
Generalized Benchmark Generation for Dynamic
Combinatorial Problems

 Abdunnaser Younes Paul Calamai Otman Basir
Systems Design Engineering

University of Waterloo
Waterloo, On N2L 3G1

Canada
ayounes@engmail.uwaterloo.ca

ABSTRACT
Several general purpose benchmark generators are now available
in the literature. They are convenient tools in dynamic continuous
optimization as they can produce test instances with controllable
features. Yet, a parallel work in dynamic discrete optimization
still lacks.

In constructing benchmarks for dynamic combinatorial problems,
two issues should be addressed: first, test cases that can
effectively test an algorithm ability to adapt can be difficult to
create; second, it might be necessary to optimize several instances
of an NP-hard problem. Hence, this paper proposes a method for
generating benchmarks with known solutions without the need to
re-optimize. Consequently, the method does not suffer the usual
limitations on the problem size or the sequence length.

The paper also proposes a general framework for the generation
of test problems. It aims to unify existing approaches and to form
a basis for designing newer benchmarks. Such a framework can
be more appreciated knowing that combinatorial problems tend to
assume very distinct structures, and hence, relevant benchmarks
are basically too specific to be of interest to the general reader.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – Performance measures;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization – Integer programming.

General Terms
Algorithms, Performance, Design.

Keywords
Dynamic optimization, benchmarks, combinatorial optimization
problems.

1. INTRODUCTION
As a new and still expanding field, dynamic optimization has
many outstanding issues. Some of them are related to the
generation of suitable benchmark problems. In this section, we
give a brief introductory background on benchmarks, and some
issues relevant to the generation of dynamic benchmarks for
combinatorial optimization problems (COPs).

Benchmarks can be defined as standardized test problems
designed to serve as bases for algorithm evaluation and
comparison. The usual reason for running an algorithm on such
problems is to obtain results that are comparable to studies on
other algorithms and hence can attest to the superiority of the
tested algorithm.

Test problems can be basically constructed from two types of
data: randomly generated data, and real-life data. On the one
hand, random data is easy to obtain and analyze and more
importantly enables the drawing of general conclusions about the
algorithm performance. On the other hand, a test problem from
the second source would reflect a particular instance from the
real-world as closely a possible. Thus, it can be used to attest to
algorithm ability to fulfill the cause for which it was designed, i.e.
solving a particular real-world problem. Thus, one would be
inclined to include both types of data in the tests.

 In dynamic optimization, however, a test problem is also
characterized by a particular scenario, which postulates the
sequence of events or environmental changes in the problem.
Thus, if one intends to base a test problem on real life situations,
one would be faced by the difficulty of identifying the instances
that best represent the typical scenario(s). On the other hand, a
general-purpose benchmark generator (BG) such as those
mentioned in the next section would not have such a difficulty.
These BGs use continuous functions with tunable parameters to
produce wide varieties of scenarios. The user, thus, can precisely
pre-determine particular courses of events for the test problems as
deemed appropriate.

However, constructing general BGs for COPs can be more
difficult. First, it might prove to be hard to generate a sequence of
instances that can effectively test the adaptability of an algorithm,
without explicitly solving each instance. Second, as different
combinatorial problems take different structures, their test cases
tend to be too problem specific. Hence the task of generalizing
test problems is expected to be difficult.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO'05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006...$5.00

The current paper aims to address the above mentioned issues. In
the next section, the paper argues in favor of the importance of
general-purpose BGs, as opposed to the use of problem specific
test cases only. The rest of the paper focuses on dynamic COPs:
Section 3 discusses difficulties of generating combinatorial
benchmarks. Section 4 introduces a mapping-based scheme to
generate benchmarks with known optima. Then, Section 5
proposes a general framework that unifies the approaches of
benchmark generation for dynamic COPs.

2. GENERAL-PURPOSE BG’s, ARE THEY
REALLY NEEDED?
The need of having diverse test problems to evaluate and
demonstrate the effectiveness of non-exact algorithms is widely
appreciated. For dynamic optimization, test problems should also
be able to cover wide ranges of environmental changes in order to
pose as credible testers for a certain dynamic solver (DS). This
opinion motivates several researchers [1, 5, 11, and 13] to work
on the introduction of general purpose BGs to generate artificial
dynamic landscapes with controllable features. Grefenstette [5],
for example, specifies a dynamic landscape as a set of
components. Each component consists of a single n-dimensional
Gaussian peak characterized by three time-varying features:
center, amplitude, and width. In a similar work, Branke [1]
suggests a moving peaks function, which is basically a multimodal
function with controllable height, width and center for each peak.
The moving peaks function, however, offers an additional
parameter λ, ranging between 0.0 and 1.0 to quantify “how much
a peak’s change in location depends on its previous move”.
Setting λ to 0.0 makes the peak’s change completely random,
while the other extreme, λ = 1.0, means the peak continues its
shifting in the same direction. More in-depth discussion of the
functions and the resultant landscapes produced by these
generators can be found in [2].

Jin and Sendhoff [7] introduce a computationally efficient method
to generate general dynamic test problems based on concepts
from multi-objective optimization. They construct dynamic single
objective and multi-objective test problems by aggregating
different objectives of a multiple objective optimization problem
and changing the weights dynamically.

Yang [15] uses a different approach to construct dynamic
environments. In stead of explicitly defining time varying
functions, he constructs the dynamic problem by continually
introducing changes to a base stationary problem. He proposed
using an exclusive-or (XOR) operator to introduce changes to a
binary-encoded stationary problem. In [16], Yang and Yao use the
XOR operator to generate a series of dynamic problems from a
randomly generated stationary knapsack problem.
Unlike the examples above, many researchers depend solely on
problem specific benchmarks [2], whereas others further
downplay the usefulness of the general-purpose BGs. For
example, Ursem et al. [14] note that these BGs do not reflect
characteristic dynamics of real-world problems and hence are of
little value for modeling realistic dynamic problems. They also
argue that the use of BGs is pointless once a model is developed
for the fitness landscape. However, one might find the notion that
the typical real-world problem—which is supposed to be highly

complex— can be modeled to the extent that the model alone is
capable of testing the DS seems far fetched.

In this paper, the view is that, ideally any DS should be tested on
randomly generated data in addition to real life data. The
importance of general benchmarks problems, which use randomly
generated instances, is evident in many aspects:

First, randomly generated data can be more effective than real life
data in comparing algorithms. With random data, it is possible to
introduce variations of different degrees to the elements of the
optimization problem individually and in combination, whereas
real life data is often too complex to evaluate easily.

Second, randomly generated data might be the only way to detect
deficiencies (in an algorithm) that are not visible through the real-
world data available at the time of evaluation.

Third, the issue of credibility of the tests suggests that test
problems should be designed as independently as possible from
the DS, and this is best achieved through general BGs; whereas
for example the test case generator suggested in [14] obscures the
line between the BG and DS. More generally, the less involved
the DS designer is in the BG design, the less biased the results are
expected to be and the more credible the DS— especially when it
is largely maintained that techniques used by GAs are based on
intuition.

Fourth, the use of general benchmarks promotes the portability of
the ideas within an algorithm to solve other arbitrarily different
problems. Indeed, the more general the testing problems are, the
wider the applicability of the tested algorithm.

Furthermore, as it is well known that the use of GAs is often
justified by their robustness, it seems unreasonable to confine test
cases of a general algorithm to very problem-specific data.

In summary, the use of problem-specific test cases alone will at
best confine the results of testing to the particular optimization
problem under consideration; at worst, the results cannot even be
generalized to problem instances other than those specifically
used. In any case, problem specific tests do not encourage using
algorithmic in other problems. Yet, most general benchmark
generators available in the literature basically target continuous
optimization. Thus, in their current state, these generators have
little use in discrete optimization, except may be for the few cases
discussed in the next section.

3. BENCHMAK PROBLEMS FOR
DYNAMIC COPs
In this section, we discuss some issues related to the design of
dynamic benchmarks in discrete optimization. First, we note that
combinatorial problems tend to assume very distinct structures
(e.g. vehicle routing versus job shop scheduling). This fact does
not allow the testing of say a scheduling DS on a routing problem.
Consequently, benchmark problems for COPs tend to be very
specific to the application at hand. However, the time-varying
knapsack problem and the dynamic traveling salesman problem
(TSP) might be excluded, since their static counterparts are often
considered representative of various combinatorial problems.
There exist several publications related to such benchmarks. For
instance, Goldberg and Smith [5] use a 17-object knapsack with a
weight capacity oscillating between two values in their

benchmark. Other researchers [8, 9, and 10] increase the number
of objects and make the weight change over several values. The
main idea of dynamism in these benchmarks is to vary the
allowable weight limit with time; which can make the current
optimal solution infeasible if the knapsack capacity is sufficiently
reduced.
More recent publications introduce benchmarks for the dynamic
TSP. Guntsch et al. [6] solve the problem using an ant colony
algorithm. They introduce dynamism by exchanging a number of
cities between the actual problem and a spare pool of cities. The
number of cities in the actual problem is kept constant but the
cities themselves are changed. Eyckelhof and Snoek [3] present a
new ants system approach to another version of the dynamic
problem. They change edge length to imitate the appearance and
the removal of traffic jams from roads. The pattern of change is
limited to simple constant increment or decrement of the changing
parameter. Younes et al. [17] introduce a more comprehensive
dynamic TSP generator that can produce test problems with more
complex dynamics.
The above mentioned benchmarks are limited both in the
applications they address and in the dynamics they employ. There
are several reasons behind these limitations. They are better
addressed by first drawing a distinction between the generation of
benchmarks for continuous optimization and that for discrete
optimization.
In the continuous case, the generators use functions with
adjustable parameters to simulate shifting landscapes. Basically,
they introduce time as an additional independent variable in order
to create dynamic landscapes in which optima shift through time.
However, a similar approach will not work for discrete
optimization, where even a static “landscape” cannot be defined
without reference to the search algorithm. In fact, it is the notion
of the continuity of the variables underlying the search space that
makes it possible to define a unique landscape for a continuous
optimization problem.
However, in the discrete case, the metaphor of landscape is an
indistinct one, since the concepts of distance and relative
positions depend on the optimizing algorithm as well. Actually,
these concepts are induced by the particular operators employed
by the algorithm to move from one solution to another together
with what we call neighborhood structure, without which the
metaphor of landscape does not make much sense, if any [12].
Thus in discrete optimization, we cannot define an algorithm-
independent landscape that can be made time-dependent to
simulate dynamic environments. A dynamic problem might have
to be constructed as a time sequence of static problems, i.e. it
should be thought of in terms of possible scenarios in which
changes can happen over time. However, there can be an infinite
number of such scenarios, which at the same time might prove to
be hard to implement effectively and efficiently. These
deficiencies are discussed in the following sections.

3.1 Environmental Effects
From a dynamic solver perspective, changes in a dynamic
problem can be viewed as two categories: dimensionality changes
and non-dimensionality changes.
Changes in the first category correspond to adding or dropping
variables from the optimization problem. Such changes are
applied to reflect for example the insertion and/or cancellation of

assignments in a vehicle routing problem, orders in a job shop
scheduling problem, cities in a TSP, and objects in a knapsack
problem. These changes necessitate a corresponding alteration in
solution representation. Hence, dynamic problems constructed in
this way are generally harder to solve than those involving non-
dimensionality changes.
In the second category, the non-dimensionality changes result
from variations in the values of the parameters and coefficients of
the problem constraints and objective function. As some of these
values change from one instance to another, the optimal solution
of a previous instance might lose quality relative to another
solution that was inferior to it in the past. Examples are the
changes in the capacity of the knapsack problem or in the weights
or values of its objects. Other examples can affect the travel time
on some roads in a vehicle routing problem, and the processing
timing and ready dates of a scheduling problem. Such changes
usually do not alter solution representation and hence are
expected to be easier to solve than the first class.
However, benchmarks from the second category are harder to
construct: While the construction of dimensionality benchmarks
can be seen as basically a simple adding or deletion of variables,
the construction of non-dimensionality benchmarks is not as
simple. One reason for this difficulty that is not addressed
specifically in the literature is what we will refer to by
significance of dynamism.

3.2 Dynamically Significant Changes
When a new instance is generated by applying non-
dimensionality changes to another instance, differences between
both instances can inadvertently be made dynamically
insignificant. In other words, the introduced changes are so trivial
that any optimizing algorithm exhibits the same behavior with or
without them.
Therefore, a dynamically insignificant change can be defined as
an environmental change that does not alter the structure of the
problem instance, i.e. one which keeps the number and relative
positions and values of the peaks unchanged. In a knapsack
problem, for example, increasing the weight of an object not in
the optimal solution (or decreasing the weight of an object in the
optimal solution) will not alter the optimal solution. Furthermore,
reducing the weight of a non-optimal object (or increasing the
weight of an object in the optimal solution) may not alter the
optimal solution unless the changes in the weight are sufficiently
large. In a similar manner, increasing and decreasing travel time
on a road in a TSP may not be significant.
In order to further clarify how a DS exhibits the same behavior
after a dynamically insignificant change, we borrow the following
example from continuous optimization. Once a hill climber
discovers a local maximum, it will consistently return the same
solution if changes were confined to the height of the peak; no
matter how much the change is, as long as the peak remains
higher than its neighbors. This issue seems trivial since the BG
can explicitly shift the location of the optima, and thereby making
the environmental change dynamically significant. However, as
one cannot identify a landscape to start with for a given COP
instance, one would not have a clue to whether any induced non-
dimensionality changes are significant or not. A minimum
requirement to ensure significance of such changes is that the
optimal solution of the current instance is known.

A dynamically insignificant change is worthless from a testing
perspective. Furthermore, properties of dynamism such as
severity and frequency of change of the underlying parameters
may become misleading. In other words, patterns of optima shift
can be considerably different from the patterns intended by the
BG user.
This issue adds to the efforts of selecting the changing parameters
and their corresponding values. It might even necessitate solving
newer instances before actually adopting them in the benchmark.

3.3 The Challenge of NP-hardness
This issue arises from treating the dynamic problem as a sequence
of static problems. Ideally, the optimal value for each problem in
the sequence should be known in order to evaluate the
effectiveness of some DS (by comparing its results with the
known optimal values). Furthermore, in order to ensure that the
change introduced to a problem is dynamically significant, the
optimal solution is needed too. Therefore, in the course of
constructing a dynamic test case, several static instances have to
be solved to optimality: a non-trivial task if not impossible,
especially when the problem in question belongs to the NP-hard
class.
Two options are used to alleviate this difficulty. The first one uses
small sequences with problems of limited size. Of course, using
too small problem sizes may reduce the benchmark usefulness. At
the same time, limiting the sequence length restricts the
dynamism characteristics that can be modeled. The second option
uses results of several dynamic solvers to compare with the DS
under testing. This option has two disadvantages: first,
evaluations are of a relative nature (to the quality of other
algorithms). Second, as we do not have a wealth of results for
other algorithms, the choice of the comparing algorithms and the
way they are run can severely change the outcome of evaluations.
This issue motivated the authors to introduce a general scheme to
generate benchmarks of arbitrary size and sequence length, as
described in the next section.

4. MAPPING-BASED BGs
In a recent paper, Younes et al. [17] introduce a scheme to
generate benchmarks for the dynamic TSP with arbitrarily long
sequences and controllable characteristics of dynamics. In what
follows, we generalize the underlying idea to other COPs.
The basic idea is to exploit the fact that GAs do not work directly
on the solutions but rather on their encoding. Thus an
environmental change can be applied at any time by modifying
the mapping function, which encodes solutions to chromosomes.
To illustrate this idea, let us consider a seven-object knapsack
problem as an example, with its mapping function given in
Figure1. In this setting, a candidate solution consisting of the
objects O1, O4, O3, O2 and O7 will be encoded as (B1 B4 B3 B2 B7).
Then if, for example, the object names associated with the labels
B3 and B5 in the mapping function are swapped, the same
chromosome (B1 B4 B3 B2 B7) will represent a different individual,
consisting of the objects O1, O4, O5, O2 and O7.
If all the chromosomes in the population are treated in this way,
they will point to different individuals. Then any re-evaluation of
the population will reveal that it now consists of individuals
which are actually different from their predecessors. Furthermore,
some of the new individuals might even be infeasible. Hence, by

repeatedly changing the encoding, a sequence of instances can be
generated from a single problem. A dynamic solver will treat the
sequence as a dynamic problem i.e. will try to adapt to changes in
the problem. At the same time, the benchmark designer knows the
values of the optimal solutions to all the generated instances,
since they are actually the same. Thus, in using mapping-based
scheme, one needs only optimize the initial instance of the
dynamic problem.

 B1 B2 B3 B4 B5 B6 B7

O1 O2 O3 O4 O5 O6 O7

The severity of change in the mapping-based benchmark can be
expressed as the number of interchanges imposed on the mapping
function a time; and the change frequency can be expressed in
terms of the number of iterations or evaluations between changes.
Other COPs, can be treated in a similar way to produce dynamic
versions. For instance, benchmarks for the dynamic TSP can be
generated by swapping city labels in the mapping function. The
scheme can also be applied to job scheduling or to flexible
manufacturing systems by interchanging any of the labels of
machines, parts or operations to create new instances. Similarly, a
facility location problem can be made dynamic by interchanging
locations labels or facility labels.
Although problems constructed via a mapping-based BG may not
reflect real life situations, this technique serves the goal of
generating dynamic test COPs with known optima without the
usual limitations on the sequence length and instance size.
Furthermore, complicated test problems that are more real-world
oriented can be constructed by combining mapping-based
procedures with dimensionality and/or non-dimensionality
changes. In any case, a mapping-based BG offers a simple, quick
and easy way to generate problems that can be used to test and
analyze a dynamic algorithm running on almost any COP.

5. A GENERALIZED RAMEWORK FOR
BENCHMARK GENERATION
The idea of having general BGs for COPs similar to those
available for continuous optimization is tempting. However,
different COPs in their static forms tend to take very distinct
structures, which make the idea of a general framework for them
in their dynamic states more challenging. This section aims to
encompass dimensionality changes, non-dimensionality changes,
and the proposed mapping-based changes in a general framework
that can form a basis for the generation of benchmarks for
dynamic COPs.
The general idea is to start with an initial static benchmark
problem 0s taken from the literature or from available real life
data. Then, changes are repeatedly introduced to the problem in

Figure 1. swapping in mapping function.
Before change, gene values B3 and B5 originally
represent objects O3 and O5 respectively. After change,
they represent O5 and O3 respectively.

order to generate a sequence of static problems, with some
(exploitable) similarity between any two succeeding problems.
The operation of the generator is divided into two stages: a
sequence generation stage that creates a pool of maxk static
problems and a dynamism control stage that selects problems
from the pool to construct one dynamic problem with maxm
instances, see Figure 2.
The sequence generation stage applies a limited amount of change
in one element of the optimization problem kP to create the next
problem 1+kP in the sequence. We refer to the limited change as an
elementary step kδ , which have one of three forms:

(1) A dimensionality step, i.e. the addition or a deletion of a
single variable.

(2) A non-dimensionality step, which corresponds to a
change in the value of one of the parameters or the
coefficients of the problem. In this case, it should be
dynamically significant; and if it affects problem
constraints, it also should be not too drastic to make the
new problem infeasible.

(3) A mapping-based step, i.e. a single swap in the mapping
function.

32

8762

=
⊕⊕=∆

v
δδδ

41

54321

=
⊕⊕⊕=∆

v
δδδδ

20

100

=

⊕=∆

v
δδ `

time

X7

P5 X5

P8 X8

P10
 X10

P9 X9

P0
X0

X1 P1

P4 X4

P2
X2

P6 X6

P7

P3 X3

δ1

δ9

δ8

δ7

δ6

δ5

δ4

δ3

δ0

δ2

static sequence

time 3210 tttt

P2

P3

environmental
changes

P1

P0

(a) (b)
Figure 2 Generalized Benchmark Generation

(a) Sequence generation stage (b) Dynamism control stage
Although the figure may imply that there is a consistent forward progression of problem instances,
actually the order of the instances in the figure does not reflect how they are close to each other. For
example, if the change in elementary step δ3 is the reverse of that in δ2, static instances P2 and P4 will
actually be identical. More generally, the sequence can be made to cycle from P3 back to P0 by
repeatedly reversing the changes in δ2, δ1and δ0 to create δ3, δ4and δ5.

τ2

The above process of adding an elementary step can be written as:

1,...,1,0 , max1 −=⊕=+ kkPP kkk δ (1)

Then, each newly created static problem is solved independently
of the others. Thus, the stage ends with a sequence S of static
problems kP and their corresponding optimal or near optimal

solutions kx . The sequence generation stage can be formally given
as:

{ }

)(optimize
 ...

where
0 ,),(

1100

max

kk

kk

kkk

Px
PP

,..,kkxP

=
⊕⊕⊕⊕=

===

−δδδ

SS

 (2)

In the second stage, a complete dynamic problemP is created by
selecting some of the static problems in the sequence S to
become instances of P . The selection is done in such away that
the resultant dynamic problem has the required properties of
dynamism. For instance, by skipping more intermediate problems
in the static sequence S , severity of the change is increased;
similarly the frequency of change can be specified by the number
of evaluations/generations between successive instances. To
further elaborate on this stage, let us first define an environmental
shift m∆ as the change applied to the mth instance of the dynamic
problem to create the next instance, i.e.

mmm ∆⊕=+ PP 1 (3)

Then the change severity or vm can be expressed as the number of
elementary steps added to create m∆ ; and the period of change τm
can be defined as the duration (number of generations or
evaluations between successive shifts) of the mth instance.

Once severity vm and period τm are specified, the dynamic
problem can be given as a sequence of problem instances mP , and
their corresponding time mt and target solutions my as :

{ }max,10), , ,(..,m,mmymmm === tPPP (4)

In which mP and my are actually kP and kx in the sequence S
respectively, where

 ∑
−

=

=
1

0

m

i
ivk (5)

 , and each instance begins at

 ∑
−

=

=
1

0

m

i
imt τ (6)

The target solutions my will be the basis of criteria that measure
the success of any dynamic solver on the above benchmark.
 Once a benchmark is generated according to the generalized
form, additional test problems can be added by changing the static
problem 0s , the elementary stepsδ , and/or the values of severity

v and period τ . As well, a second sequence of static problems
can be added to the dynamic problem. The additional sequence is
constructed by reversing the changes introduced to the first
sequence. Thus, by repeatedly adding and reversing changes,
cycling environments can be created. The three modes of the

dynamic TSP benchmark generator introduced in [18] can be
easily fitted in this framework, since it is a generalization of these
three modes. Thus, we refer the interested reader to this paper to
see an actual implementation of the proposed framework.

6. CONCLUSIONS
General purpose benchmark generators are necessary to compare
non-exact algorithms. They enable more thorough analysis and
encourages portability of the algorithm to other applications.
Benchmarks for COPs are treated as sequences of static problems
strung together. Thus, it may be necessary to solve each of them
to optimality, which can be expensive. This difficulty can be
further complicated if changes involve values of the problem
parameters, since such changes might prove to be dynamically
insignificant.

Therefore, this paper proposes a method for generating
benchmarks for COPs that requires the solving of the initial
instance only while solutions to all other instances can be
determined from a changing mapping scheme. In this way, the
method does not suffer the usual limitations on the problem size
and the sequence length.

Problem specific benchmarks tend to repel general readers who
might be interested in the ideas used in the benchmark generator
and the dynamic solver. Hence, the paper proposes a general
framework for the generation of test problems for COPs. It is
hoped that such a frame work helps unify approaches in the
literature and forms a basis for designing benchmarks.

Future work will aim enhance the proposed mapping benchmark
and the generalized framework, as both are in need of further
analysis and improvement.

7. ACKNOWLEDGEMENTS
Support of this work has been provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC).
The authors would like to thank the anonymous reviewers for
many valuable suggestions and comments.

8. REFERENCES
[1] Branke, J. Memory enhanced evolutionary algorithms for

changing optimization problems. In Congress on
Evolutionary Computation CEC99, volume 3, pages 1875-
1882. IEEE, 1999.

[2] Branke, J. Evolutionary Optimization in Dynamic
Environments. Kluwer, 2002.

[3] Eyckelhof, C. J., Snoek, M. Ant Systems for a Dynamic
TSP, In ANTS 2002: Brussels, Belgium, 88-99, 2002.

[4] Goldberg, D. E. and Smith, R. E Nonstationary function
optimization using genetic algorithms with dominance and
diploidy. In J. J. Grefenstette, editor, Second International
Conference on Genetic Algorithms, pages 59-68. Lawrence
Erlbaum Associates, 1987.

[5] Grefenstette, J. J. Evolvability in dynamic fitness landscapes:
A genetic algorithm approach. In Congress on Evolutionary
Computation, volume 3, pages 2031-2038. IEEE, 1999.

[6] Guntsch, M., Middendorf, M., Schmeck, H.
An Ant Colony Optimization Approach to Dynamic TSP. In:

L. Spector et al. (eds.) Proceedings of the Genetic and
Evolutionary Computation Conference, San Francisco, CA:
Morgan Kaufmann Publishers, 860-867, 2001.

[7] Jin, Y. and Sendhoff, B. Constructing dynamic optimization
test problems using the multi-objective optimization concept,
EvoWorkshops 2004, LNCS 3005, 525-536, 2004.

[8] Lewis, L., Hart, E., and Ritchie G. A comparison of
dominance mechanisms and simple mutation on non-
stationary problems. In A. E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature, number 1498 in LNCS, pages
139-148. Springer, 1998.

[9] Mori, N., Kita, H., and Nishikawa, Y. Adaptation to a
changing environment by means of the thermodynamical
genetic algorithm. In H.-M. Voigt, editor, Parallel Problem
Solving from Nature, number 1141 in LNCS, pages 513-522.
Springer Verlag Berlin, 1996.

[10] Mori, N., Kita, H., and Nishikawa, Y. Adaptation to a
changing environment by means of the feedback
thermodynamical genetic algorithm. In A. E. Eiben,
T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors,
Parallel Problem Solving from Nature, number 1498 in
LNCS, pages 149-158. Springer, 1998.

[11] Morrison, R. W. and DeJong, K. A. A test problem
generator for non-stationary environments. In Congress on
Evolutionary Computation, volume 3, pages 2047-2053.
IEEE, 1999.

[12] Reeves, C. R. and Rowe, J. E. Genetic Algorithms:
Principles and Perspectives. A Guide to GA Theory. Kluwer
Academic Publishers,Boston (USA), 2002.

[13] Trojanowski, K. and Michalewicz, Z. “Searching for optima
in non-stationary environments,” in Proceedings of the
Congress of Evolutionary Computation, Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao, and Ali
Zalzala, Eds., Mayflower Hotel, Washington D.C., USA, 6-9
July 1999, vol. 3, pp. 1843–1850, IEEE Press.

[14] Ursem, R., K., Krink, T., Jensen, M., T., and Michalewicz,
Z. Analysis and Modeling of Control Tasks in Dynamic
Systems. IEEE Transactions on Evolutionary Computation,
2002.

[15] Yang, S. Non-stationary problem optimization using the
primal-dual genetic algorithm. Proc. of the 2003 Congress on
Evolutionary Computation, Vol. 3, pp. 2246-2253, 2003.

[16] Yang, S. and Yao, X. Dual population-based incremental
learning for problem optimization in dynamic environments.
Proc. of the 7th Asia Pacific Symposium on Intelligent and
Evolutionary Systems, pp.49-56, 2003.

[17] Younes, A. A Hybridized Genetic Algorithm for Solving the
Dynamic Vehicle Routing Problem, 2nd Annual McMaster
Optimization Conference: Theory and Applications
(MOPTA 02), Hamilton, Canada, 2002.

[18] Younes, A., Basir, O., and Calamai, P. A Benchmark
Generator for Dynamic Optimization. Proceedings of the 3rd
WSEAS International Conference on Soft Computing,
Optimization, Simulation & Manufacturing Systems., Malta,
2003.

