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ABSTRACT 
Several general purpose benchmark generators are now available 
in the literature. They are convenient tools in dynamic continuous 
optimization as they can produce test instances with controllable 
features. Yet, a parallel work in dynamic discrete optimization 
still lacks.  

In constructing benchmarks for dynamic combinatorial problems, 
two issues should be addressed: first, test cases that can 
effectively test an algorithm ability to adapt can be difficult to 
create; second, it might be necessary to optimize several instances 
of an NP-hard problem. Hence, this paper proposes a method for 
generating benchmarks with known solutions without the need to 
re-optimize. Consequently, the method does not suffer the usual 
limitations on the problem size or the sequence length.  

The paper also proposes a general framework for the generation 
of test problems. It aims to unify existing approaches and to form 
a basis for designing newer benchmarks. Such a framework can 
be more appreciated knowing that combinatorial problems tend to 
assume very distinct structures, and hence, relevant benchmarks 
are basically too specific to be of interest to the general reader.  

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – Performance measures; 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – Heuristic methods; G.1.6 [Numerical 
Analysis]: Optimization – Integer programming.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Dynamic optimization, benchmarks, combinatorial optimization 
problems. 

1. INTRODUCTION 
As a new and still expanding field, dynamic optimization has 
many outstanding issues. Some of them are related to the 
generation of suitable benchmark problems. In this section, we 
give a brief introductory background on benchmarks, and some 
issues relevant to the generation of dynamic benchmarks for 
combinatorial optimization problems (COPs).  

Benchmarks can be defined as standardized test problems 
designed to serve as bases for algorithm evaluation and 
comparison. The usual reason for running an algorithm on such 
problems is to obtain results that are comparable to studies on 
other algorithms and hence can attest to the superiority of the 
tested algorithm.  

Test problems can be basically constructed from two types of 
data:  randomly generated data, and real-life data.  On the one 
hand, random data is easy to obtain and analyze and more 
importantly enables the drawing of general conclusions about the 
algorithm performance.  On the other hand, a test problem from 
the second source would reflect a particular instance from the 
real-world as closely a possible. Thus, it can be used to attest to 
algorithm ability to fulfill the cause for which it was designed, i.e. 
solving a particular real-world problem.  Thus, one would be 
inclined to include both types of data in the tests.  

 In dynamic optimization, however, a test problem is also 
characterized by a particular scenario, which postulates the 
sequence of events or environmental changes in the problem. 
Thus, if one intends to base a test problem on real life situations, 
one would be faced by the difficulty of identifying the instances 
that best represent the typical scenario(s). On the other hand, a 
general-purpose benchmark generator (BG) such as those 
mentioned in the next section would not have such a difficulty. 
These BGs use continuous functions with tunable parameters to 
produce wide varieties of scenarios. The user, thus, can precisely 
pre-determine particular courses of events for the test problems as 
deemed appropriate.  

However, constructing general BGs for COPs can be more 
difficult. First, it might prove to be hard to generate a sequence of 
instances that can effectively test the adaptability of an algorithm, 
without explicitly solving each instance. Second, as different 
combinatorial problems take different structures, their test cases 
tend to be too problem specific. Hence the task of generalizing 
test problems is expected to be difficult.  
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The current paper aims to address the above mentioned issues. In 
the next section, the paper argues in favor of the importance of 
general-purpose BGs, as opposed to the use of problem specific 
test cases only. The rest of the paper focuses on dynamic COPs: 
Section 3 discusses difficulties of generating combinatorial 
benchmarks. Section 4 introduces a mapping-based scheme to 
generate benchmarks with known optima. Then, Section 5 
proposes a general framework that unifies the approaches of 
benchmark generation for dynamic COPs.  

2. GENERAL-PURPOSE BG’s, ARE THEY 
REALLY NEEDED? 
The need of having diverse test problems to evaluate and 
demonstrate the effectiveness of non-exact algorithms is widely 
appreciated. For dynamic optimization, test problems should also 
be able to cover wide ranges of environmental changes in order to 
pose as credible testers for a certain dynamic solver (DS).  This 
opinion motivates several researchers [1, 5, 11, and 13] to work 
on the introduction of general purpose BGs to generate artificial 
dynamic landscapes with controllable features. Grefenstette [5], 
for example, specifies a dynamic landscape as a set of 
components. Each component consists of a single n-dimensional 
Gaussian peak characterized by three time-varying features: 
center, amplitude, and width. In a similar work, Branke [1] 
suggests a moving peaks function, which is basically a multimodal 
function with controllable height, width and center for each peak. 
The moving peaks function, however, offers an additional 
parameter λ, ranging between 0.0 and 1.0 to quantify “how much 
a peak’s change in location depends on its previous move”. 
Setting λ to 0.0 makes the peak’s change completely random, 
while the other extreme, λ = 1.0, means the peak continues its 
shifting in the same direction. More in-depth discussion of the 
functions and the resultant landscapes produced by these 
generators can be found in [2].   

Jin and Sendhoff [7] introduce a computationally efficient method 
to generate general dynamic test problems based on concepts 
from multi-objective optimization. They construct dynamic single 
objective and multi-objective test problems by aggregating 
different objectives of a multiple objective optimization problem 
and changing the weights dynamically.  

Yang [15] uses a different approach to construct dynamic 
environments.  In stead of explicitly defining time varying 
functions, he constructs the dynamic problem by continually 
introducing changes to a base stationary problem. He proposed 
using an exclusive-or (XOR) operator to introduce changes to a 
binary-encoded stationary problem. In [16], Yang and Yao use the 
XOR operator to generate a series of dynamic problems from a 
randomly generated stationary knapsack problem.  
Unlike the examples above, many researchers depend solely on 
problem specific benchmarks [2], whereas others further 
downplay the usefulness of the general-purpose BGs. For 
example, Ursem et al. [14] note that these BGs do not reflect 
characteristic dynamics of real-world problems and hence are of 
little value for modeling realistic dynamic problems. They also 
argue that the use of BGs is pointless once a model is developed 
for the fitness landscape.  However, one might find the notion that 
the typical real-world problem—which is supposed to be highly 

complex— can be modeled to the extent that the model alone is 
capable of testing the DS seems far fetched.  

In this paper, the view is that, ideally any DS should be tested on 
randomly generated data in addition to real life data. The 
importance of general benchmarks problems, which use randomly 
generated instances, is evident in many aspects:  

First, randomly generated data can be more effective than real life 
data in comparing algorithms. With random data, it is possible to 
introduce variations of different degrees to the elements of the 
optimization problem individually and in combination, whereas 
real life data is often too complex to evaluate easily.   

Second, randomly generated data might be the only way to detect 
deficiencies (in an algorithm) that are not visible through the real-
world data available at the time of evaluation.  

Third, the issue of credibility of the tests suggests that test 
problems should be designed as independently as possible from 
the DS, and this is best achieved through general BGs; whereas 
for example the test case generator suggested in [14] obscures the 
line between the BG and DS. More generally, the less involved 
the DS designer is in the BG design, the less biased the results are 
expected to be and the more credible the DS— especially when it 
is largely maintained that techniques used by GAs are based on 
intuition.   

Fourth, the use of general benchmarks promotes the portability of 
the ideas within an algorithm to solve other arbitrarily different 
problems. Indeed, the more general the testing problems are, the 
wider the applicability of the tested algorithm.  

Furthermore, as it is well known that the use of GAs is often 
justified by their robustness, it seems unreasonable to confine test 
cases of a general algorithm to very problem-specific data. 

In summary, the use of problem-specific test cases alone will at 
best confine the results of testing to the particular optimization 
problem under consideration; at worst, the results cannot even be 
generalized to problem instances other than those specifically 
used.  In any case, problem specific tests do not encourage using 
algorithmic in other problems. Yet, most general benchmark 
generators available in the literature basically target continuous 
optimization. Thus, in their current state, these generators have 
little use in discrete optimization, except may be for the few cases 
discussed in the next section.  

3. BENCHMAK PROBLEMS FOR 
DYNAMIC COPs 
In this section, we discuss some issues related to the design of 
dynamic benchmarks in discrete optimization. First, we note that 
combinatorial problems tend to assume very distinct structures 
(e.g. vehicle routing versus job shop scheduling). This fact does 
not allow the testing of say a scheduling DS on a routing problem. 
Consequently, benchmark problems for COPs tend to be very 
specific to the application at hand. However, the time-varying 
knapsack problem and the dynamic traveling salesman problem 
(TSP) might be excluded, since their static counterparts are often 
considered representative of various combinatorial problems.  
There exist several publications related to such benchmarks. For 
instance, Goldberg and Smith [5] use a 17-object knapsack with a 
weight capacity oscillating between two values in their 



benchmark. Other researchers [8, 9, and 10] increase the number 
of objects and make the weight change over several values. The 
main idea of dynamism in these benchmarks is to vary the 
allowable weight limit with time; which can make the current 
optimal solution infeasible if the knapsack capacity is sufficiently 
reduced.  
More recent publications introduce benchmarks for the dynamic 
TSP. Guntsch et al. [6] solve the problem using an ant colony 
algorithm. They introduce dynamism by exchanging a number of 
cities between the actual problem and a spare pool of cities. The 
number of cities in the actual problem is kept constant but the 
cities themselves are changed. Eyckelhof and Snoek [3] present a 
new ants system approach to another version of the dynamic 
problem. They change edge length to imitate the appearance and 
the removal of traffic jams from roads. The pattern of change is 
limited to simple constant increment or decrement of the changing 
parameter. Younes et al. [17] introduce a more comprehensive 
dynamic TSP generator that can produce test problems with more 
complex dynamics.  
The above mentioned benchmarks are limited both in the 
applications they address and in the dynamics they employ. There 
are several reasons behind these limitations. They are better 
addressed by first drawing a distinction between the generation of 
benchmarks for continuous optimization and that for discrete 
optimization.  
In the continuous case, the generators use functions with 
adjustable parameters to simulate shifting landscapes. Basically, 
they introduce time as an additional independent variable in order 
to create dynamic landscapes in which optima shift through time. 
However, a similar approach will not work for discrete 
optimization, where even a static “landscape” cannot be defined 
without reference to the search algorithm. In fact, it is the notion 
of the continuity of the variables underlying the search space that 
makes it possible to define a unique landscape for a continuous 
optimization problem. 
However, in the discrete case, the metaphor of landscape is an 
indistinct one, since the concepts of distance and relative 
positions depend on the optimizing algorithm as well. Actually, 
these concepts are induced by the particular operators employed 
by the algorithm to move from one solution to another together 
with what we call neighborhood structure, without which  the 
metaphor of landscape does not make much sense, if any [12]. 
Thus in discrete optimization, we cannot define an algorithm-
independent landscape that can be made time-dependent to 
simulate dynamic environments. A dynamic problem might have 
to be constructed as a time sequence of static problems, i.e. it 
should be thought of in terms of possible scenarios in which 
changes can happen over time. However, there can be an infinite 
number of such scenarios, which at the same time might prove to 
be hard to implement effectively and efficiently. These 
deficiencies are discussed in the following sections.  

3.1 Environmental Effects 
From a dynamic solver perspective, changes in a dynamic 
problem can be viewed as two categories: dimensionality changes 
and non-dimensionality changes.   
Changes in the first category correspond to adding or dropping 
variables from the optimization problem. Such changes are 
applied to reflect for example the insertion and/or cancellation of 

assignments in a vehicle routing problem, orders in a job shop 
scheduling problem, cities in a TSP, and objects in a knapsack 
problem. These changes necessitate a corresponding alteration in 
solution representation.  Hence, dynamic problems constructed in 
this way are generally harder to solve than those involving non-
dimensionality changes.  
In the second category, the non-dimensionality changes result 
from variations in the values of the parameters and coefficients of 
the problem constraints and objective function. As some of these 
values change from one instance to another, the optimal solution 
of a previous instance might lose quality relative to another 
solution that was inferior to it in the past. Examples are the 
changes in the capacity of the knapsack problem or in the weights 
or values of its objects. Other examples can affect the travel time 
on some roads in a vehicle routing problem, and the processing 
timing and ready dates of a scheduling problem.  Such changes 
usually do not alter solution representation and hence are 
expected to be easier to solve than the first class.  
However, benchmarks from the second category are harder to 
construct: While the construction of dimensionality benchmarks 
can be seen as basically a simple adding or deletion of variables, 
the construction of non-dimensionality benchmarks is not as 
simple. One reason for this difficulty that is not addressed 
specifically in the literature is what we will refer to by 
significance of dynamism.  

3.2 Dynamically Significant Changes 
When a new instance is generated by applying non-
dimensionality changes to another instance, differences between 
both instances can inadvertently be made dynamically 
insignificant. In other words, the introduced changes are so trivial 
that any optimizing algorithm exhibits the same behavior with or 
without them.  
Therefore, a dynamically insignificant change can be defined as 
an environmental change that does not alter the structure of the 
problem instance, i.e. one which keeps the number and relative 
positions and values of the peaks unchanged. In a knapsack 
problem, for example, increasing the weight of an object not in 
the optimal solution (or decreasing the weight of an object in the 
optimal solution) will not alter the optimal solution. Furthermore, 
reducing the weight of a non-optimal object (or increasing the 
weight of an object in the optimal solution) may not alter the 
optimal solution unless the changes in the weight are sufficiently 
large. In a similar manner, increasing and decreasing travel time 
on a road in a TSP may not be significant. 
In order to further clarify how a DS exhibits the same behavior 
after a dynamically insignificant change, we borrow the following 
example from continuous optimization. Once a hill climber 
discovers a local maximum, it will consistently return the same 
solution if changes were confined to the height of the peak; no 
matter how much the change is, as long as the peak remains 
higher than its neighbors. This issue seems trivial since the BG 
can explicitly shift the location of the optima, and thereby making 
the environmental change dynamically significant. However, as 
one cannot identify a landscape to start with for a given COP 
instance, one would not have a clue to whether any induced non-
dimensionality changes are significant or not. A minimum 
requirement to ensure significance of such changes is that the 
optimal solution of the current instance is known.  



A dynamically insignificant change is worthless from a testing 
perspective. Furthermore, properties of dynamism such as 
severity and frequency of change of the underlying parameters 
may become misleading. In other words, patterns of optima shift 
can be considerably different from the patterns intended by the 
BG user.  
This issue adds to the efforts of selecting the changing parameters 
and their corresponding values. It might even necessitate solving 
newer instances before actually adopting them in the benchmark.  

3.3 The Challenge of NP-hardness  
This issue arises from treating the dynamic problem as a sequence 
of static problems. Ideally, the optimal value for each problem in 
the sequence should be known in order to evaluate the 
effectiveness of some DS (by comparing its results with the 
known optimal values). Furthermore, in order to ensure that the 
change introduced to a problem is dynamically significant, the 
optimal solution is needed too. Therefore, in the course of 
constructing a dynamic test case, several static instances have to 
be solved to optimality: a non-trivial task if not impossible, 
especially when the problem in question belongs to the NP-hard 
class. 
Two options are used to alleviate this difficulty. The first one uses 
small sequences with problems of limited size. Of course, using 
too small problem sizes may reduce the benchmark usefulness. At 
the same time, limiting the sequence length restricts the 
dynamism characteristics that can be modeled. The second option 
uses results of several dynamic solvers to compare with the DS 
under testing. This option has two disadvantages: first, 
evaluations are of a relative nature (to the quality of other 
algorithms). Second, as we do not have a wealth of results for 
other algorithms, the choice of the comparing algorithms and the 
way they are run can severely change the outcome of evaluations.  
This issue motivated the authors to introduce a general scheme to 
generate benchmarks of arbitrary size and sequence length, as 
described in the next section.  

4. MAPPING-BASED BGs 
In a recent paper, Younes et al. [17] introduce a scheme to 
generate benchmarks for the dynamic TSP with arbitrarily long 
sequences and controllable characteristics of dynamics. In what 
follows, we generalize the underlying idea to other COPs.  
The basic idea is to exploit the fact that GAs do not work directly 
on the solutions but rather on their encoding. Thus an 
environmental change can be applied at any time by modifying 
the mapping function, which encodes solutions to chromosomes. 
To illustrate this idea, let us consider a seven-object knapsack 
problem as an example, with its mapping function given in 
Figure1. In this setting, a candidate solution consisting of the 
objects O1, O4, O3, O2 and O7 will be encoded as (B1 B4 B3 B2 B7). 
Then if, for example, the object names associated with the labels 
B3 and B5 in the mapping function are swapped, the same 
chromosome (B1 B4 B3 B2 B7) will represent a different individual, 
consisting of the objects O1, O4, O5, O2 and O7.  
If all the chromosomes in the population are treated in this way, 
they will point to different individuals. Then any re-evaluation of 
the population will reveal that it now consists of individuals 
which are actually different from their predecessors. Furthermore, 
some of the new individuals might even be infeasible. Hence, by 

repeatedly changing the encoding, a sequence of instances can be 
generated from a single problem. A dynamic solver will treat the 
sequence as a dynamic problem i.e. will try to adapt to changes in 
the problem. At the same time, the benchmark designer knows the 
values of the optimal solutions to all the generated instances, 
since they are actually the same. Thus, in using mapping-based 
scheme, one needs only optimize the initial instance of the 
dynamic problem. 
 

 B1               B2               B3          B4               B5              B6                B7 
 
 
 

O1                O2                O3         O4              O5               O6             O7 
 
 
 
 
The severity of change in the mapping-based benchmark can be 
expressed as the number of interchanges imposed on the mapping 
function a time; and the change frequency can be expressed in 
terms of the number of iterations or evaluations between changes.  
Other COPs, can be treated in a similar way to produce dynamic 
versions. For instance, benchmarks for the dynamic TSP can be 
generated by swapping city labels in the mapping function. The 
scheme can also be applied to job scheduling or to flexible 
manufacturing systems by interchanging any of the labels of 
machines, parts or operations to create new instances. Similarly, a 
facility location problem can be made dynamic by interchanging 
locations labels or facility labels.  
Although problems constructed via a mapping-based BG may not 
reflect real life situations, this technique serves the goal of 
generating dynamic test COPs with known optima without the 
usual limitations on the sequence length and instance size. 
Furthermore, complicated test problems that are more real-world 
oriented can be constructed by combining mapping-based 
procedures with dimensionality and/or non-dimensionality 
changes. In any case, a mapping-based BG offers a simple, quick 
and easy way to generate problems that can be used to test and 
analyze a dynamic algorithm running on almost any COP.  

5. A GENERALIZED RAMEWORK FOR 
BENCHMARK GENERATION  
The idea of having general BGs for COPs similar to those 
available for continuous optimization is tempting. However, 
different COPs in their static forms tend to take very distinct 
structures, which make the idea of a general framework for them 
in their dynamic states more challenging. This section aims to 
encompass dimensionality changes, non-dimensionality changes, 
and the proposed mapping-based changes in a general framework 
that can form a basis for the generation of benchmarks for 
dynamic COPs.  
The general idea is to start with an initial static benchmark 
problem 0s  taken from the literature or from available real life 
data. Then, changes are repeatedly introduced to the problem in 

Figure 1. swapping in mapping function. 
Before change, gene values B3 and B5 originally 
represent objects O3 and O5 respectively.  After change, 
they represent O5 and O3 respectively. 



order to generate a sequence of static problems, with some 
(exploitable) similarity between any two succeeding problems. 
The operation of the generator is divided into two stages: a 
sequence generation stage that creates a pool of maxk  static 
problems and a dynamism control stage that selects problems 
from the pool to construct one dynamic problem with maxm  
instances, see Figure 2.  
The sequence generation stage applies a limited amount of change 
in one element of the optimization problem kP to create the next 
problem 1+kP  in the sequence. We refer to the limited change as an 
elementary step kδ , which have one of three forms:  

 

 

(1) A dimensionality step, i.e. the addition or a deletion of a 
single variable. 

(2) A non-dimensionality step, which corresponds to a 
change in the value of one of the parameters or the 
coefficients of the problem. In this case, it should be 
dynamically significant; and if it affects problem 
constraints, it also should be not too drastic to make the 
new problem infeasible.  

(3) A mapping-based step, i.e. a single swap in the mapping 
function.  
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(a) (b)        
Figure 2  Generalized Benchmark Generation    

(a)  Sequence generation stage     (b)  Dynamism control stage 
Although the figure may imply that there is a consistent forward progression of problem instances,  
actually the order of the instances in the figure does not reflect how they are close to each other. For 
example, if the change in elementary step δ3 is the reverse of that in δ2, static instances P2 and P4 will 
actually be identical. More generally, the sequence can be made to cycle from P3 back to P0 by 
repeatedly reversing the changes in δ2, δ1and δ0 to create δ3, δ4and δ5.  

τ2 



The above process of adding an elementary step can be written as:   

1,...,1,0  ,    max1 −=⊕=+ kkPP kkk δ             (1) 

Then, each newly created static problem is solved independently 
of the others. Thus, the stage ends with a sequence S  of static 
problems kP  and their corresponding optimal or near optimal 

solutions kx . The sequence generation stage can be formally given 
as: 
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In the second stage, a complete dynamic problemP  is created by 
selecting some of the static problems in the sequence S  to 
become instances of P . The selection is done in such away that 
the resultant dynamic problem has the required properties of 
dynamism. For instance, by skipping more intermediate problems 
in the static sequence S , severity of the change is increased; 
similarly the frequency of change can be specified by the number 
of evaluations/generations between successive instances. To 
further elaborate on this stage, let us first define an environmental 
shift m∆ as the change applied to the mth instance of the dynamic 
problem to create the next instance, i.e.   

mmm ∆⊕=+ PP 1    (3) 

Then the change severity or vm can be expressed as the number of 
elementary steps added to create m∆ ; and the period of change τm 
can be defined as the duration (number of generations or 
evaluations between successive shifts) of the mth instance. 

Once severity vm and period τm are specified, the dynamic 
problem can be given as a sequence of problem instances mP , and 
their corresponding time mt  and target solutions my as :  

{ }max,10    ),  ,  ,( ..,m,mmymmm === tPPP  (4) 

In which mP  and my  are actually kP  and kx  in the sequence S  
respectively, where    

             ∑
−

=

=
1

0

 
m

i
ivk     (5) 

 , and each instance begins at  

                             ∑
−

=

=
1

0

m

i
imt τ     (6) 

The target solutions my will be the basis of criteria that measure 
the success of any dynamic solver on the above benchmark. 
  Once a benchmark is generated according to the generalized 
form, additional test problems can be added by changing the static 
problem 0s , the elementary stepsδ , and/or the values of severity 

v and period τ .  As well, a second sequence of static problems 
can be added to the dynamic problem. The additional sequence is 
constructed by reversing the changes introduced to the first 
sequence. Thus, by repeatedly adding and reversing changes, 
cycling environments can be created. The three modes of the 

dynamic TSP benchmark generator introduced in [18] can be 
easily fitted in this framework, since it is a generalization of these 
three modes. Thus, we refer the interested reader to this paper to 
see an actual implementation of the proposed framework.    

6. CONCLUSIONS 
General purpose benchmark generators are necessary to compare 
non-exact algorithms. They enable more thorough analysis and 
encourages portability of the algorithm to other applications. 
Benchmarks for COPs are treated as sequences of static problems 
strung together. Thus, it may be necessary to solve each of them 
to optimality, which can be expensive.  This difficulty can be 
further complicated if changes involve values of the problem 
parameters, since such changes might prove to be dynamically 
insignificant. 

Therefore, this paper proposes a method for generating 
benchmarks for COPs that requires the solving of the initial 
instance only while solutions to all other instances can be 
determined from a changing mapping scheme.  In this way, the 
method does not suffer the usual limitations on the problem size 
and the sequence length.  

Problem specific benchmarks tend to repel general readers who 
might be interested in the ideas used in the benchmark generator 
and the dynamic solver. Hence, the paper proposes a general 
framework for the generation of test problems for COPs. It is 
hoped that such a frame work helps unify approaches in the 
literature and forms a basis for designing benchmarks.  

Future work will aim enhance the proposed mapping benchmark 
and the generalized framework, as both are in need of further 
analysis and improvement. 
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