Learning, Anticipation and Time—Deception in
Evolutionary Online Dynamic Optimization

Peter A.N. Bosman
Centre for Mathematics and Computer Science
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

Peter.Bosman@cwi.nl

ABSTRACT

In this paper we focus on an important source of problem—
difficulty in (online) dynamic optimization problems that
has so far received significantly less attention than the tra-
ditional shifting of optima. Intuitively put, decisions taken
now (i.e. setting the problem variables to certain values)
may influence the score that can be obtained in the future.
We indicate how such time-linkage can deceive an optimizer
and cause it to find a suboptimal solution trajectory. We
then propose a means to address time-linkage: predict the
future by learning from the past. We formalize this means in
an algorithmic framework. Also, we indicate why evolution-
ary algorithms are specifically of interest in this framework.
We have performed experiments with two new benchmark
problems that contain time—linkage. The results show, as a
proof of principle, that in the presence of time-linkage EAs
based upon this framework can obtain better results than
classic EAs that do not predict the future.

Categories and Subject Descriptors

F.1.2 [Computation by Abstract Devices]: Modes of

Computation—Online Computation; G.1 [Numerical Anal-
ysis|: Optimization; 1.2 [Artificial Intelligence]: Problem

Solving, Control Methods, and Search

General Terms

Algorithms, Performance, Experimentation

Keywords

Evolutionary Algorithms, Dynamic Optimization, Online Op-
timization, Learning, Predicting

1. INTRODUCTION

The majority of the literature on dynamic optimization [11]
involves the tracking of optima as the search space trans-
forms over time. If evolutionary algorithms (EAs) [14] are
used to achieve this goal, issues such as maintaining diver-
sity around (sub)optima and continuously searching for new

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCO' 05, June 25-29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-097-3/05/000655.00.

regions of interest that may appear over time are the most
important [1, 2, 3,4, 7, 8,9, 13, 15, 16, 19, 24, 27, 31]. The
shifting of optima in dynamic optimization problems is im-
portant to study and to (re)design EAs for. However, there
is another feature of dynamic optimization problems that is
common in real-world problems such as scheduling [10] and
vehicle routing [21, 22, 29] that has received less attention
in the literature. We will call this feature time—linkage.

Intuitively put, the presence of time—linkage in a dynamic
optimization problem causes decisions that are made now,
which are often made on the basis of maximizing a certain
score right now, may influence the maximum score that can
be obtained in the future. This in turn decreases the overall
score obtained in the long run. A typical and illustrative
example is the case of dynamic vehicle routing where the
locations to visit are announced over time. If locations are
clustered, but the clusters themselves are far apart, routing
on the basis of the currently available locations will likely
lead to oscillatory behavior of the vehicles if the announced
locations oscillate between the clusters. More efficient routes
could be formed by keeping vehicles inside clusters and only
occasionally letting them move to another cluster. In addi-
tion, quality of service (e.g. being on time) as determined by
the routing, influences future customer demand. Poor per-
formance will likely not result in repeated orders. Hence,
the revenue of a company over time will be determined by
the current performance, but also by the impact the current
way of routing has on future events.

Time-linkage in dynamic optimization problems is to a
certain extent related to the temporal credit assignment
problem in reinforcement learning [25]. In the temporal
credit assignment problem, the feedback from the system
for an action taken now is returned after a certain delay.
Hence it is uncertain when taking an action what its even-
tual effect is on the environment. The problem then is how
to assign credit to an action taken in the past based upon
feedback received now. Ultimately, the goal in reinforce-
ment learning is to learn a policy for navigating a state
space optimally and the same action may be taken start-
ing from the same state multiple times while performing
reinforcement learning. The difficulty in temporal credit as-
signment is that actions and their corresponding rewards are
not synchronized, which makes reinforcement learning more
difficult. In essence, learning a policy is a static optimiza-
tion problem where policies are solutions and the decisions
taken during the process serve to aid in determining a good
policy. This is fundamentally different from the dynamic
optimization problems that we study in this paper where

the decisions themselves must be made optimally and they
can be made only once. What these two problems have in
common is that in both cases the use of predictions of con-
sequences of actions taken now can help to obtain better
results [23]. Whereas this is already known for the temporal
credit assignment problem in reinforcement learning, in this
paper we show that this is also the case for time-linkage in
dynamic optimization problems.

It is important to note that such dependencies between
decisions over time requires their explicit processing in an
algorithm to ensure the best performance in the long run.
Any approach that does not explicitly anticipate these de-
pendencies and instead only solves the problem for the cur-
rent time will never obtain an optimal result.

In this paper, we present an algorithmic framework for
solving dynamic optimization problems that is specifically
equipped with the possibility of processing time-linkage. To
this end, we propose the incorporation of learning (e.g. sta-
tistical [30] or machine [20]) with the explicit task of pre-
dicting the future to prevent being deceived over time. An
evolutionary approach in which the future is predicted for
dynamic optimization has been proposed before [28]. How-
ever, the cited approach only predicts the future for a single
discrete timestep. As a result, the algorithm cannot process
longer, arbitrary sized, time-linkage intervals. Moreover,
the approach was only tested on a problem that doesn’t
contain the time-linkage aspect. As a result, no significant
difference was observed in using either a good predictor or a
bad predictor. In this paper, we present two new benchmark
problems that contain time-linkage and show, as a proof of
principle, how they can be solved using an instance of our
proposed framework.

It should be noted that it is not our goal in this paper
to propose a new state-of-the-art EA for dynamic opti-
mization. Instead, we want to point out the influence that
time-linkage can have and how, in a general manner, EAs
can be equipped with tools to cope with time-linkage.

The remainder of this paper is organized as follows. In
Section 2 we characterize online dynamic optimization prob-
lems. In Section 3 we discuss solving online dynamic op-
timization problems by only taking into account the cur-
rent situation. Section 4 describes the advantages of solv-
ing online dynamic optimization problems by also taking
into account future implications of decisions. In Section 5
we describe our algorithmic framework and in Section 6 we
present results of running experiments with EAs based on
this framework. Finally, possible directions for future re-
search as well as conclusions are presented in Section 7.

2. ONLINE DYNAMIC OPTIMIZATION
2.1 Dynamic optimization

In general, optimization problems can be defined as:

max {3~(¢)} subject to €4(¢) = feasible (1)
where §y : P — O is the optimization function, P is the
parameter space, @ = R™ is the n,—dimensional objective
space, € : P — {feasible, infeasible} is the constraint func-
tion and v € G are problem—specific parameters.

In dynamic optimization the optimization function and
the constraint function are functionals where the function
space to optimize over consists of functions ¢(t) of the time
variable t € T = [0, "], " > 0:

tend
/ Fola e (C(0) dt @)

feasible if Vt€[0,teng]: €0, (C(t)) = feasible

@(C(t)):{ e

infeasible otherwise

where the convention that fZ (fo(x),..., frp—1(x))dz =
(f fo(z)dz, .. fZ fnofl(x)dm) is used. Note that the dy-

namic variants of the optimization— and constraint function
have parameters v () that may change over time. Note
that they may be dependent on earlier decisions by using
the time variable indirectly, i.e. through a function of {(¢).
In the above time is assumed to be continuous. How-
ever, the parameters do not have to change continuously
over time. In that case, the integral can be written as a dis-
crete sum and the dynamic problem is said to be discrete.

2.2 The online case

Equation 2 can still be solved in an offline manner by
searching for the best function {(t) either in parametric or
time—discretized form. It is the online variant or treatment
of dynamic optimization that is the most interesting and the
most practical, but unfortunately also the most difficult.

In the online case the dynamic optimization problem must
be solved as time goes by. In other words, solutions cannot
be evaluated for any future time ¢ > ¢t*°¥. Hence, decisions
on what values to use for the variables at the current time
t"°" have to be made continuously. The only thing that can
be evaluated is how well the algorithm has done so far, i.e.
the goodness of the history and the present:

¢now

I L () / Foim oy (C(1)) dt (3)

2.3 System influence and control influence

We distinguish between two types of influence that cause
the dynamic optimization problem to change with time:

1. System influence. This is the type of influence that the
problem solver has no control over. It is the part of the
dynamic system that changes over time, regardless of
choices made for the problem variables. It is the inher-
ent reason why the optimization problem is dynamic
and hence why the optimization function parameters
~%™ (t) are a function of time.

2. Control influence. This type of influence is the re-
sponse of the dynamic system at time ¢"°" to the choices
of the problem variables made in the past, i.e. the tra-
jectory ¢(t) with ¢ € [0,¢™").

Most EAs designed for dynamic optimization problems
studied in the literature are specifically designed to cope
with system influences. Without taking into account the
(possible) presence of control influence however, the online
dynamic optimizer risks falling victim to time—deception.

3. OPTIMIZING PRESENT:
VICTIM TO TIME-DECEPTION
3.1 The approach

An often—used approach to solving online dynamic opti-
mization problems is to optimize §%*(¢**¥,¢) continuously
or whenever an event resulting from system influence takes

place. Since we cannot change the past, we can only vary
the settings of the variables at t"°*. Hence, the optimiza-
tion problem to solve at time t"°“ using this approach is
actually static: optimize the value of the dynamic optimiza-
tion function at time ¢t"°". To cope with a variety of sys-
tem influences when using EAs, diversity preserving mecha-
nisms are often used to prevent complete convergence as are
other techniques such as detecting (major) changes in the
landscape to trigger a restart or forking off multiple sub—
populations from a general optimizer to search various parts
of the search space more closely as they become more inter-
esting over time.

3.2 How bad can it be?

Unfortunately, the answer is arbitrarily bad. The most im-
portant reason for this is the presence of control influence.
Of course system influence could make the problem change
in a random way, clearly already making the problem arbi-
trarily difficult. However, even if system influence is smooth
and the landscape is not—complex, optimizing only the cur-
rent situation can lead to arbitrarily bad results. Consider
for instance the following unconstrained [-dimensional dy-
namic optimization problem; a simple adaptation of the
sphere problem that shifts with time:

max § [(¢t (4)
where
=S)i—t)? if0<t<l1
e(¢(t),t)= { ijl € t)z t.<
—> o (C(#)i—=1t)" + 1 (|¢(t — 1):]) otherwise

Now, when optimizing only the present in an online setting,
a value for ¢(¢"°") is chosen by maximizing (¢, ™). But
for any t, ¢(¢, t) is just a hyperparabola with a unique max-
imum for {(t); =t. For 0 <t < 1 the associated value is 0
and for t > 1 this value is — Zi;é (J¢(t — 1)4]). It is this
construction that deceives an approach in which only the
present is optimized because then the actual value of func-
tion () is not taken into account although it may decrease
at an arbitrary rate, depending on its form.

o 13
-10 t |
20 t)
3
~ 30 f |
5% -40 f |
&
-50 r v(@) =22, (PP =t —— Y
Y(@) =€ =1, € (o =t e
P(2) = =, CIB(p)g =0 e
60 | Ya) =+ (o
0 1 2 3 4 5

Figure 1: Illustration of the optimization values ob-
tained for different variable trajectories and differ-
ent forms of () in the case of [=1 and t** = 5.

If however {(¢); = 0 is simply always chosen, then, assum-
ing that ¢ (0) = 0, the optimization value that is reached is
lff)end—t2dt = —é (te"d)a, regardless of function ().

Now if for instance 1 (z) = x?, the result is better if only
the present is optimized than if just ¢(¢); = 0 is chosen. Al-
though a better result can still be obtained because ¢(t); = 0
is not the optimal solution, the penalty of time—deception is
only small. But if ¢() is a higher—order increasing function,
such as for instance ¥ (z) = e — 1, a (much) worse opti-
mization value will be obtained. A graphical illustration of
the difference in obtained optimization values for different
variable trajectories for [= 1 is given in Figure 1.

Since in the online case the behavior of the optimization
function in the future is not known, optimizing only the
present can thus significantly reduce overall solution quality.
Hence, optimizing only the present is not a good approach
unless it the problem is provably not time—deceptive.

4. OPTIMIZING PRESENT AND FUTURE:
LEARN TO AVOID TIME-DECEPTION

4.1 The approach

The approach of optimizing only the present is deceived
over time because the true problem definition (i.e. equa-
tion 2) is not used. Future changes that occur as a result
of decisions made earlier are neglected. To remedy this,
optimization over future choices is required. In the online
case however, an evaluable future is absent. Hence the only
option is to predict the future. The available information
to base that prediction upon besides problem—specific infor-
mation is information collected in the past. The better the
prediction, the closer the algorithm can get to optimality.

Summarizing, the optimization problem to be solved using
this approach at any time ¢t"°" is based on an approximation
of the value of the dynamic optimization function over a
future timespan of length ¢*'°":

min{tnow +tp1en ’tend}

max [5e e 5)

tnow

Sob. VEE [, min {7 100)] L @2 (¢, (1)) = feasible
where §& (%, C(")) = F20 yuow, ("))

4.1.1 Prediction in the complete BBO case

The complete BBO (Black-Box Optimization) case is the
most general case. No prior knowledge on the problem to be
solved is assumed other than the number of variables and
their types. Additional knowledge can only be gained by
evaluating solutions. Since nothing is known about the op-
timization function, only a a very general form of induction
can be performed to predict future function values.

We assume that the number of variables and their seman-
tics do not change. To predict the (expected) value of the
dynamic optimization function, an approximation based on
previously evaluated solutions can be used. Computing this
approximation is a (statistical) learning problem. The avail-
able data in the learning problem is:

Mdata—

Ul(ee)) 0

where t', 0 < t* < ™" is the time-component of the i—th
pattern in the data set, ¢ is the variable-value-component
and y® contains the value of the dynamic optimization func-
tion for ¢? at time t°. Note that the use of an EA can greatly
add to the availability of data and can hence increase the
accuracy of the predictions because a (diverse) population
is used. Each population member can serve as a pattern.

The actually chosen trajectory ¢(¢),t € [0, ") is of course
also available to the predictor. Parts of this history—trajec-
tory can be integrated into the dataset to be able to process
time—linkage, i.e. dependencies of the dynamic optimization
function on values actually chosen for the problem variables
in the past.

The goal of learning is to estimate the value of the dy-
namic optimization function for future times (assuming that
the constraint function does not need to be estimated) by
minimizing the generalization error over the timespan that
contains the data to learn from. In the single-objective case:

gmax

min § [(525, €0) - 327 C0) @y (@)

¢min
where

min _ s i
{t = miNieq0,1,....npaim—13 12}

max __ 7
£ = maXie(0,1,...,nypaim—13 18}

and a € A are the parameters of the function class from
which to choose the approximation.

4.1.2 Prediction in the partial BBO case

In the presence of problem—specific information, the learn-
ing task may be less involved which may improve the relia-
bility of the predictions. A typical case is when the function
can be evaluated for any 0 < t < t**¢, as long as the required
parameters are set. Then, if we are able to predict the values
for the parameters accurately, we automatically get an ac-
curate function evaluation. The less parameters to estimate,
the better the hope of obtaining good approximations.

4.1.3 Prediction length and prediction base

Two key issues are how far into the future predictions
should be made (prediction length, denoted t*'**) and in-
formation from how far in the past should be used to base
the prediction upon (prediction base, denoted t*"**° indi-
cating generally collected data and history length, denoted
t"°" indicating the history of the actually chosen trajectory).
A proper choice for the prediction length and the history
length depends on the time-linkage timespan, i.e. how far
into the future do current choices have a significant influ-
ence? Certainly this is also the minimal choice for the pre-
diction base. However, larger values for prediction length,
prediction base and history length may be required to look
beyond the deception and observe the general dynamics of
the optimization problem.

Another issue that influences the proper choice for the
prediction length is the reliability of predictions. As pre-
dictions are made further into the future, they are bound to
become less reliable, giving a trade—off between the required
prediction length as a result of time-linkage and the feasible
prediction length as a result of reliability issues.

4.2 How good can it be?

Fortunately, the answer is arbitrarily good. However, al-
though it is intuitively clear that the optimum is attainable,
this does require perfect predictions. Then, the problem
can be solved to optimality by optimizing at any time the
integral over the predictions with tP'** = ¢ — ¢7°v,

The strength of the optimization method (with respect
to the problem at hand) is still a key component to suc-
cess. However, the success of the approach now also heavily
depends on the strength of the prediction method. Bad
predictions may even lead to worse results than are ob-
tained by optimizing only the present. Hence, careful de-
sign and performance assessment of methods that predict
the future are certainly called for. In the following section
we present a general framework for solving dynamic opti-
mization problems by incorporating learning techniques as
described above.

5. ALGORITHMIC FRAMEWORK
5.1 Components
511 Solver

The solver, denoted S, is an optimization algorithm, pos-
sibly equipped with tools to allow for adaptability as time
changes. The function to be optimized is provided by the
function component discussed in Section 5.1.3.

5.1.2 Predictor

The predictor, denoted P, is a learning algorithm that
approximates either the optimization function directly or
several of its parameters. The data set from which to es-
timate a function is provided by the database component
discussed in Section 5.1.4. When called upon, the predic-
tor returns either the predicted function value directly or
predicted values for parameters.

5.1.3 Function

The function, denoted F', is the optimization function to
be maximized by the solver. If the future is not to be taken
into account, this function is just the dynamic optimiza-
tion function. The trajectory of the variables in the pre-
dicted future represents the variables to be optimized by
the solver. To be able to compute the optimization value
of such a future trajectory, a solution for each possible time
between " and min{t"*" + t”'**,¢***} is needed. It is con-
venient to divide the trajectory—future interval as well as
the trajectory—history interval into non—zero sub—intervals
of length "™ and t"™* respectively. The optimization value
then is a discrete approximation of the integral over the
future interval where future predictions are in addition to
other data based on a discretized past trajectory. The num-
ber of variables that the solver needs to optimize over is the
union of all sets of variables that pertain to the dynamic
optimization function at the beginning of the sub—intervals.
The dynamic optimization function is used to compute the
optimization value that pertains to the current time and the
predictor is used to predict the future.

5.1.4 Database

The database, denoted D, is a collection of patterns upon
which the predictor bases its predictions. Patterns are added
either by the function component (i.e. in the complete BBO
case whenever a new solution is evaluated) or by the system

whenever an event occurs that is related to the parameters
of interest (i.e. in the partial BBO case). All patterns are
time—stamped. The database only contains patterns with a
timestamp ¢ for which ¢"°¥ — PP <t < ™" holds.

515 Timer

The timer, denoted T', can provide the current time

$oow

5.2 Dividing resources

Clearly, optimization becomes more involved if we also
want to take into account predictions of the future. Not
only does the number of variables to optimize over increase
(at least if we regard the complete BBO case), but also ad-
ditional time is required for learning to make predictions.

It is important to note that there is a trade-off between
how much time should be spent on running the solver and
how much time should be spent on running the predictor. To
allow for a scheme that implements this trade—off we propose
to implement the solver and the predictor components as
threads. This allows both for a scheme in which the solution
component and the predictor component run simultaneously
as well as a scheme where the predictor and solver are run
sequentially by synchronization using signals. An example
of the second scheme is when the solver sends a signal when a
certain number of generations have passed and subsequently
awaits completion of the learning task before continuing.

5.3 Definition

To complete the framework, in this section we provide an
algorithmic description of how the components are used to-
gether to solve online dynamic optimization problems. First,
the trajectory is made empty and all the components are ini-
tialized. Then, the solver and the predictor are started and
the actual optimization begins. Although the solver may
store a solution into the trajectory at any time (e.g. at the
end of each generation for an EA), we want to ensure that
at least a few solutions are stored in the trajectory. To this
end, the solver is requested for a solution at regular inter-
vals of length ™. These requests are issued until t**¢ is
reached. Then, the solver and the predictor are halted and
the resulting trajectory is returned:

FRAMEWORK(S, P, F, D, T, ™™, {PP==° {PI°n ot 4oty]

1Z<()

2 SINITIALIZE(S, P, F, ..., tP™)
3 PINITIALIZE(S, P, F, ..., t°™)
4 FINITIALIZE(S, P, F, ... tP™)
5 D.INITIALIZE(S, P, F, ..., t*™")
6 T.INITIALIZE(S, P, F, ..., t°™)
7 S.START()

8 P.START()

9 do

9.1 " «— T.GETTIME()
9.2 ¢ «— S.REQUESTSOLUTION()
9.3 Z — ZU((¢,t™v))
9.4 " — min{t"** + ¢ ¢!}
9.5 AWAITTIME(¢"**")
while " < ¢

10 S.STop()

11 P.STOP()

12 return(Z)

The final part of the framework that is of a specific form is
the way in which a solution in the form of a future trajectory
is evaluated. It is here that the prediction component can
influence the way in which the solver searches for a solution
at t"°" because the predictor is used to evaluate all parts of
the trajectory that pertain to future times:

F-EVALUATE((CO’C17_._7C[tplen/tl)int-‘*1)) |
1 t™v «— T.GETTIME()
int dyn 0
2 Y= t* ts,ytlyn(tnow_yz(tnow,O) (C)
3 if CoMPLETEBBOCASE() then
3.1 D.ADDPATTERN(((¢°, "), y))
3.2 for i «— 1 to [tP'"/tP™] — 1 do
3.2.1 y «— y + t"*P.PREDICT((", t"™% + ¢-tP™)
4 else
4.1 for i — 1 to]'tplen/tpi"t] -1 dQ
4.1.1 Apredicted — PPREDICT(C?, 7Y + i-t7™)
412 Y o g+ e (C)
5 return(y)

6. EXPERIMENTS
6.1 EA

The optimization problems that we use are real-valued,
but at any point in time not very daunting as the most im-
portant thing we focus on is time—linkage. Therefore, we
opt for a simple and fast real-valued EA. We use an EDA
(Estimation—of-Distribution Algorithm) for real-valued op-
timization [5, 18] without learning dependencies between
problem variables. The main difference with traditional EAs
is that in EDAs a probabilistic model is learned using the
selected solutions. The probabilistic model can capture var-
ious properties of the optimization problem. By drawing
new solutions from the probabilistic model these properties
can be exploited to obtain more efficient optimization.

In this paper we performed experiments with a real-valued
EDA based on the normal distribution in which each vari-
able is taken to be independent of all the other variables.
Such an EDA is also known as the naive IDEA (Iterated
Density—Estimation Evolutionary Algorithm) [6]. In the
naive variant the mean and standard deviation of a one—
dimensional normal distribution are estimated from the se-
lected solutions for each variable separately. A new solution
is constructed by sampling one value per variable from the
associated one—dimensional normal distribution. Since the
optimization problem is dynamic, we prevented total pre-
mature convergence by bounding the estimated variance for
each variable to a minimum of 0.1. Finally, all results were
averaged over 100 independent runs.

6.2 BBO: Time—deceptive numerical problem
6.2.1 Theproblem

We first investigate the real-valued time—deceptive prob-
lem introduced in Section 3, Equation 4. We regard two
variants by setting 1 (z) = 2? and ¢(z) = e® — 1. Moreover,
we have used a dimensionality of [= 1.

6.2.2 Instantiating the framework

We used three different predictor instances. In this prob-
lem the goal of the predictor is to predict the value of the
optimization function directly. The first instance is opti-
mal, i.e. it is the true value of the dynamic optimization
function. The second instance estimates a linear function
and the third instance estimates a quadratic function. The
latter two estimates are computed using a least—squares ap-
proximation. For clarity: the linear function for example is
estimated from a set of patterns with timestamps at most
tP*** time ago. Each pattern ((t',¢%),y*) is complemented
with the actually chosen trajectory in the past up to time
t—tMem in steps of M7 i.e. if ¢h" = M8t = 1 the pattern is
transformed to ((t*,¢%, ¢(t° — 1)), y%). The linear estimator
now is constructed from the transformed dataset.

Only the function class used by the quadratic estima-
tor contains the target function for the case of ¢(z) = x°.
Hence, effective future predictions are possible with proper
estimations in this case, preventing time—deception. For the
case of (z) = e® — 1, neither of the estimators can repre-
sent the target function. However, the quadratic estimator
should be capable of far better approximations.

Since we present a proof-of—principle, we do not investi-
gate the selection of t*'*" during optimization. Instead, we
fix it to either 0 that corresponds to the traditional approach
of not looking into the future or to the optimal value of 1.
Moreover, we set " = thint = ¢pbase — gpint _ yplen

6.2.3 Results

A population size of 25 was experimentally found to be
adequate for solving the optimization problem in each time
step. We set t**? = 10 and advanced time by a timestep of
0.001 every 25 evaluations (i.e.every generation). Since the
database contains all patterns over a timespan of length 1
and the timesteps are of size 0.001, the size of the database
can become quite large. Although this allows for a higher
precision of estimations, it also results in large time require-
ments for the learning task. Learning was performed after
a predefined number of generations had passed. To investi-
gate the impact on the overall quality of optimization, we
performed experiments with various values for the number
of generations between learning phases: 1,10, 100 and 1000.

The average trajectories obtained for the quadratic and
the exponential time—deceptive numerical problem are shown
in Figures 2 and 3 respectively. The overall result (i.e. the
integrated function over t € [0,10]) is tabulated in Table 1.

Theoretically, under the assumption that the length of
the time-linkage is known, the optimal trajectory can be
obtained if the target function is in the function class used
by the learner and the learner is competent in that it will
indeed find that target when learning. In the case of the
quadratic time—deceptive numerical problem this is experi-
mentally verified by the results. The use of the quadratic es-
timator leads to results that are very close to optimality (i.e.
when the future is known). The discrepancy is explained
by the startup time the learner needs before being able to
construct a model based upon previously encountered data.
Moreover, results improve if learning is performed more fre-
quently because the model is then constructed earlier.

In the case of the exponential time—deceptive numerical
problem, neither the linear nor the quadratic estimator pro-
vide a function class that contains the target exponential
function. However, for the time—linkage in this problem that
depends only on a single point in the past over a distance of
1, a quadratic function can quite closely approximate an ex-
ponential function. For this reason the use of the quadratic
estimator leads to good results here as well, albeit not opti-
mal. Small deviations from the optimal trajectory as a result
of a small learner error can indeed be seen in Figure 3. The
linear estimator is not capable of approximating a quadratic
function well. For the exponential function, linear estima-
tion is even worse. The use of the linear estimator therefore
leads to far worse results. An even more important point
to note is that the results using the linear estimator can be
even worse than when prediction is not used because of the
large errors in the predictions. Hence, another important
issue in using learning for online dynamic optimization is
the assessment of the reliability of predictions and the use
of predictions only if this reliability is large enough.

Linear estimator Quadratic estimator

0 T
-10 BN
-50 AN
-20 SN
-100
-30
~-150
>
> -40
~-200
- o
£<-250
T -60
300 20
-350 -80
-400 -90
0 2 4 6 8 10 0 2 4 6 8 10
10 10
9 9
8 8
7 , 7
(=}
=
&

Future known

Learn every 10 gen. ===
Learn every 100 gen.= .
Learn every 1000 gen.=+=+=*

Future ignored -------
Learn every gen.=+= -+

Figure 2: Results averaged over 100 runs on the

time—deceptive numerical problem with v (z) = 2.

The results lead to the expected conclusion that compe-
tent learners are called for and that reliability of predic-
tions is a major issue. The competence of the learner in
the BBO case depends on general/overall competence which
is very hard to obtain. In the problem—specific case how-
ever, achieving learner competence may be easier because
the shape of the model to be learned (i.e. parametric learn-
ing) is known from domain knowledge, ensuring that the
target function is in the function class used by the learner.

6.3 Partial BBO: dynamic pickup problem
6.3.1 Theproblem

The second problem that we investigate is a discrete par-
tial BBO problem. Although it is based on a very simple
model, the time-linkage in the problem is large: any decision
made now influences the result of the dynamic optimization
function for all future timesteps. The intuitive description is
that at timestep ¢ a truck is located at ='™"*(¢) and a pack-
age appears at location x£P***#°(¢). It must now be decided
whether to send the truck to go and pick up the package
or to drive elsewhere. If the package is not picked up, it
disappears. Picking up the package pays a value of 1, but

(€)

dyn

—log (—S

Quadratic estimator

"

Linear estimator

a
o

o

Y(x) =2’

|7,Z)(x)=e’”71|

Future known

—1.21846-10°

—1.55430-10°

Future ignored

—2.42940-102

—8.08692-10°%

Linear

Learn every gen.

—1.09434-103

—2.04922-10%°

Learn every 10 gen.

—1.18946-10°

—7.93853-10172

Learn every 100 gen.

—9.98665-10°

—3.02553-10%°

Learn every 1000 gen.

—1.38907-10°

—1.22634-105%°

"(dy“(t)
R
a
o

Ny
(=
s}

-250

7

-300

-350

-400

-450

100 10

80

60

40

20

Future known
Future ignored -------
Learn every gen.-=+++-

Figure 3: Results averaged over 100 runs on the
time—deceptive numerical problem with ¢ (z) = e®—1.

Learn every 10 gen. ===
Learn every 100 gen.=+=:=:=
Learn every 1000 gen.=+=-=-

driving costs a value equal to the FEuclidean distance trav-
eled. The number of packages is Npackages = tend 1, ie.
the timesteps are of size 1. A solution at time ¢ now is a
tuple ¢(t) = (b(t), z*"**™**°(t)) where b € {0,1} indicates
whether the package at time ¢ should be picked up (b(¢t) = 1)
and *"*™**¥°(¢) is the location to drive to if the package is
not to be picked up (b(t) = 0). Mathematically:

8oy (b0, & (1))) = ®)

17 || mpackagc(t) _ wtruck(t) || lf b(t) — 1
0— H walternative(t) _ wtruck(t) H otherwise
where
~TIZoN(0,1) ift=0
@™ (t) = ¢ wPres(t— 1) ift=1and b(t—1)=1

walternative (t _ 1) OtherWiSe

For simplicity, the model used to generate new package lo-
cations is a univariately factorized normal distribution with
zero mean and unit variance, i.e. ”***#*(¢) ~ []'25 N(0,1).

Learn every gen.

—1.22010-102

—1.55966-107

Learn every 10 gen.

—1.22013-102

—1.55969-107

Learn every 100 gen.

—1.22062-102

—1.56069-102

—1.23178-102

—1.58092-10?

Quadratic

Learn every 1000 gen.

Table 1: Overall results (i.e. féendgiﬁ;n(t) (¢(t)) dt) on
the time—deceptive problem.

6.3.2 Instantiating the framework

A very simple strategy is given by a hillclimber. The
decision taken at each timestep is to move only to pick up
a package and moreover only to do so if the distance to the
package is less than 1. In other words, a negative score is
never accepted.

We have compared the hillclimber with an EA instance
of the general framework. Since the optimization function
is completely known with the exception of xP***#°(t), the
problem is only partially a BBO problem. Hence, we can
restrict the prediction task to predicting future values for
zP*E°(¢). We have performed experiments where we as-
sumed the distribution of £****#°(¢) to be known and where
we estimated this distribution from data, assuming only that
the data is indeed normally distributed.

In theory, the influence of any decision at time ¢ influences
the outcome of the dynamic optimization function at any
time t' > t. However, the larger ¢ — t, the smaller the
remaining impact on the situation at time t'. Although in
theory it would be optimal to set t*'*" to t** with "™ = 1,
such a choice gives rise to two practical problems. First, a
large t*'°® gives to extremely large trajectories to optimize.
This drastically increases the resources required by the EA
to solve the problem. Second, since the future is inherently
stochastic, a proper estimation of the expected future profits
requires averaging evaluation over multiple calls. Moreover,
the variability of these outcomes increases as t*'*" increases
because more uncertainty is introduced. Hence, unless an
infinite number of calls is used, a smaller value for t**'* is
expected to be optimal in practice.

To prevent large trajectories to be subject to evolution in
the EA, we choose a simplified approach by choosing a very
special form for the predictor. The predictor predicts the
result of the dynamic stochastic optimization function up to
a timespan of t*'** into the future by using the hillclimber
instead of explicit solutions for each timestep provided by
the EA. The EA only provides a solution for the current
time. Although better results may be obtained by allowing
the EA also to evolve future solutions, using the hillclimber
to predict the future can already give good solutions. The
reason is that using the hillclimber can already give a good
impression of the quality of a certain starting point. Since
the dynamic optimization function is stochastic, it should
be noted that multiple calls are required to estimate the
expected future payoff even when evaluating the future using
the hillclimber. To reduce the number of statistical errors,
the best evolved decision is compared to the default choice

alternative (tnow)

of doing nothing, i.e. b(t™") = 0 and «

' (). Only if the mean fitness of the best evolved
decision averaged over 100 calls to the dynamic optimization
function is statistically significantly larger than the mean
fitness of the default decision, the evolved decision is used.
The statistical hypothesis test used to this end is the Aspin—
Welch—Satterthwaite (AWS) T—tests at a significance level
of @ = 0.05. The AWS T—test is a statistical hypothesis test
for the equality of means in which the equality of variances
is not assumed [17].

6.3.3 Results

A population size of 100 was experimentally found to be
adequate for solving the optimization problem in each time
step. We set t™*! = 100 and advanced time by a timestep of
1 every 5000 evaluations (i.e. every 50 generations). Since
only one pattern was added to the dataset each timestep,
and only a normal distribution is estimated from data, learn-
ing can be done very fast for this problem. Therefore learn-
ing was performed whenever time was advanced. The final
results (i.e. the integral of the dynamic optimization func-
tion over [0,100]) are shown in Figure 4 for different values
of the prediction length t*'°". Indeed as expected and mo-
tivated earlier in the previous subsection, the best value for
t*'°" is not the maximum length of t°*?, but a smaller length,
even if the model is fully known.

11
10.5
10
9.5

Hillclimber
EA - model known ===
i EA - model estimated if ¢"°% > 1 e
H ﬁ“;"‘._ EA - model estimated if ¢"°% > 10 s

b,

Final score

0 20 40 60 80 100
plen

. . . tend n
Figure 4: Final score (i.e. [3’:’éyn<t) (¢(t)) dt) aver-
aged over 100 runs on the dynamic pickup problem
as a function of the prediction length.

The trajectory of the cumulative fitness for the best value
and maximum value of t*** are shown in Figure 5. This fig-
ure also reveals why the use of information about the future
results in a better result in the end. All algorithms other
than the hillclimber are willing to accept negative scores in
a single turn if the prospect on future gains is larger. This
of course happens if the truck moves more towards the ori-
gin as the density of the normal distribution is the highest
there. The better strategy adopted by the system is thus
to initially move towards the region close to the origin and
never move too far away from it even if a profitable pickup
can be made in a single turn by doing so.

Finally, it is again interesting to note that postponing the
use of learning until a higher reliability is obtained leads to
better results, indicating again the importance of reliable
predictions in the proposed approach.

Hillclimber
10 | EA, model known, tP**" =5
EA, model known, t?!** =100
EA, est. if "% >1,Plen =3
8 FEA, est. if t"°% >1, tPl*" =100
EA, est. if t"°V > 10, tPl*" =9
EA, est. if t%°V > 10, tP'*" =100 w»

Cumulative score

0 10 20 30 40 50 60 70 80 90 100

$ow

Figure 5: Cumulative score (i.e. $4"(t*°",()) aver-
aged over 100 runs on the dynamic pickup problem.

7. DISCUSSION AND CONCLUSIONS

In this paper we have highlighted a specific source of dif-
ficulty in online dynamic optimization problems. We have
labeled the difficulty time—linkage. In the worst case time—
linkage can lead to time—deception. In that case any opti-
mization algorithm is mislead and finds suboptimal results
unless future implications of current decisions are taken into
account. To tackle problems exhibiting this type of problem
difficulty, we have proposed a framework that learns to pre-
dict the future and optimizes not only the current situation
but also future predicted situations. We have proposed and
used two new benchmark problems, but a larger suite of
problems containing time-linkage is called for and should
become a standard in dynamic optimization research.

In our experiments, we have fixed the future prediction
timespan as well as the history data timespan. An inter-
esting question is whether the timespans required to pre-
vent deception can be measured during optimization. This
calls for techniques for time-linkage identification in a sim-
ilar sense as gene-linkage identification techniques are re-
quired in standard GAs to prevent deception as a result of
dependencies between a problem’s variables [12, 26].

Another important and related issue is how quickly the
reliability of prediction degrades into the future. Even if we
know how far into the future we must predict, it is hardly of
any use to use these predictions if they are unreliable. The
prediction reliability is influenced mostly by the difficulty
of the function to predict (i.e. relatively steady or heavily
fluctuating) and by the availability of data.

Ultimately, the expansion of dynamic EAs to process time—
linkage information should be integrated with current state—
of-the—art dynamic EAs that are capable of tackling other
important problem difficulties that arise in dynamic opti-
mization such as the overtaking of the optima by other local
optima as time goes by. An EA that is capable of efficiently
tackling both sources of problem difficulty is likely to be
robust and well-suited to be used in practice and hence to
be tested in real-world scenario’s. To that end however, a
further expansion that makes the approach well-suited for
the multi—objective case is also likely to be crucial.

8.
(1]

2]

(3]

(4]

(5]

[6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

[14]

(15]

(16]

17]

REFERENCES

M. Andrews and A. Tuson. Diversity does not necessarily
imply adaptability. In J. Branke, editor, Proceedings of the
Workshop on Evolutionary Algorithms for Dynamic
Optimization Problems at the Genetic and Evolutionary
Comp. Conference — GECCO 2003, pages 24—28, 2003.

P. J. Angeline. Tracking extrema in dynamic environments.
In P. J. Angeline et al., editors, Sizth Int. Conf. on Evol.
Programming, pages 335—-345, Berlin, 1997. Springer Verlag.
D. V. Arnold and H.-G. Beyer. Random dynamics optimum
tracking with evolution strategies. In J.J. Merelo et al.,
editors, Parallel Problem Solving from Nature — PPSN VII,
pages 3—12, Berlin, 2002. Springer Verlag.

T. M. Blackwell. Particle swarms and population diversity
II: Experiments. In J. Branke, editor, Proceedings of the
Workshop on Ewvolutionary Algorithms for Dynamic
Optimization Problems at the Genetic and Evolutionary
Comp. Conference — GECCO 2003, pages 14-18, 2003.

P. A. N. Bosman and D. Thierens. Advancing continuous
ideas with mixture distributions and factorization selection
metrics. In M. Pelikan and K. Sastry, editors, Proc. of the
Optimization by Building and Using Probabilistic Models
OBUPM Workshop at the Genetic and Evolutionary
Comp. Conference — GECCO 2001, pages 208-212, 2001.
P. A. N. Bosman and D. Thierens. The naive MIDEA: a
baseline multi—objective EA. In C. A. Coello Coello et al.,
editors, Evolutionary Multi-Criterion Optimization —
EMO’05, pages 428—-442, Berlin, 2005. Springer—Verlag.

J. Branke. Memory enhanced evolutionary algorithms for
changing optimization problems. In Proceedings of the 99
Congress on Evolutionary Computation — CEC 99, pages
1875-1882, Piscataway, New Jersey, 1999. IEEE Press.

J. Branke. Fvolutionary Optimization in Dynamic
Environments. Kluwer, Norwell, Massachusetts, 2001.

J. Branke, T. Kaufller, C. Schmidt, and H. Schmeck. A
multi—population approach to dynamic optimization
problems. In I. C. Parmee, editor, Adaptive Computing in
Design and Manufacture — ACDM 2000, pages 299-308,
Berlin, 2000. Springer Verlag.

J. Branke and D. Mattfeld. Anticipation in dynamic
optimization: The scheduling case. In M. Schoenauer et al.,
editors, Parallel Prob. Solving from Nature — PPSN VI,
pages 253—-262, Berlin, 2000. Springer Verlag.

M. R. Caputo. Foundations of Dynamic Economic
Analysis. Cambridge University Press, Cambridge, 2005.
K. Deb and D. E. Goldberg. Sufficient conditions for
deception in arbitrary binary functions. Annals of
Mathematics and Artificial Intelligence, 10:385-408, 1994.
S. M. Garrett and J. H. Walker. Genetic algorithms:
Combining evolutionary and 'non’—evolutionary methods in
tracking dynamic global optima. In W. B. Langdon et al.,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference — GECCO 2002, pages 359-366.
Morgan Kaufmann, 2002.

D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learing. Addison Wesley,
Reading, Massachusetts, 1989.

J. Grefenstette. Evolvability in dynamic fitness landscapes:
a genetic algorithm approach. In Proceedings of the 99
Congress on Evolutionary Computation — CEC 99, pages
2031-2038, Piscataway, New Jersey, 1999. IEEE Press.

K. De Jong. Evolving in a changing world. In Z. W. Ras
and A. Skowron, editors, Foundations of Intelligent
Systems, pages 512-519, Berlin, 1999. Springer Verlag.
M.G. Kendall and A. Stuart. The Advanced Theory Of
Statistics, Volume 2, Inference And Relationship. Charles
Griffin & Company Limited, 1967.

(18]

19]

20]

21]

(22]

23]

[24]

[25]

[26]

27]

28]

29]

(30]

(31]

P. Larranaga, R. Etxeberria, J. A. Lozano, and J. M. Pena.
Optimization in continuous domains by learning and
simulation of Gaussian networks. In M. Pelikan et al.,
editors, Proceedings of the Optimization by Building and
Using Probabilistic Models OBUPM Workshop at the
Genetic and Evolutionary Computation Conference —
GECCO 2000, pages 201-204, 2000.

A. M. L. Liekens, H. M. M. ten Eikelder, and P. A. J.
Hilbers. Finite population models of dynamic optimization
with alternating fitness functions. In J. Branke, editor,
Proc. of the Workshop on Evolutionary Algorithms for
Dynamic Optimization Problems at the Genetic and Fvol.
Comp. Conference — GECCO 2003, pages 19-23, 2003.

T. M. Mitchell. Machine Learning. McGraw-Hill, New
York, New York, 1997.

W. B. Powell. Algorithms for the dynamic vehicle
allocation problem. In B. L. Golden and A. A. Assad,
editors, Vehicle Routing: Methods and Studies, pages
249-292. Elsevier Science, Amsterdam, 1988.

H. N. Psaraftis. Dynamic vehicle routing problems. In B. L.
Golden and A. A. Assad, editors, Vehicle Routing: Methods
and Studies, pages 223-248. Elsevier Sc., Amsterdam, 1988.
B. Ravindran and S. S. Keerthi. C3: Reinforcement
learning. In E. Fiesler and R. Beale, editors, Handbook Of
Neural Computation. Oxford Univ. Press, Oxford, 1996.

L. Schéneman. On the influence of population sizes in
evolution strategies in dynamic environments. In J. Branke,
editor, Proceedings of the Workshop on Evolutionary
Algorithms for Dynamic Optimization Problems at the
Genetic and Evolutionary Computation Conference —
GECCO 2003, pages 29-33, 2003.

R. S. Sutton. Temporal credit assignment in reinforcement
learning. PhD thesis, University of Massachusetts,
Ambherst, Massachusetts, 1984.

D. Thierens. Scalability problems of simple genetic
algorithms. Evolutionary computation, 7:331-352, 1999.

R. K. Ursem. Multinational gas: Multimodal optimization
techniques in dynamic environments. In D. Whitley et al.,
editors, Proceedings of the Genetic and Evolutionary
Computation Conference — GECCO 2000, pages 19-26.
Morgan Kaufmann, 2000.

J. I. van Hemert, C. Van Hoyweghen, E. Lukschandl, and
K Verbeeck. A “futurist” approach to dynamic
environments. In J. Branke and T. Béack, editors,
Proceedings of the Workshop on Evolutionary Algorithms
for Dynamic Optimization Problems at the Genetic and
Evolutionary Computation Conference — GECCO 2001,
pages 35-38, 2001.

J. I. van Hemert and J. A. La Poutré. Dynamic routing
problems with fruitful regions: models and evolutionary
computation. In X. Yao et al., editors, Parallel Problem
Solving from Nature — PPSN VIII, pages 692—-701, Berlin,
2004. Springer Verlag.

V. Vapnik. Statistical learning theory. Wiley, New York,
New York, 1998.

M. Wineberg and F. Oppacher. Enhancing the ga’s ability
to cope with dynamic environments. In D. Whitley et al.,
editors, Proceedings of the Genetic and Evolutionary

Computation Conference — GECCO 2000, pages 3—10.
Morgan Kaufmann, 2000.

