
Measurements for Understanding the Behavior of the
Genetic Algorithm in Dynamic Environments

A Case Study using the Shaky Ladder Hyperplane-Defined Functions

William Rand and Rick Riolo
Center for the Study of Complex Systems

University of Michigan
4485 Randall Lab

Ann Arbor, MI, USA, 48109-1120

wrand@umich.edu

ABSTRACT
We describe a set of measures to examine the behavior of
the Genetic Algorithm (GA) in dynamic environments. We
describe how to use both average and best measures to look
at performance, satisficability, robustness, and diversity. We
use these measures to examine GA behavior with a recently
devised dynamic test suite, the Shaky Ladder Hyperplane-
Defined Functions (sl-hdf’s). This test suite can generate
random problems with similar levels of difficulty and pro-
vides a platform allowing systematic controlled observations
of the GA in dynamic environments. We examine the results
of these measures in two different versions of the sl-hdf’s, one
static and one regularly-changing. We provide explanations
for the observations in these two different environments, and
give suggestions as to future work.

Categories and Subject Descriptors
F.2.m [Analysis of Algorithms]: Misc.; I.2.8 [Artificial
Intelligence]: Search

General Terms
Algorithms, Measurement

Keywords
Genetic Algorithms, Measurement, Dynamic Environments,
Hyperplane-Defined Functions, Genetic Algorithms

1. INTRODUCTION
The Genetic Algorithm (GA) has been shown to work suc-

cessfully in many dynamic environments [1] [3], and while
work has been done on trying to understand how the GA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

works in these environments, the behavior of the GA in dy-
namic environments is still not well understood. Part of the
problem is that when examining a GA on a particular search
problem often researchers are interested in the performance
of the GA and not necessarily why the GA works and thus
they only report performance measures. This does not al-
ways give a good indication of the overall behavior of the
GA. Thus in this paper we present a suite of measures that
are useful to measure beyond the standard performance met-
rics. By examining all of these measures together we hope
to more fully understand the behavior of the GA in dynamic
environments.

In a related area, Branke et al, among others, are inter-
ested in characterizing and measuring the dynamic land-
scape that evolutionary algorithms (EAs) are operating within
[4]. While that work is related, that work does not directly
address the goal we are addressing here, i.e., understanding
the behavior of the EAs themselves, not the landscape they
operate upon. Moreover, many researchers have developed
benchmark dynamic landscapes, like the moving peaks func-
tion, that allow the comparison of different EAs to evaluate
their performance [2] [13]. This work is also related but tan-
gential to the work described here, since we do not want to
compare different EAs but instead we are concerned with
understanding the behavior of the simple GA.

In order to systematically examine the behavior of the GA
we require a test suite of functions. The test suite presented
here is similar to the dynamic bit matching functions utilized
by Stanhope and Daida [17] among others. The difference
between the test suite in this paper and other dynamic test
functions is that the underlying representation of this test
suite is schemata, which make it easier to examine how the
GA is operating. By utilizing a test suite that reflects the
way the GA searches, the performance of the GA can be
easily observed. This test suite is a subset of John Holland’s
hyperplane-defined functions (hdfs) [9]. We have extended
the hdfs to dynamic environments and we call this test suite,
the Shaky Ladder Hyperplane-Defined Functions (sl-hdf’s)
[15].

In the rest of this paper, we examine the measures that
we are interested in exploring, briefly describe the sl-hdf’s,
and finally present some results of these measures on the sl-
hdf’s in two different environments: a static and a regularly-
changing environment. We conclude by discussing these re-

sults, providing some preliminary explanations and describ-
ing future work.

2. MEASURES
Though the performance of the GA is an important thing

to measure, there may be other measures that can be useful
along with performance in order to give a better descrip-
tion of how the system is behaving. This is especially true
in dynamic environments where the behavior of the system
over time can vary dramatically as the environment changes.
Other measures may provide valuable explanations and al-
low researchers to better describe and characterize the dy-
namics of populations being changed by a GA and an as-
sociated (exogenous or endogenous) mechanism that assigns
fitness ratings to the individuals.

In general researchers view the behavior of the GA from
two different perspectives. Some are concerned with under-
standing extreme behaviors of the system, particularly the
best that the system can do. These tend to be the mea-
sures preferred by application practitioners, who want to
know what is the best result the system can possibly ob-
tain. These measures tend to be of more interest to people
who have particular problems that they are trying to solve.
Other measures which may be useful characterize the popu-
lation as a whole, i.e. average, standard deviations, distribu-
tions. Population distribution measures are often important
to researchers trying to understand GAs as representations
of evolutionary systems. They utilize the GA to model these
systems and thus the behavior of the best individual in the
system is not as important to them. Given that loose di-
chotomy, we examine all of the measures below through the
context of both a best and an average measure.

Since a population evolving under the influence of a GA
is, in general, a complex adaptive system, there are inher-
ent stochastic and path-dependent processes such that each
“run” of the GA, even given the same starting population,
will almost always result in dynamics that differ in the de-
tails, and in some cases, the results will differ qualitatively
from run to run as well. When the primary goal is to find a
high performance solution for a real world problem, it often
is most useful to track the best fitness individuals from each
of a set of runs and then focus on the best of those best-of-
run individuals. On the other hand, in other situations it is
important to include measures that reflect the distribution
of population histories, since that gives more information
about both the complexity of the solution space and the dy-
namical properties of populations evolving in that problem
space.

Standard measures of performance fall into a category we
call fitness-related measures, which describe the system by
examining the fitness ratings of the individuals in the popu-
lation. Fitness in an evolutionary algorithm (EA) is defined
to be the score that influences selection and hence deter-
mines the ability of the individual to replicate [8]. Perfor-
mance, on the other hand, is a score that the individual
receives on an objective function. Often fitness is perfor-
mance in EAs; however, there are cases where other factors
are included in the fitness score. In this paper the fitness
score of an individual is defined as the performance score.
Besides the standard measure which we call performance,
we describe two additional fitness-related measures: satis-
ficability, and robustness. Another category of measures is
composition-related measures which attempt to describe the

behavior of the system by describing the components that
currently make up the system. In this paper we chose to
look at only one composition-related measure, diversity.

We describe these four measures in detail below, but briefly,
performance is the standard measure of how well the system
performs the task presented it, satisficability is the ability
of the system to maintain a certain level of fitness and to
avoid egregious errors, robustness is a measure of how the
system responds to changes in the environment, and finally
diversity is a measure of how different the members of the
population are. We do not think of this as a definitive list
of all the possible measurements of a GA’s behavior, but
rather as a representative list of measures that are interest-
ing to both those with a design or engineering perspective
and those with a biological perspective.

2.1 Performance
Performance is the standard measure of how well the sys-

tem solves an objective function. As mentioned, in many
cases, this is the fitness function, but some GAs such as
co-evolving systems, and systems with implicit fitness func-
tions, do not have an absolute fitness function. In this paper
we use the fitness function as a measure of performance. One
use of performance is in evaluating the suitability of a GA-
discovered solution to solving a design problem. The GA
has proved to be particularly useful if there are epistatic in-
teractions between variables. Examining the performance of
the best individual in a population gives an estimate of the
best solution the GA can find for a problem, given a set of
GA parameters and the resulting total computational effort
expended, in terms of the total number of fitness evaluations
required [11]. For biological modelers it is more important to
understand the performance of the whole population. The
average fitness of the population provides a first-order rep-
resentation of the overall fitness distribution, and thus is a
good first measure. In both cases it usually makes sense
when describing how the system works to aggregate the re-
sults of multiple runs by averaging the results across runs,
since the average gives a good indication of how the system
is expected to do on any given run.

In the experiments described below, we define Best Per-
formance to be the average across n runs of the fitness of the
best individual of the current generation in the population.
One could also examine the best performance of any individ-
ual in any run, but we leave investigations of that measure
for the future. Average Performance, on the other hand, is
the average across n runs of the average fitness of the pop-
ulation. Since we know the optimal value a priori given the
sl-hdf construction scheme, we express these measures as a
fraction of the optimal fitness possible. This allows us to
compare results where the optimal value changes.

2.2 Satisficability
Satisficability is a measure of when the system is able to

achieve a predetermined criteria. The notion was first in-
troduced by Simon who claimed that often humans do not
optimize the solution to a problem but instead simply come
up with a solution that satisfices some criteria they have pre-
viously defined [16]. In this paper, satisficability measures
how well the system is able to maintain a certain level of
fitness and not drop below a pre-set threshold. One appli-
cation of this measure would be autonomous agent control.
If a GA is in charge of steering a robot from one location to

another, it maybe not be necessary to get there as quickly
as possible but the design specifications may require that it
will get there in a reasonable amount of time.

Whether we are interested in the average satisficability
or the best satisficability we set a threshold and count how
many times the system is able to exceed that threshold. In
the experiments described below, we define Best Satisfica-
bility to be the fraction of runs out of n that the GA’s best
solution in that generation exceeds s = oθ which is expressed
as a fraction θ of the optimal o. This gives us a clear indica-
tion of how many times the system will return a result that
is at least as good as our threshold. The fraction, θ (between
0 and 1), is a parameter to the measurement. Average Sat-
isficability is defined to be the average across n runs of the
fraction of individuals in the current population that exceed
s. Of course it would be simple to extend this measure to
a problem where the optimal was not known, in which case
o could be set to 1 and s = θ, which means that the mea-
sures would be based on the fraction of individuals or runs
to exceed an absolute threshold.

2.3 Robustness
Of all the measures listed here, robustness is probably

the most complicated and has the most varied definitions.
There are many different notions of robustness [10], and thus
defining it must always be done within the context of a par-
ticular question. Here we specifically address the idea of
robustness as a measure of how a system’s output changes
in response to environmental changes. We want to know
how much the fitness of the next generation of the GA can
drop, given the current generation’s fitness. The idea is that
the performance of the system should never dramatically de-
crease since a dramatic decrease may upset other elements
if the system is not isolated. In order to make this measure
more useful in real-world systems it is important to define
it so that it is not necessary to know when the environment
changed, because changes are not always easily observable.
One application of such a measure would be managing as-
sets in a stock market portfolio. For instance a GA could be
used to specify which stocks to hold at each time step, with
the goal of never suffering a dramatic decreases in the total
value of the portfolio. As long as the overall net value is in-
creasing the owner is earning money, but it is important to
make sure that this portfolio is robust to dramatic changes.

In the experiments below, we define Best Robustness to
be the fitness of the best individual in the current generation
divided by the fitness of the best individual in the previous
generation. If this score is greater than 1 we set it equal
to 1. For simplicity we set the robustness score of the first
generation equal to 1. We then average this measure across n
runs. We define Average Robustness to be the same measure
but for the average fitness of the population.

2.4 Diversity
Diversity is a measure of the variance in the genomes in

the population of solutions. Diversity captures the notion
of how much of the search space the GA is currently ex-
ploring. Moreover having a diversity of solutions may mean
the system is more able to adapt to changes in the envi-
ronment. The diversity within the run of an EA has been
studied many times before, including attempts to use it as
an objective in a multi-objective EA fitness function [18].
A diversity of solutions is often needed to avoid premature

convergence, which can cause an EA to get stuck at a local
optima. In fact a whole variety of techniques have been used
to maintain diversity throughout a run, like niching through
fitness sharing [6]. Moreover similar techniques have been
used to try and maintain diversity in dynamic environments
throughout a run [7] as well as after a change in the envi-
ronment1 [5]. Besides the study of diversity within GAs for
the purposes of studying GAs, it is also important to look
at diversity within the context of biological modeling. Very
often biological diversity is considered important to the suc-
cess of a species and thus studying how different parameters
of the GA affect the overall diversity of the system could be
interesting to biological modelers [20].

The above concept of diversity is concerned with measur-
ing how diverse solutions are within a run. Another measure
of interest is how diverse solutions are across runs. This pro-
vides an idea of how different the various results of the GA
will be between, as opposed to within, runs. In some cases
diversity among runs would be a good thing, since it would
indicate the system is able to find very different parts of the
search space that may not have been obvious as potential
areas for fruitful exploration. In other cases diversity may
be a bad thing because it indicates that the system is very
dependent on initial conditions.

In order to examine diversity we chose to use Hamming
distance because it measures how many single bit mutations
would be required to move from one string to another within
the population. Likewise Hamming distance is also the Man-
hattan distance between two vertexes in an n-dimensional
hypercube. Thus Hamming distance is a good approxima-
tion of how far apart two solutions are in the sl-hdf solution
space.

In the experiments discussed below, we define Best Di-
versity to be the average Hamming distance between the
genomes of the best individuals of each generation found in
each of the n runs. We can also observe the diversity within a
run and thus, we define Average Diversity to be the average
Hamming distance between every member of the population
averaged over n runs. To allow for comparisons of diversity
where GA string lengths differ, we normalize these measures
to the length of the string.

However, we do not present the results from the Best Di-
versity of the experiments. The reason is that in the case of
the sl-hdf’s the random number seed used to generate the
population of the GA is also used to generate the particular
problem to be solved. The result of this is that in every run
the GA is facing a different problem, and thus the Hamming
distance between different runs of the GA is always 0.5 since
they are optimizing toward different fitness peaks.

3. SHAKY LADDER
HYPERPLANE-DEFINED FUNCTIONS

The functions that we will be utilizing to explore the GA
in dynamic environments are a subset of the hdfs [9]. The
hdfs are designed to represent the way the GA searches by
combining building blocks (through the use of schemata)
hence they are appropriate for understanding the behavior
of the GA. The hdfs were constructed to meet a set of criteria
specified by Whitley [19]. The problem with the hdfs in the
dynamic case is that the optimal set of strings is not easily
known given the definition of the function, and thus the

1For a more thorough review please consult Bränke [3]

absolute performance can not easily be measured. Moreover,
there is no way to take one hdf and create another that is
similar to it, which would be useful when exploring dynamic
environments.

Thus we impose three conditions on the full suite of hdfs
and use a simple algorithm to these functions which solves
these two problems. The process described below is more
thoroughly explained in previous work [15] [14]. The first
condition is the Unique Position Condition (UPC). It re-
quires that all elementary schemata contain no conflicting
bits. The second condition we call the Unified Solution Con-
dition (USC). This condition guarantees that all of the spec-
ified bits in the elementary level schemata must be present
in the highest level schema. The third condition is the Lim-
ited Pothole Cost Condition (LPCC), which states that the
fitness contribution of any pothole plus the sum of the fitness
contributions of all the building blocks in conflict with that
pothole must be greater than zero. These three conditions
guarantee that any string which matches the highest level
schema must be a string with optimal fitness. By knowing
the optimal set of strings we solve one of the problems with
Holland’s original hdfs.

Assuming these conditions, once a set of elementary schemata
have been established we already know the highest level
schema. If we hold the elementary and highest level schemata
constant, we can generate new similar hdfs by creating new
intermediate schemata, we call this Shaking the Ladder. Thus
we have an easy way to create similar but different hdfs ran-
domly, and solve the second problem with Holland’s original
hdfs.

For the experiments discussed below, we used sl-hdf’s with
a length of 500. There are 50 elementary schemata of or-
der 8, 5 intermediate levels of schemata, and 1 highest level
schemata. The length of the schemata is unknown since the
location of the fixed bits are chosen randomly. Moreover
the order of the higher level schemata is also unknown since
the elementary schemata can “share” fixed loci. However
we can place upper limits on the order. If all elementary
schemata are disjoint, the maximum order of the highest
level schemata is 400, which means there will always be at
least 100 wildcards present in the highest level schemata.

4. EXPERIMENTS AND RESULTS
The basic setup for our experiments is a simple GA using

the sl-hdf as its fitness function. The base GA presented here
uses one-point crossover, per bit mutation, full population
replacement, and is similar to the one described by Mitchell
[12]. In this set of experiments we only change one variable,
tδ, which specifies the number of generations between shakes
of the ladder. We only examine two values for tδ, 1801 and
100. tδ = 1801 represents a static environment because the
time between changes exceeds the run of the GA. tδ = 100
represents a regularly changing environment. The optimal
value achievable by the sl-hdf is 1.0. All results below are
presented at 10 generation increments in order to make the
graphs easier to read.

Figure 1 illustrates both the fitness of the best individ-
ual in the population (Best Performance) and the average
fitness of the whole population (Average Performance) for
both tδ values, averaged across 30 runs. These results have
been normalized to 0 to 1; the non-normalized optimal value
of these sl-hdf’s is 191. Figure 2 illustrates (for both tδ val-
ues) how many best of generation individuals out of 30 runs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t a
nd

 A
ve

ra
ge

 F
itn

es
s

(A
vg

. O
ve

r 3
0

R
un

s)

Generations

Best tδ = 100
Avg. tδ = 100

Best tδ = 1801
Avg. tδ = 1801

Figure 1: Performance Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 600 800 1000 1200 1400 1600 1800

B
es

t S
at

is
fic

ab
ilt

y
(F

ra
ct

io
n

O
ut

 O
f 3

0
R

un
s)

Generations

Best Satisficability tδ = 100
Best Satisficability tδ = 1801

Figure 2: Satisficability Results

(Best Satisficability) were able to satisfice a goal of achieving
θ = 0.5, where o = 191, and thus s = 0.5× 191 = 95.5. The
actual value of θ that is chosen in this case is arbitrary since
the problem is abstract. Instead what is interesting is ob-
serving the dynamics of the measure over time which will be
explored below. In Figure 2 only the last 1200 generations
are presented to increase the resolution of the data. Figure
3 displays the robustness of the best individual in the popu-
lation (Best Robustness) and the robustness of the average
fitness of the population (Average Robustness) for tδ = 100
across the entire run (averaged across 30 runs). Figure 4
displays the average scaled hamming distance of the popu-
lation (Average Diversity) for the last 1300 generations for
both tδ values.

5. DISCUSSION
The performance of the system has been more thoroughly

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t a
nd

 A
ve

ra
ge

 R
ob

us
tn

es
s

(A
vg

. O
ve

r 3
0

R
un

s)

Generations

Best Robustness tδ = 100
Avg. Robustness tδ = 100

Figure 3: Robustness Results

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 600 800 1000 1200 1400 1600 1800

A
ve

ra
ge

 D
iv

er
si

ty
 (A

vg
. O

ve
r 3

0
R

un
s)

Generations

tδ = 100
tδ = 1801

Figure 4: Diversity Results

explored in a previous paper [15]. However, it is clear from
the results here that the regularly changing environment is
able to outperform the static environment in the long run.
Initially the dynamic environment under-performs the static
environment but before halfway through the run the dy-
namic environment has achieved a superior fitness in both
the best individual and the average fitness. We believe this
is because the regularly changing environment prevents the
GA from being locked into particular building blocks and
forces it to explore a wider range of intermediate schemata.
It is also interesting to note that when the ladder is shaken
in the regularly changing environment, the Average Perfor-
mance of the system falls farther than the Best Performance
of the system (see Figure 3 for additional clarification). This
makes sense– when the ladder is shaken many of the indi-
viduals that were being rewarded before lose those rewards
and hence their fitness falls greatly; however it is reasonable
to suppose that there are some individuals immediately af-
ter a shake that have a higher performance (the new best
individuals) than they did before the shake and thus they
mitigate the fall of the best performance.

Given the performance results the satisficability results
are interesting as well. Since the satisficing results are mea-
sures of individuals above a certain threshold, it would make
sense that the dynamic environment, which outperforms the
static environment, would also have a higher level of satis-
ficability. However, both the static and dynamic environ-
ments behave in a similar fashion. The satisficing threshold
is set at 0.5 and the elementary building blocks constitute
almost half of the fitness function reward. Thus, one hypoth-
esis to explain why both systems are able to achieve similar
levels of satisficability is that both the dynamic and static
environments are finding basic building blocks at roughly
the same rate. However the dynamic environment outper-
forms the static environment because it is better at find-
ing the intermediate building blocks. The dynamic environ-
ment is getting rewarded for different intermediate building
blocks and thus has a higher selection pressure to find them,
whereas the static environment is mainly under pressure to
find the elementary building blocks and the particular inter-
mediate schemata that are rewarded in its sl-hdf instance.
We do not present the results of Average Satisficability but
it closely mirrors the Best Satisficability, which is interesting
since it is a measure within a run instead of across runs, and
thus there is no guarantee that it would be the same.

The robustness results are also interesting. The static en-
vironment results are not presented since it is almost always
able to maintain its robustness, which means that its fit-
ness is constantly improving. The one exception to this is
that occasionally the best individual suffers some degrada-
tion, probably due to a deleterious mutation. However, for
tδ = 100, every 100 generations the robustness decreases
substantially, but then immediately recovers. Moreover, the
robustness score at each shake changes as the run goes on.
Basically there are three phases to the robustness score,
early on (Generation 0 to Generation 400) the decreases are
small, in the middle generations (Generation 400 to Gen-
eration 1000) they are larger, and in the final generations
(Generation 1000 to Generation 1800) they are small again.
The first phase is because the population has little fitness
value to lose. The population is dominated by individuals
who have a few elementary schemata and maybe one or two
intermediate schemata, thus the ladder shakes have little ef-

fect on them since it only changes intermediate schemata.
At the end of the run the GA has found most of the in-
termediate schemata, but has not assembled them into one
individual, and thus it is not affected much by shakes of the
ladder since there is some individual in the population that
has the new intermediate schemata. In the middle is when
the GA has the largest decreases in robustness, and this is
because at this phase the GA has devoted lots of resources
to exploring particular intermediate schemata. Also, the
Best Robustness score never falls as much as the Average
Robustness score. This is explained above when discussing
the performance results.

The most interesting result is the diversity results. Our
initial hypothesis was that the overall diversity of the static
system would decrease as time went on, indicating that the
population was converging, and that diversity in the regu-
larly changing environment would increase immediately af-
ter a change but then decrease again. However that is not
what happens. Instead it appears that for tδ = 1801 di-
versity (minus some noise) always increases, whereas for
tδ = 100 diversity varies around some average, but decreases
immediately after a ladder shake and then increases until the
ladder is shaken again. Our new hypothesis is that the static
environment’s population is dominated by a few strong indi-
viduals but over time these individuals gain additional mu-
tations that are neutral. This results in diversity increasing.
In the regularly changing environment on the other hand,
when the ladder is shaken, there are just a few individu-
als that contain the proper bit values to work well in the
new environment, and thus these individuals quickly dom-
inate the population. This results in the loss of diversity
of all the previous explorations that were going on, and a
very sharp founder’s effect [9] which results in a quick con-
vergence of the population around these new intermediate
building blocks.

This explanation may seem to contradict the earlier state-
ments that the dynamic environment prevents the prema-
ture convergence (loss of diversity) of the GA on particular
intermediate building blocks. However the diversity mea-
sure that we present here is based on bits, not building
blocks. There are some bits that never matter even in op-
timal strings, since they are wildcards in the highest level
schema, we will call these highest level wildcards (as men-
tioned above the lower limit on this is 100 bits). There are
other bits that are not as important given the current ele-
mentary schemata present in the population and the current
intermediate schemata being rewarded, we will call these
currently quasi-neutral bits. The problem with these bits is
that only if an entire new elementary schemata (8 bits out
of 500) is discovered and the proper combination of it with
a few other elementary schemata occurs, is there enough
of a selection pressure to allow these bits to go to fixation.
Thus, diversity increases in the static environment because
both highest level wildcards and the currently quasi-neutral
bits can mutate without greatly affecting the fitness of an in-
dividual. In the dynamic environment diversity is kept lower
because the shaking of the ladder causes a strong selection
pressure that forces the population to move to a new set
of intermediate schemata, and only after that can the cur-
rently quasi-neutral bits mutate. However the above expla-
nation does not say anything about the diversity of schemata
(building blocks). The dynamic environment has a larger di-
versity of schemata and that is how it is able to outperform

the static environment, whereas the the static environment
quickly converges on a group of intermediate schemata and
does not search for additional combinations.

6. CONCLUSION
The overall goal of our project is to better understand how

the GA works in dynamic environments. We have presented
a set of measures that we feel will help us in better under-
standing the overall behavior of the GA in dynamic environ-
ments. Our observations and results here are on the sl-hdf’s
but we hope to show that these measurements are useful
in a wide variety of environments. Though many of these
measures have been presented before in different formats, by
viewing them as a suite we are able to gain a deeper under-
standing of how the GA performs in dynamic environments.
We plan to continue to conduct systematic controlled obser-
vations of the GA. We feel that this allows us to contribute
to theory by providing a series of regular observations and
to contribute to practice by providing suggestions for a rich
set of environments.

Acknowledgments
We would like to thank the University of Michigan’s Cen-
ter for the Study of Complex Systems for the computer re-
sources that they have provided to us without which this
paper would not have been possible.

7. REFERENCES
[1] Branke, J. Evolutionary algorithms for dynamic

optimization problems: A survey. Tech. Rep. 387,
Institute AIFB, University of Karlsruhe, February
1999.

[2] Branke, J. Memory enhanced evolutionary
algorithms for changing optimization problems. In
Congress on Evolutionary Computation CEC99
(1999), vol. 3, IEEE, pp. 1875–82.

[3] Branke, J. Evolutionary Optimization in Dynamic
Environments. Kluwer Academic Publishers, 2001.

[4] Branke, J., Salihoğlu, E., and Uyar, S. Towards
an analysis of dynamic environments. In To appear in
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2005) (2005).

[5] Cobb, H. G. An investigation into the use of
hypermutation as an adaptive operator in genetic
algorithms having continuous, time-dependent
nonstationary environments. Tech. Rep. AIC-90-001,
Naval Research Laboratory, Washington, D.C., 1990.

[6] Goldberg, D. E., and Richardson, J. Genetic
algorithms with sharing for multimodal function
optimization. In Proceedings of the Second
International Conference on Genetic Algorithms
(Hillsdale, New Jersey, 1987), J. J. Grefenstette, Ed.,
Lawrence Erlbaum Associates, pp. 41–9.

[7] Grefenstette, J. J. Genetic algorithms for changing
environments. In Parallel Problem Solving from
Nature 2 (Proc. 2nd Int. Conf. on Parallel Problem
Solving from Nature, Brussels 1992) (Amsterdam,
1992), R. Männer and B. Manderick, Eds., Elsevier,
pp. 137–144.

[8] Holland, J. Adpatation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[9] Holland, J. H. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolutionary Computation 8, 4 (2000), 373–391.

[10] Jen, E. Stable or robust? what’s the difference?
Complexity 8, 3 (January / February 2003), 12–18.

[11] Koza, J. R. Genetic Programming. MIT Press,
Cambridge, Massachusetts, 1992, ch. 8.

[12] Mitchell, M. An Introduction To Genetic
Algorithms. MIT Press, Cambridge, Massachusetts,
1997, ch. 1.

[13] Morrison, R. W., and DeJob, K. A. A test
problem generator for non-stationary environments. In
Congress on Evolutionary Computation CEC99
(1999), vol. 3, IEEE, pp. 2047–53.

[14] Rand, W., and Riolo, R. The problem with a
self-adaptative mutation rate in some environments: A
case study using the shaky ladder hyperplane-defined
functions. In To appear in Proceedings of the Genetic
and Evolutionary Computation Conference
(GECCO-2005) (2005).

[15] Rand, W., and Riolo, R. Shaky ladders,
hyperplane-defined functions and genetic algorithms:
Systematic controlled observation in dynamic
environments. In EvoWorkshops 2005 Proceedings
(2005), R. et al., Ed., Lecture Notes In Computer
Science, Springer. In Press.

[16] Simon, H. Models of Man. Wiley, New York, 1957.

[17] Stanhope, S. A., and Daida, J. M. Optimal
mutation and crossover rates for a genetic algorithm
operating in a dynamic environment. In Evolutionary
Programming VII (1998), no. 1447 in LNCS, Springer,
pp. 693–702.

[18] Toffolo, A., and Benini, E. Genetic diversity as an
objective in multi-objective evolutionary algorithms.
Evolutionary Computation 11, 2 (2003), 151–67.

[19] Whitley, D., Rana, S. B., Dzubera, J., and
Mathias, K. E. Evaluating evolutionary algorithms.
Artificial Intelligence 85, 1-2 (1996), 245–276.

[20] Wilson, E. O. The current state of biological
diversity. In Biodiversity, E. O. Wilson and F. M.
Peter, Eds. National Academy Press, Washington,
1988, pp. 3–18.

