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ABSTRACT 
Knowledge discovery in databases has traditionally focused on 
classification, prediction, or in the case of unsupervised discovery, 
clusters and class definitions.  Equally important, however, is the 
discovery of individual predictors along a continuum of some 
metric that indicates their association with a particular class.  This 
paper reports on the use of an XCS learning classifier system for 
this purpose.  Conducted over a range of odds ratios for a fixed 
variable in synthetic data, it was found that XCS discovers rules 
that contain metric information about specific predictors and their 
relationship to a given class.  In addition, EpiXCS performs 
qualitatively similarly to See5, and both methods are comparable 
to logistic regression. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning– concept learning, 
induction, parameter learning 

General Terms 
Algorithms, Experimentation, Performance, Reliability. 

Keywords 
Learning classifier systems, variable selection, statistical analysis, 
statistical computing 

1. INTRODUCTION 
A number of study designs exist for the collection and analysis of 
epidemiologic surveillance data.  These range from static, one-
time observational (prevalence) studies of an existing population 
or sample, to ongoing observation of a given population or sample.  
The latter, commonly called a cohort study, is of particular 
interest, in that it provides the ability to investigate the incidence 
of outcomes of interest over time. Because of this   added 
informational dimension, it is possible to create more robust 
models of causation that as would be the case in simple 
observational studies.  However, cohort studies are expensive to 
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maintain, and especially with regard to rare outcomes, may 
require many years of observation.  The alternative to the cohort 
design is the case-control study, in which subjects, who possess 
an outcome of interest, are identified as cases.  An equal or 
greater number of subjects without the outcome are included in 
the study as controls.  The controls are typically selected at 
random from a similar population as the cases, and may be 
matched on some set of variables, such as age, sex, or race.  A 
case-control study may be performed within the context of a 
larger cohort.  The advantage of the case-control study is that it is 
particularly efficient for rare outcomes which would take too long 
to complete in the context of a cohort study. 

One of the essential analytic parameters in the case-control study 
is the odds ratio (OR).  The OR approximates the relative risk of 
an outcome associated with a given exposure [3].  For 
dichotomous exposure and outcome variables, it is calculated as a 
cross-product ratio, as shown in Figure 1.   

Class Exposure Cases Controls 
Exposed A B 

Not Exposed C D 
Figure 1.  A 2x2 table showing exposure by case-control status.  
“Exposed” indicates whether or not a given variable of 
interest was positive or not.  “Cases” are those with an 
outcome of interest, while “Controls” are those without.  The 
crude (unadjusted) OR is calculated as AD/BC. 
Odds ratios of less than 1 indicate a protective effect of the 
predictor of interest on clinical outcome; while ORs greater than 1 
indicate a positive association of the exposure with the outcome.  
If the OR is 1.0, the predictor has no association, positive or 
protective, with the outcome.   The OR described in the above 
figure is commonly referred to as the crude odds ratio, because it 
has not been adjusted for other variables that may be important 
confounders or effect modifiers.  While the crude OR is useful, 
the adjusted OR, typically derived by means of a logistic 
regression model, is of more importance in ascertaining the true 
effect of a given variable on an outcome.  However, logistic 
models are not without some degree of weakness: small sample 
sizes, missing data, and model complexity that may cause failure 
of the model to converge are some of the reasons why important 
variables might not be identified as statistically significant.  This 
is especially the case in the early phases of epidemiologic 
surveillance, where the number of outcome associations may be 
small and apparently random.  The discovery of features 
(variables as well as specific values of variables) that act as 



sentinels in alerting investigators to potential relationships is of 
great importance to epidemiologic investigators.    
This paper describes an ongoing investigation into the ability of 
an XCS-type learning classifier system to identify such feature-
outcome associations in a simulated case-control study under 
strict experimental conditions. 

2. METHODS 
2.1 Data 
2.1.1 Baseline Data  
A small case-control study was simulated by creating a dataset 
consisting of 10 real-valued predictor variables and one 
dichotomous outcome variable.  The value of each predictor was 
randomly generated using a bounded normal distribution (range 0-
10).  The outcome variable was also randomly generated, using a 
binomial distribution, constrained such that the dataset contained 
100 records, with equivalent class frequency to yield 50 “cases” 
and 50 “controls.”  Throughout this paper, the positive class is 
referred to as Cases and the negative class, Controls.  The random 
data generation procedures ensured that no associations existed 
between any predictors and the class variable, verified by one-
sample t-test (p>0.05).  In addition, the crude and adjusted ORs 
for each variable were calculated and found to be approximately 
1.0; their confidence intervals were not statistically significant.  
The baseline dataset is described below in Table 1.   

Table 1.  The baseline dataset used for this investigation. 

Variable 
Mean 

(Standard 
Deviation) 

Minimum Maximum

1 4.99 (2.85) 0 9.7 
2 4.57 (2.91) 0.2 10.0 
3 4.79 (2.80) 0.1 9.8 
4 5.23 (2.82) 0.2 10.0 
5 5.11 (3.01) 0.1 10.0 
6 4.77 (2.79) 0.1 9.9 
7 5.28 (2.85) 0.2 9.8 
8 5.18 (2.73) 0.3 9.9 
9 5.75 (2.96) 0 10.0 

10 4.73 (2.90) 0.4 10.0 
Class 50 “cases” and 50 “controls” 

2.1.2 Incremental Data  
The goal of this investigation was to evaluate the ability of XCS 
to discover rules that indicate an increased OR over a range of 
values.  The baseline dataset was altered to increase the crude OR 
for a single variable (Attribute 2) from 1.0 to 4.0.  The goal was to 
associate values greater than or equal to 2.0 with Cases at a 
gradually increasing rate.  This was accomplished by randomly 
selecting a Case record with a value greater than 2.0 for Attribute 
2, and changing the value of Attribute 2 for this record to a 
random value between 0 and 2.0.  Each iteration was successively 
written to a different dataset for evaluation.  Thus, each dataset 
contained the alterations of the one created before it, in addition 
to the alteration at that iteration.  A total of six such datasets were 
created, with crude ORs of 1.56, 2.06, 2.45, 2.90, 3.41, and 4.0.   

2.1.3 Experimental procedure 
This investigation focused on rule discovery occurring during the 
training phase in a supervised learning environment.  As a result, 
no training-testing set pairs were created; however, 10-fold cross-
validation was used to ensure random and complete exposure to 
each record in the datasets.  EpiXCS [2] was used as the learning 
classifier system for the experiments.  Parameters were set as per 
[1]. Decision tree and rule induction was performed with See5 [4].  
Crude and adjusted ORs were determined by the epitable and 
logistic procedures in STATA, version 8.0 [5].     
Each dataset was trained in EpiXCS over five runs.  The rulesets 
described here represent the conflation of these sets into a “meta-
set” that was created by ranking the rules by their predictive value.  
The rulesets derived by EpiXCS were evaluated using the 
visualization tool provided in this software.  Of particular interest 
was the degree of “scatter” over the value ranges for each 
variable: highly scattered values indicate randomness and lack of 
specificity.  However, highly bounded values represent possible 
associations with the class of interest.  The rule evaluation 
focused primarily on Cases, but also Controls, in an effort to 
identify rule patterns that discriminated between them.   
The rulesets derived by See5 were likewise examined 
qualitatively over the range of ORs, to identify the emergence of 
Attribute 2 as a possible predictor of the class.  The ORs 
calculated by the logistic regressions were examined for 
magnitude and statistical significance. 

3. RESULTS 
3.1 Rule discovery  
3.1.1 EpiXCS 
The rules discovered by EpiXCS on the baseline data for the cases 
are shown in Figure 2.  The rule visualization tool shown in this 
figure is read as follows.  The bottom pane lists the rules 
discovered at the end of training, after they have been collected 
from each of the five runs and sorted by their predictive value.  
The predictive value is either positive or negative, depending on 
the class that is being displayed.  In Figure 2, the ruleset for the 
Cases are shown; thus, the rules are sorted by their positive 
predictive value.  The text of each rule is color coded to facilitate 
its visualization on the graph that is shown in the top pane.  The 
horizontal axis of this graph represents the predictors in the 
dataset.  The vertical axis represents the possible value range for 
the predictors.  In this dataset, all predictors ranged from 0 to 10; 
however, in data where the ranges are variable, the minimum and 
maximum values taken over all variables are used for this scale.  
The colored bars indicate the ranges of the values of the variables 
participating in a given rule.  Again, a given bar is mapped by 
color to its rule in the lower pane.  Single or multiple rules may 
be visualized at once, as is the case in Figure 2.   
As expected, the rules in the baseline data are characterized by a 
random pattern, in that no one variable or set of variables seems 
to be associated with the class.   A similar rule pattern was found 
on the rulesets at the lower ORs.  Figure 3 shows the inverse of 
what would be expected for the value of Attribute 2 as associated 
with the class: the best-performing rules for this class indicate that 
the value of Attribute 2 should be greater than 2.  
However, the expected value for Attribute 2 emerges with 
increasing OR, as is shown in Figure 4.  In this figure, obtained at 



OR=2.90, the value for Attribute 2 ranges from 0 to 5.  The 
emergence of the expected value is complete at OR=3.41, as 
shown in Figure 5.  Figure 6 shows the ruleset derived for the 
Controls at this OR.  In comparing the shaded portions of each 
graph for Attribute 2 (shown as Attribute 2), one can clearly see 
the effect of dichotomization of Attribute 2 at values <=2.  In 
Figure 5, the red bar does not exceed a value of 2, while in Figure 
6, the lavender bar for the same variable covers approximately the 
complementary values (about 2.5 to 10). 
 

 
Figure 2.  Ruleset derived by EpiXCS on the baseline data.  
The display is described in the text. 
 

 
Figure 3.  Ruleset derived by EpiXCS on the data with Odds 
Ratio=1.56 for Attribute 2. 
 

 
Figure 4.  Ruleset derived by EpiXCS on the data with Odds 
Ratio of 2.90 for Attribute 2. 
 

 
Figure 5.  Ruleset derived by EpiXCS on the data with Odds 
Ratio of 3.41 for Attribute 2, for the positive class (cases). 
 

 
Figure 6.  Ruleset derived by EpiXCS on the data with Odds 
Ratio=3.41 for Attribute 2, for the negative class (controls). 
 



3.1.2 See5 
See5 was unable to discover any rules on the baseline or the 
dataset with OR=1.56 for Attribute 2.  Rules covering Attribute 2 
for the positive class started to emerge at an OR of 2.06, but these 
rules were inaccurate, compared to the rules for the Controls.  As 
was seen in EpiXCS, accurate rules which defined the range of 
values for Attribute 2, relative to class (0-2 for Cases and >2 for 
Controls), were not seen until the OR was to 3.41.  In addition, 
these rules contained at least one other conjunct, as did those 
evolved by EpiXCS.   

3.1.3 Logistic regression 
While logistic regression does not discover “rules,” per se, it does 
build a single model during supervised learning that reflects the 
relative contribution of each variable in the model to classifying 
the risk of an outcome.  It is instructive to examine the ORs 
derived by logistic regression and their confidence intervals at 
each of the levels defined here, for two reasons.  First, they 
provide the OR for the variable of interest, adjusted for every 
other variable in the model, simultaneously.  This is important, 
given that all three methods used here are highly parallel in nature, 
and do consider individual variables simultaneously in model 
building.  Second, the adjusted ORs provide a good sense of the 
complexity of the rule discovery problem.  If logistic regression, 
as the “gold-standard” method finds statistically significant ORs 
at lower values for the variable of interest than do EpiXCS or 
See5, this would indicate an interesting inferiority of either, or 
both, of these methods. 
The ORs and 95% confidence intervals for Attribute 2 are shown 
in Table 2.  The ORs are approximately equivalent to the crude 
ORs obtained by simple 2x2 contingency table analysis.  
However, of more interest is the observation that the ORs are not 
statistically significant until the adjusted OR reaches 2.82, and 
even then only barely so.  This indicates that logistic regression 
also had difficulty in discovering the association between low 
values of Attribute 2 and the positive class (“cases”).  Finally, it 
should be noted that even where the ORs are significant, the 
confidence intervals are quite wide, which reflects the small size 
of the datasets, but also their complexity.   
 

Table 2.  Crude and adjusted Odds Ratios for the seven 
datasets. 

Dataset Crude (2x2 table) Adjusted (logistic)
Baselin

e 1.00 (0.33, 3.00) 1.00 (0.32, 3.06) 

1 1.56 (0.56, 4.42) 1.76 (0.62, 5.06) 
2 2.06 (0.76, 5.73) 2.36 (0.85, 6.53) 
3 2.45 (0.92, 6.75) 2.82 (1.04, 7.64) 
4 2.90 (1.10, 7.92) 3.33 (1.23, 8.95) 
5 3.41 (1.29, 9.28) 4.00 (1.51, 10.58)
6 4.00 (1.52, 10.86) 5.32 (1.93, 14.70)

 

4. DISCUSSION 
This paper reports on an ongoing investigation into the use of 
EpiXCS as a knowledge discovery tool in epidemiologic 
surveillance.  While the results presented here are preliminary, 
they indicate that EpiXCS is capable of discovering the values of 

specific attributes that are associated with a particular class in a 
supervised learning problem.  The importance of this finding is 
substantial.  Heretofore, logistic regression has been the analytic 
tool of choice for this problem.  However, logistic regression 
analyses do not provide semantically useful rule ensembles that 
can be used easily for hypothesis generation.  The single, 
mathematical model provided by logistic regression analysis is 
highly useful, but the advantage to the knowledge discovery 
process that is provided by the multiple disjunctions in a ruleset is 
lost. 

The failure of See5 to discover any rulesets in the baseline or 
lower OR values for Attribute 2 is troubling, but expected.  These 
datasets were quite equivocal; it was not until the OR for 
Attribute 2 had reached a substantial level, well over 2.0, that any 
meaningful rules emerged.  Some comfort can be found in the 
observation that neither EpiXCS nor logistic regression performed 
well at this level.  This could be a function of the small sample 
size, and this is a focus of ongoing study.  It would be interesting 
to see if the suspected reason for poor performance by logistic 
regression (failure to converge due to small cell sizes) is similar in 
foundation to the reason for such failure by EpiXCS.  Regardless, 
this remains an important issue in epidemiologic surveillance, and 
in order for these tools to be used fruitfully in this discipline, 
more research is needed to improve their ability to discover not 
only rare events, but also rare associations.  It is the information 
contained in associational relationships that points clinical 
professionals to areas on which to intervene.  Specifically, if the 
data used here were collected to monitor an outcome such as 
admission to the intensive care unit, and Attribute 2 measured a 
marker for exposure to an environmental toxin one would have to 
see a marked decrease in that marker before statistical 
significance (or rule emergence) was reached.  It would be much 
better if the change in that marker could be identified much earlier 
as an association with an intensive care admission than it would 
have been in this study.  To be more precise, an investigator 
would not have seen an important association between Attribute 2 
and admission until nearly twice the number of cases with values 
of Attribute 2 <=2 had been observed.  Depending on the actual 
situation, this could take a long time, and could cost considerably 
in terms of effort and potentially human life. 

5. FUTURE DIRECTIONS 
This is very much a nascent study, and much needs to be done in 
the area of applying learning classifier systems, particularly XCS 
(but others as well) to the problem of discovering  attribute-class 
associations.  First, larger, more complex datasets need to be 
developed and evaluated.  The small size of the datasets used here 
represents a real limitation to interpreting the results of this study.  
Second, more work needs to be done with regard to 
parameterization.  At smaller ORs, in the presence of more 
complex (read, conflicting) data, it is probably that population 
size, number of iterations, and perhaps genetic algorithm 
parameters will need to be adjusted.  Finally, there is the 
intriguing possibility that the OR could be useful as a learning 
parameter.  There could be at least two reasons why an OR would 
be low: the data don’t support a higher OR, or the OR represents a 
rare, but emerging association.  In the latter situation, the OR 
could be considered as an interestingness metric that would help 
drive reinforcement.   
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