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ABSTRACT 

In many real-world design problems, uncertainties are often 

present and practically impossible to avoid. Many existing works 

on Evolutionary Algorithm (EA) for handling uncertainty have 

emphasized on introducing some prior structure of the uncertainty 

or noise to the variable domain and conducting sensitivity analysis 

based on the assumed information. In this paper, we present an 

evolutionary design optimization that handles the presence of 

uncertainty with respect to the desired robust performance in 

mind, which we call an inverse robust design. The scheme, unlike 

others developed to represent uncertainty does not assume any 

structure of the uncertainty involved; hence it is particularly 

useful when there is very little information about the uncertainties 

available. In our formulation, we model the clustering of uncertain 

events in families of nested sets using a multi-level optimization 

searches within the multi-objective evolutionary search. Empirical 

studies were conducted on synthetic functions to demonstrate that 

our algorithm converges to a set of designs with non-dominated 

nominal performances and robustness to the presence of 

uncertainties. 

Categories and Subject Descriptors 

G.1.6 [Numerical Analysis]: Optimization – global optimization.  

General Terms 

Algorithms. 

Keywords 

Evolutionary Algorithms, robust design optimization, design 

optimization in the presence of uncertainty. 

 

 

1. INTRODUCTION 
Uncertainties are often present and practically impossible to avoid 

in many real world engineering design problems. For instance, if a 

design is very sensitive to small geometric variations, which may 

arise either due to manufacturing processes, and/or in-service 

degradation due to erosion processes and foreign object damage, 

and/or drifts in operating conditions, it may not be desirable to 

use this design. Hence optimization without taking uncertainty 

into consideration generally leads to designs that should not be 

labeled as optimal but rather potentially high risk designs that are 

likely to perform badly when put to practical use. Faced with high 

sensitivities to uncertainties, traditional Evolutionary Algorithms 

(EAs) [1] tend to display sign of over-searching since they 

naturally favor designs with a larger fitness value. However, in 

practice, the preferable design solution is probably one that may 

not be the globally optimum solution, but one that has a high 

tolerance or robustness to uncertainties. Solutions whose 

performances do not change much in the presence of uncertainties 

are often referred to as robust designs.  

In recent years, a number of approaches have been proposed in 

the literature to attain robust designs. These include the One-at-a-

Time Experiments, Taguchi Orthogonal Arrays, bounds-based, 

fuzzy and probabilistic methods [2]. In EA, a number of 

prominent new studies on handling the presence of uncertainty in 

engineering designs have also been made over the recent years. A 

noisy phenotype scheme was introduced in [3] where a 

probabilistic noise vector is added to the genotype before fitness 

evaluation. In biological terms, this means that part of the 

phenotypic features of an individual is determined by the 

decoding process of the genotypic code of genes in the 

chromosomes. In [4], the study of an (1+1)-Evolutionary Strategy 

(ES) with isotropic normal mutations using the noisy phenotype 

scheme has also been reported. In [5-7], uncertainty was regarded 

in the form of a dynamic environment where the landscape of the 

problem is perceived to be changing dynamically. In their work, 

approaches using multi-populations to facilitate exploration and 

exploitation were also considered. A multi-objective approach to 

handling uncertainty in EA was also studied in [8] where the 

trade-off between robustness and nominal performance of a 

solution was discussed. A strategy to attain robust designs with 

minimum variations in noise was also presented in [9] on realistic 

mechanical design problem.  
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In most of these schemes, often some prior knowledge about the 

structure of the uncertainties, such as the distribution property 

involved were assumed to be available. For instance, the 

uncertainty that exists in the environmental conditions and design 

parameters of evolutionary search are often assumed to be 

uniformly or normally distributed, with certain range or standard 

deviation. However, it is worth noting that the quality of the 

solution is generally attainable only when the assumptions made 

on the structure of the uncertainty reflect the actual uncertainty 

flawlessly.   

In many real world engineering design problems, it is often the 

case that very little knowledge about the structure of the 

uncertainty involved is available. Making assumptions about the 

uncertainty that are not backed up by strong evidence in 

evolutionary design optimization can possibly lead to erroneous 

designs that could have catastrophic consequences. Thus, it would 

be wiser for one to avoid making assumptions about the structure 

in the formulation of the optimization search process. In this 

paper, instead of using sensitivity analysis, i.e., analyzing the 

changes in performance of a design with respect to variability in 

the key design variables, we present evolutionary design 

optimization that handles the presence of uncertainty in view of 

the desired robust performance, which we call the inverse robust 

design. From the desired performance, we search for solutions 

that guarantee a certain degree of maximum uncertainty and at the 

same time satisfy the desired nominal performance of the final 

design solution. For this purpose, we conduct series of nested 

multi-point local searches using the Sequential Quadratic 

Programming method [10] within the Non-dominated Sorting 

Genetic Algorithm (NSGA) [11].  

The remaining of this paper is organized as follows: Section 2 

provides a brief discussion on evolutionary design optimization in 

the presence of uncertainties. The proposed algorithm for inverse 

evolutionary robust design optimization in the presence of 

uncertainties is presented subsequently in section 3. Section 4 

summarizes our empirical study on synthetically generated 

benchmark functions before section 5 finally concludes this paper.  

 

2. EVOLUTIONARY DESIGN 

OPTIMIZATION IN THE PRESENCE OF 

UNCERTAINTY 
In this section, we present a brief overview on some fundamentals 

of robust evolutionary design optimization in the presence of 

uncertainties. In particular, we consider the general bound 

constrained nonlinear programming problem of the form: 

Maximize:       )x(f  

Subject to:           ul xxx ≤≤              (1)                    

where )x(f  is a scalar-valued objective function, d
x ℜ∈  is the 

vector of design variables, while lx  and ux are vectors of lower 

and upper bounds for the design variables.  

Further, it is noted that the present focus is on EAs for robust 

engineering design optimization under uncertainties that arise in:   

i) design vector x  

( ) ( )δ+= xfxF   (2)                                       

where ( )k,...,, δδδδ 21= , is the noise in the design vector where 

some distribution about the uncertainty is assumed and F(x) is the 

effective fitness of design vector x.  

ii) operating/environmental conditions 

)c,x(f)x(F ξ+=                                   (3)                

where ( )nc,...,c,cc 21= , is the nominal value of the environmental 

parameters and ξ  is a random vector used to model the 

variability in the operating conditions. Referring to [8], both 

forms of uncertainties may be treated equivalently. Hence in this 

study, we do not differentiate the uncertainties between design 

variables and operating conditions. Rather the reader is referred to 

[8] for greater details on the issue. However, as far as this paper is 

concerned, we consider uncertainties in the design variables.  

The core mechanism in many existing robust schemes for solving 

this type of uncertainty is driven based on the effective fitness 

F(x) of the design solutions. Mathematically, the effective 

evaluation function F(x) is generally defined as: 

∫
∞

∞−

+= δδδ d)(q)x(f)x(F             (4) 

where )(q δ is a continuous density function of noise δ which is 

often assumed to be known a priori, usually a Gaussian or 

uniform distribution. 

To locate a robust design solution in the presence of uncertainties 

in the design vector, one may consider using the Noisy Phenotype 

Scheme proposed in [3] which is outlined in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Noisy Phenotype Scheme. 

 

Consider the one-dimensional function depicted in Figure 2  and 

defined by 

BEGIN EA (for maximization problem) 

•  Generate a population of designs 

while(termination condition is not satisfied) 

   for(each individual i in the population) 

      for(j=1 to m)              

• Perturb individual to arrive at xij 

• Evaluate F(xij) = f(xij + δj) 
      end for 

•  Determine effective fitness, F(xi) of individual i 

 F(xi)= ∑
=

m

j

ij )x(F
m

1

1
  

    end for 

• apply mutation and crossover to create new 

population 

• perform selection of individuals. 

end while 

END EA 
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where -1 ≤  x ≤  10                          (5) 

This represents a multimodal function with a nominal global 

optimum located at sharp peak x*∈ [6.5,7.8] and has many other 

ocal optima located elsewhere1. The robust solution that the noisy 

phenotype scheme in figure 1 converges to depends on the 

perturbation assumed on δ, i.e., the assumption on the structure of 

the uncertainty, δ. By making assumption on the distribution of δ 

in f(x), one may easily derive the respective effective fitness 

function, F(xi). For instance, figures 2(a) and (b) illustrates the 

effective fitness functions for the one-dimensional function 

defined in equation (5) assuming a uniform distribution for δ with 

σ set to ± 1.0 and ± 0.25, respectively. Note that σ defines the 

range or bound of the uncertainty that is assumed about δ. When 

the range for σ is configured to be ± 1.0, the global robust 

optimum2 may be easily found to be located in the region 

x^∈[3.0,4.0]. On the other hand, if σ is configured to be ± 0.25, 

the global robust optimum approaches that of the nominal fitness 

function f(x). For a complete explanation of how these may be 

arrived at, the reader is referred to [3, 6]. 

 

 

(a) Range of the uncertainty, σσσσ = ± 1.0 

 

                                                                 

1 Note that x* represents the nominal global optimum. 

2 Note that x^ represents the global effective optimum. 

 

 

(b) Range of the uncertainty, σσσσ = ± 0.25 

Figure 2. Effective fitness F(x) of the function defined in 

equation (5) assuming a uniform distribution for δ  

 

In most cases, the algorithm described in Figure 1 is capable of 

converging appropriately to the robust design solution defined by 

the effective fitness as long as the assumption made about the 

uncertainty, δ, including the type of distribution and the respective 

range or deviation, are known precisely.  In contrast, it is often the 

case in many realistic problems that very little knowledge about 

the structure of the uncertainty involved is available a prior. 

Besides, a major problem with many existing robust schemes in 

the literature is that the nominal fitness of the final design is often 

neglected [3, 5, 12]. These schemes generally optimize the 

robustness of the final design, at the expense of nominal 

performance of the final design. For instance, it may be observed 

from figure 2(a) that the design point x at 6.3 possess very good 

robustness, i.e., a high effective fitness of around 1.4, but have a 

very poor nominal fitness of only 0.84. This implies that it is 

crucial to consider both the nominal performance and robustness 

in the design optimization search. A straightforward manner to 

solve this problem is to reformulate the robustness scheme as a 

constraint problem with f(x) ≥ c and c is the minimum acceptable 

nominal performance for the final design [13]. This way, any 

individuals that fail the constraint gets heavily penalized in the 

robust EA search. This approach however may not be practical 

since information about the perceived minimum performance may 

not always be available.  

A more promising solution to handle the trade-off between the 

robustness and nominal fitness is to consider a multi-objective 

optimization approach [8] where a pareto front of robustness and 

nominal fitness can be attained. Motivated by this work, we 

present here an inverse robust solution based on a multi-objective 

evolutionary approach. In particular, we consider two objective 

functions, namely the robustness and nominal fitness of the 

design. 

Input design Variable: x 

 

Input design Variable: x 

 

 



3. INVERSE MULTI-OBJECTIVE ROBUST 

EVOLUTIONARY DESIGN 

OPTIMIZATION 
To mitigate the problems identified in section 2, we present in this 

section an inverse multi-objective robust evolutionary design 

optimization strategy for locating designs with non-dominated 

nominal performances and robustness in the presence of 

uncertainties.  

In many real world engineering design problems [12, 14-16], it is 

often the case that very little knowledge   about the structure of 

the uncertainty involved is available. Hence, instead of focusing 

on making any probably unjustifiable mathematical model out of 

the uncertainty, we focus here on how a design may deteriorate in 

the presence of uncertainties. While it is common that designers 

may not possess the necessary expertise or have sufficient 

knowledge to identify suitable bounds of the uncertainties 

involve. On the contrary, it is more viable that designers have 

practical knowledge about the robust performance of the final 

design it desires. 

Here, we present the proposed algorithm for Inverse Multi-

Objective Robust Evolutionary design optimization (IMORE) in 

the presence of uncertainty. The basic steps of the proposed 

algorithm are outlined in Figure 3. In the first step, the maximum 

degradation tolerable for the final design, dt and step size ∆  used 

to conduct nested searches are defined and initialized. Within the 

initialization phase, a population of designs is also created either 

randomly or using design of experiments techniques such as Latin 

hypercube sampling or minimum discrepancy sequences [17]. 

Each individual in the population is first evaluated to determine 

its nominal fitness. Subsequently, each individual then undergoes 

a sequence of nested searches across a family of nested search 

regions parameterized by the uncertainty vector in the spirit of 

Info-Gap theory [18-20]. The aim of the nested searches is to 

determine the maximum robustness that a particular design can be 

guaranteed to handle under the permitted maximum performance 

degradation of td  defined. More specifically, during the inner 

search for each chromosome in an IMORE generation, we solve a 

sequence of bound constrained optimization subproblems of the 

form: 

Maximize: )x(f)x(f)x(d k
i −=  

subject to: k
u

k
l xxx ≤≤   (6) 

where k
lx  and k

ux  are the appropriate bounds on the design 

variables, which is updated at each k iteration based on the step 

size defined, ∆ .  

For each optimization subproblem (or during each k iteration), the 

optimal solution of the kth subproblem is sought. The objective of 

each subproblem search is to find the worst-case fitness function 

value by solving a bound constrained maximization problem. 

After each iteration, the design variables search bounds, k
lx  and 

k
ux  are updated using the step size ∆  which is given by 

∆−= kxx i
k
l  

∆+= kxx i
k
u     (7) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Inverse Multi-Objective Robust Evolutionary 

Design Algorithm in the presence of uncertainty. 
 

It is worth noting that by conducting a sequence of local searches 

across a family of ascending nested bounds parameterized by the 

uncertainty vector, we arrive at a monotonic increasing function 

of performance degradation versus uncertainty as illustrated in 

Figure 4 such that 

( ) ( )111 +++ ≤→≤≤ k
opt

k
opt

k
u

k
u

k
l

k
l xdxdxx,xx                     (8) 

where k
optx  denotes the optimum at the kth iteration and 

( ) ( ) ( )k
opti

k
opt xfxfxd −=  is the corresponding maximum 

performance degradation obtained for k
u

k
l

xxx ≤≤ . In addition, 

the ( )k
optxd  found and associated ∆k  for each search iteration is 

then stored to create a database of uncertainties and corresponding 

performance degradations. For example, consider a design  point 

with xi=4 in Figure 4, labelled points A, B and C correspond to 

))x(f,x( k
opt

k
opt  for k=1, 2 and 3 respectively and ∆ set to 1. 

BEGIN IMORE (Consider a maximizing problem) 

Initialization Phase: 

• Initialize Maximum degradation tolerable for 

the final design, dt  

• Initialize the step size ∆  for local search  

• Generate a population of design vectors 

Search Phase: 

While (termination condition is not satisfied) 

   For (each individual i in the population) 

• Evaluate f(xi) 

       Repeat 

• Maximize: )x(f)x(f)x(d k
i −=  

         subject to: k
u

k
l

xxx ≤≤  

∆−= kxx i
k
l , ∆+= kxx i

k
u  

• Obtain k
optx  and ( )k

optxd  

• Store ( )k
optxd  and associate it with ∆k  

       until ( ) ( ){ } t
k
opti

k d)x(fxfxd >−=  

• Estimate maximum uncertainty i
maxδ   using 

linear interpolation from ( )k
optxd for different 

∆k  

• Nominal fitness(xi) = f(xi) 

• Maximum uncertainty(xi) = i
maxδ  

   end For 

• Apply standard MOEA operators to create a 

new population 

end While   

END IMORE 



For each chromosome, the iterative searches are terminated when 

the optimal solution of the kth subproblem exceeds the maximum 

degradation defined, i.e. 

( ) ( ){ } t
k
opti

k d)x(fxfxd >−=                       (9) 

At the end of the sequences of searches for a chromosome, the 

maximum uncertainty 
maxδ  that a design may handle given a 

maximum performance degradation of td  permitted can be 

determined by interpolating from the database of previous 

uncertainties and maximum performance degradations, i.e., 

∆k and ( )xd
k . This is also illustrated in Figure 4 where D 

represents the point where a maximum performance degradation 

of td  is reached and 
maxδ  is the corresponding maximum 

uncertainty that the design guarantees to handle. The IMORE 

search then proceeds with the standard multi-objective operators 

to create a new population and terminates upon convergence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Steps of IMORE for xi=4 and ∆ =1.  

 

 

 

4. EMPIRICAL STUDY 
To illustrate the utility of the IMORE algorithm described in 

section 3, we present here an empirical study based on two 

synthetic one-dimensional multimodal functions. The EA was run 

for 100 generations with 16 bit binary-coded, linear ranking 

selection, mutation probability of 0.01, crossover probability of 

0.9 and a population size of 100. Further, we consider here a 

sequence of multi-start local bound constrained optimization 

subproblems to locate the maximum certainty 
maxδ  in our 

IMORE algorithm. In this study, we employ the Feasible 

Sequential Quadratic Programming (FSQP) as the local search 

strategy.  

 

Test Function 1. The first test function we consider here is a one-

dimensional multimodal function which is an aggregation of 

multiple one-dimensional Gaussian functions given in equation 

(10) and depicted in Figure 5. A unique property of this test 

function is that it contains a mixed of many sharp peaks or noisy 

near-global optimum solutions and rounded robust peaks in the 

regions x ∈[0, 4] and x ∈[10, 12], respectively. Hence it is not a 

simple task to identify a robust solution among them. This 

function is defined as: 
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where -1 ≤  x ≤  13                           (10) 

 

 

 

 

Figure 5. Test function 1. 

 

Test Function 2. The second multimodal test function is based on 

the one-dimensional “Michalewicz 2” function. This test function 

contains a mixture of a flat and robust region with moderate 
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nominal fitness for x∈[-0.5, 0.5] and noisy peaks with good 

nominal fitness for x∈[0.5, 3] as depicted in Figure 6 and is 

defined as: 
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Figure 6. Test function 2. 

 

In our IMORE algorithm outlined in Figure 3, it can be observed 

that besides the standard EA control parameters, we have 

introduced two additional parameters. These include 1) the 

maximum degradation permitted, td  and 2) the step size for local 

search, ∆ . td  is user-specific and depends on the degree of 

robustness desired by the designer in the final design. Hence, this 

leaves us only with the ∆  value to consider. To define a suitable 

value of ∆ , we conduct an empirical study on the effect of 

IMORE for different ∆ s on the two test functions. In our 

experimental study, td  is kept fixed at 1.0. The results obtained 

from the study are tabulated in Table 1. Here ∆  is defined as a 

percentage of the search bound, i.e., lu xx − . The average 

approximated robustness may then be defined by equation (12). 

%
xxn

n

i lu

i
max 100

1

1

×
−∑

=

δ
              (12) 

The average exact robustness is defined using the same equation 

(12), except that i
maxδ  is now the exact robustness. From the 

results, it is shown that generally the average error increases with 

the step size, i.e., the accuracy decreases with a larger step size. 

This makes good sense since a larger step size translates to a 

larger interpolation error. Like all algorithms, it is crucial to 

balance the accuracy desired and the computational cost incurred 

by the nested searches. Since a smaller step size translates to 

greater iterations of nested searches, i.e., k, as a result, more 

function evaluations are also required. In our IMORE algorithm, 

it is possible to show that the computational cost as ( )klO , if l is 

the average number of function evaluations incurred in a single 

multi-start local search. Further, we consider the use of ∆ =3% in 

all experimental studies from here onwards since this value offers 

good accuracy, see Table 1, the % error is lower than 0.25%.  

 

Table 1. Effect of step size ∆  in IMORE on test functions 1 

and 2. 

 Step 

Size 

∆  

(%) 

Average 

Approximated 

Robustness 

(%) 

Average 

Exact 

Robustness 

(%) 

Average 

Error 

(%) 

1 16.78 16.79 0.01 

3 14.11 14.20 0.09 

5 16.03 16.46 0.43 

Test 

Function 

1 

10 14.91 15.36 0.45 

1 5.59 5.60 0.01 

3 7.16 6.95 0.21 

5 5.83 4.91 0.92 

Test 

Function  

2 

10 9.33 6.13 3.2 

  

Next, we consider the IMORE algorithm for optimization of 

functions 1 and 2. The pareto fronts obtained from the simulation 

runs are presented in Figures 7 and 8 for test function 1 and 2, 

respectively.  

The solution in the pareto fronts represents a diverse set of 

designs having non-dominated nominal performances and 

robustness to the presence of uncertainties. To explain the results 

presented in these figures, we cluster the solutions into three 

separate groups in each pareto front. Group A consists of 

solutions having excellent nominal fitness at the expense of poor 

robustness. On the other hand, group B consists of solutions that 

are a balance trade-off between nominal fitness and robustness, 

while the solution members of group C have poor nominal fitness 

but excellent robustness measure. 

 

 

(a) 

 

A 

B 

C 



 

(b) 

Figure 7. (a) Pareto front at generation 100,  

(b) Corresponding offspring in (a) for test function 1. 

 

 

(a)  

 

 

(b) 

Figure 8. (a). Pareto front at generation 100,  

(b). Corresponding offspring in (a) for function 2.  

5. CONCLUSION AND FUTURE WORK 
In this paper, we have presented a study on inverse multi-

objective robust evolutionary design optimization in the presence 

of uncertainty. Using a prior information on the desire robustness 

of the final design, the algorithm was shown capable of 

converging to a set of solutions that gives good nominal 

performances while handling maximum robustness in the presence 

of uncertainties when applied on two synthetic functions. Most 

importantly, these solutions were discovered without any 

requirement to make possible untrue assumptions about the 

structure of the uncertainties involved.  

In evolutionary algorithms, many thousands of calls to the 

objective function are often required to locate a near optimal 

solution. While the IMORE algorithm proposed offers an 

effective approach to modeling of uncertainty in engineering 

design, a compelling limitation of the theory is the massive 

computational efforts incurred in the nested evolutionary design 

search. The computational efforts incurred would be even more 

devastating if the objective function is computationally expensive 

which is very common in complex engineering design problems 

[21-22]. Nevertheless, it is worth noting here that a promising and 

intuitive way to reduce the search time incurred in solving the 

sequences of bound constrained subproblems is to replace as 

much as possible the computationally expensive high-fidelity 

analysis solvers with lower-fidelity models that are 

computationally less expensive. The reader is referred to [21, 22] 

for greater details on the algorithm available to achieve this cost 

savings. 
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