
games and earn resources that are then sold on eBay.

20 The closest we have come is genetic programming. But under
that paradigm evolution takes place outside the operational
environment; programs do not evolve within the environment
within which they function. Another concern with genetic
programming is its reliance on fitness functions rather than on
the actual capacity of elements to make use of resources in the
environment. (See Abbott [2] for a further discussion of this.)

It is just as true to say that a river persists even though the water
flowing through it changes as it is to say (a) that a government
persists even though the individuals who hold particular offices in
that government change and (b) that a person persists even though
the materials of which we are made cycle though us. In all three
cases (and many others) it is a process or a collection of processes
that persist, not the particular materials with which the processes
are operating at any particular time. All three examples are
epiphenomena.

Once a river emerges as a persistent if epiphenomenal process, it
is able to support further emergence, e.g., of an ecology within its
flow and along its banks. Elements of that ecology, such as a
beaver dam, may then turn around and change the river itself. It is
in this sense that the status of a river changes from being an
epiphenomenal consequence of more primitive processes to being
a real component of the physical world.

As modelers we are faced with the question of how to allow
epiphenomena such as rivers to insert themselves back into our
computer models. I know of no modeling or simulation system
that allows that. Yet it is clearly a natural and essential aspect of
the world in which we live.

From rivers to software systems to markets to bureaucracies to
nation-states, most of what we think of as essential features of the
world around us consists of epiphenomenal processes. Yet we
experience them as real. How is it that we manage this so easily in
the real world and have so much difficulty with it in simulated
worlds?

5. SUMMARY
Ten years ago Steven Weinberg [20] used the weather as an
example to make the case for what might be called extreme
reductionism.

)�(������! � ���
��� ��	��� ������ �& �� ����������� �������� ���	�� ������ ���

��� !
�� � � ���� � ��
�� ���� � ������� �������� �
�� ���
! ������� � ��! ����
��

��
� ���! ��
�
��*�� �� ������ ���� �
����������! ���� ���+ ������� �& ����! �
�� ���
��

���������, �� � �����
�! ����
���! ��������� ��������
�
��
� ����� 	����� ���

������������
� ���
� ���
�! ���
��� ���! ���� �! ��� �
��� ��- �! � ���
��� ������

�������
��� �����

! �� � �! ���
�����
� ����
��� ��������
����� ���� �� � �����

�
	�! �� � ��������� � ���� ��� �� ��� ����� ����	��
���	���
�� �����	� �����

� 	���� ��	�� 	�� �����	���� �
� �
�
�� ��� ��� ���
������ ��� ���������

. �������
���
��������� ���������
�
�
� �� ���
�+ ������������! ��
�! ���
��� �

��������� ������������� ���� � ��
�������
������ �
��������! �� �����	�
��

��! ��
�
��� ���������� ������������ ������������� ���� � ��
�������������� �

�������� ������! ���� ��� �� � � � �
��� �
�� � �����
	�� �	� �����
	���������

� � �
�� � ��	�� ���� 	��
��� ������ � �
� ��� �� ��� ���� � ���
��� ���

���
� ������ ��/������� �� ��! ! �! ����������� �� ��

Certainly there are no autonomous laws of weather that are
logically independent of the principles of physics. If there were
we would have a case of strong emergence. The question is
whether concepts such as cold fronts and thunderstorms are just
arbitrary though practical constructs, or whether we are justified
in saying that they exist as real entities in the world.

Our view is that it is anti-constructionist—but not anti-
reductionist—to suppose that higher level entities really exist. Our
case has been that entities such as these are real in the same way
that gliders and other patterns in the Game of Life are real. And
just as one can develop a library of Game of Life patterns with a

well-defined API, one can develop a science of thunderstorms and
cold fronts.

Furthermore, without such a science, our understanding of the
weather would be much poorer. To throw out gliders and cold
fronts and simply replace them with lower level explanations is to
deny ourselves a complete understanding of aspects of reality in
much the same way as we would be denying ourselves an
understanding of the functioning of software if we thought about
it only at the level of electrons moving about.

Why is there complexity? Our answer is that complexity exists
because processes, powered by energy from their environment and
shaped by features of that environment, create regions of relative
reduced entropy which then join the environment and serve as the
basis for the formation of additional such processes. Perhaps that
is simply tautologous, or perhaps it is the beginning of an answer.

6. ACKNOWLEDGEMENT
I am grateful for numerous enjoyable and insightful discussions
with Debora Shuger during which many of the ideas in this paper
were developed and refined.

7. REFERENCES
[1] Abbott, R., “Emergence, Entities, Entropy, and Binding

Forces,” The Agent 2004 Conference on: Social Dynamics:
Interaction, Reflexivity and Emergence, Argonne National
Labs and University of Chicago, October 2004. URL as of
4/2005:
http://abbott.calstatela.edu/PapersAndTalks/abbott_agent_20
04.pdf.

[2] Abbott, R., J. Guo, and B. Parviz, "Guided Genetic
Programming," Proc of Sixth International Conference on
Computational Intelligence and Natural Computing,
September 2003; an earlier version is in The 2003
International Conference on Machine Learning; Models,
Technologies and Applications (MLMTA) June 2003. URL
as of 4/2005:
http://abbott.calstatela.edu/PapersAndTalks/Guided Genetic
Programming.pdf.

[3] American Heritage Dictionary of the English Language, 4th
edition, Houghton-Mifflin. 2000. URL as of 11/2004:
http://www.yourdictionary.com/ahd/e/e0180800.html.

[4] Anderson, P.W., “More is Different,” Science, 177 393-396,
1972.

[5] BBC News, “Gamer buys $26,500 virtual land,” BBC News,
Dec. 17, 2004. URL as of 2/2005:
http://news.bbc.co.uk/1/hi/technology/4104731.stm.

[6] Bedau, M.A., “Downward causation and the autonomy of
weak emergence”. Principia 6 (2002): 5-50. URL as of
11/2004: http://www.reed.edu/~mab/papers/principia.pdf.

[7] Bonabeau, E., M. Dorigo, and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems, Oxford
University Press, New York, US, 1999.

[8] Chaitin, G. Algorithmic Information Theory, Cambridge
University Press, 1987 and 2004. URL as of 4/2005:
http://www.cs.umaine.edu/~chaitin/cup.pdf.

[9] Feynman, R. The Character of Physical Laws (The
Messenger Lectures 1964), MIT Press, 1967. URL of excerpt
as of 4/2005:
http://bouman.chem.georgetown.edu/general/feynman.html.

[10] Horgan, T., “Replies to Papers,” Grazer Philosophische
Studien 63 (2002), 303-41. Issue on the philosophy of
Terence Horgan. URL as of 11/2004:
http://dingo.sbs.arizona.edu/~thorgan/papers/Replies.to.Pape
rs.htm.

[11] Kant, E., The Critique of Pure Reason. 1781 and 1787. URL
(translation) as of 3/2005:
http://www.arts.cuhk.edu.hk/Philosophy/Kant/cpr/.

[12] NASA (National Aeronautics and Space Administration),
“Hurricanes: The Greatest Storms on Earth,” Earth
Observatory, 2004. URL as of 3/2005
http://earthobservatory.nasa.gov/ Library/Hurricanes/.

[13] Object Management Group, Unified Modeling Language
(UML), URL as of 4/2005: http://www.uml.org/ - UML2.0

[14] Prigogine, Ilya and Dilip Kondepudi, Modern
Thermodynamics: from Heat Engines to Dissipative
Structures, John Wiley & Sons, N.Y., 1997.

[15] Ray, T. S. “An approach to the synthesis of life,” Artificial
Life II, Santa Fe Institute Studies in the Sciences of
Complexity, vol. XI, Eds. C. Langton, C. Taylor, J. D.
Farmer, & S. Rasmussen, Redwood City, CA: Addison-
Wesley, 371—408, 1991. URL page for Tierra as of 4/2005:
http://www.his.atr.jp/~ray/tierra/.

[16] Rendell, Paul, “Turing Universality in the Game of Life,” in
Adamatzky, Andrew (ed.), Collision-Based Computing,
Springer, 2002. URL as of 4/2005:
http://www.cs.ualberta.ca/~bulitko/F02/papers/rendell.d3.pdf
and
http://www.cs.ualberta.ca/~bulitko/F02/papers/tm_words.pdf

[17] Reynolds, C. W. “Flocks, Herds, and Schools: A Distributed
Behavioral Model,” in Computer Graphics, 21(4)
(SIGGRAPH '87 Conference Proceedings) pages 25-34,
1987. URL as of 3/2005:
http://www.cs.toronto.edu/~dt/siggraph97-course/cwr87/.

[18] Seager, W. “Supervenience and Emergence”, draft. URL as
of 4/2005: http://www.utsc.utoronto.ca/~seager/emsup.pdf.

[19] Sperry, R.W. 1969. "A modified concept of consciousness,"
Psychol. Rev. 76: 532-536.

[20] W3C, OWL Web Ontology Language, URL as of 4/2005:
http://www.w3.org/TR/owl-ref/.

[21] Weinberg, S., “Reductionism Redux,” in Cornwell, J. (ed),
Nature's Imagination: The Frontiers of Scientific Vision,
Oxford University Press, 1995.

[22] Wolfram, S., A New Kind of Science, Wolfram Media, 2002.
URL as of 2/2005:
http://www.wolframscience.com/nksonline/toc.html.

