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ABSTRACT
The class imbalance problem has been said recently to hin-
der the performance of learning systems. In fact, many
of them are designed with the assumption of well-balanced
datasets. However, it is very common to find higher pres-
ence of one of the classes in real classification problems. The
aim of this paper is to make a preliminary analysis on the
effect of the class imbalance problem in learning classifier
systems. Particularly we focus our study on UCS, a super-
vised version of XCS classifier system. We analyze UCS’s
behavior on unbalanced datasets and find that UCS is sensi-
tive to high levels of class imbalance. We study strategies for
dealing with class imbalances, acting either at the sampling
level or at the classifier system’s level.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge adquisition

General Terms
Algorithms, Experimentation

Keywords
Evolutionary Computation, Genetic Algorithms, Machine
Learning, Learning Classifier Systems, Class Imbalance

1. INTRODUCTION
Learning Classifiers Systems (LCSs) [6] are rule-based sys-

tems that are shown to perform very competitively with re-
spect to other machine learning methods in classification
problems. Nowadays, XCS [11, 12], an evolutionary online
learning system, is one of the best representatives of LCSs.

This work focuses on one of the complexity factors which
is said to hinder the performance of standard learning meth-
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ods: the class imbalance problem. The class imbalance prob-
lem corresponds to classification domains for which one class
is represented by a larger number of instances than other
classes. The problem is of great importance since it appears
in a large number of real domains, such as fraud detection
[5], text classification [3], and medical diagnosis [8]. Tradi-
tional machine learning approaches may be biased towards
the majority class and thus, may predict poorly the minority
class examples. Recently, the machine learning community
has paid increasing attention to this problem and how it af-
fects the learning performance of some well-known classifier
systems such as C5.0, MPL, and support vector machines

[9]. The aim of this paper is to bring this analysis to the
LCS’s framework, and debate whether this problem affects
LCSs, to what degree, and, if it is necessary, study different
approaches to overcome the difficulties.

Our analysis is centered on Michigan-style learning classi-
fier systems. We choose UCS [4] as the test classifier system
for our analysis, with the expectation that our results and
conclusions can also be extended to XCS and other similar
LCSs. UCS is a version of XCS specifically designed for su-
pervised classification problems. In order to isolate the class
imbalance problem and control its degree of complexity, we
design two artificial domains. We study UCS’s behavior on
these problems and identify factors of complexity when the
class imbalance is high, which leads us to analyze different
approaches to deal with these difficulties.

The remainder of this paper is organized as follows. Sec-
tion 2 describes UCS briefly. Section 3 analyzes UCS’s
behavior on imbalance datasets. Then, we propose strate-
gies for dealing with class imbalances and analyze these ap-
proaches under UCS’s framework. Finally, we summarize
our main conclusions.

2. DESCRIPTION OF UCS
UCS [1, 4] is a classifier system derived from XCS [11, 12]

specifically designed for supervised learning problems.
UCS works as follows. UCS codifies a population of clas-

sifiers, each having a rule and a set of parameters estimating
its quality. In training mode, UCS receives instances from
the training dataset. Each instance has a set of attributes
and an associated class. Then, UCS finds the matching
classifiers, and builds the match set [M]. Those classifiers
in [M] predicting the correct classification form the correct
set [C]. If [C] is empty, then covering is triggered, creating



a new rule matching correctly the input example. Then,
the parameters of the classifiers present in [M] are updated.
The main parameters are accuracy, computed as the ratio
of correct classifications to the number of covered examples,
and fitness, which is a function of accuracy. We also com-
pute the experience of each classifier as the number of times
that the classifier has been active. The search mechanism
is performed by a genetic algorithm (GA), which tries to
guide the search towards accurate and maximally general
rules. The GA is applied locally to [C] and selects two par-
ents with probability proportional to fitness. After applying
crossover and mutation, it introduces the offspring into the
population, deleting other classifiers if the population is full.
Subsumption is also applied to further favor the generaliza-
tion of rules. In test mode, an input is presented and UCS
must predict the correct class. In this case, after building
the match set [M], UCS selects the best class from the vote
(weighted by fitness) of all classifiers present in [M]. For
more details, the reader is referred to [4].

3. UCS IN UNBALANCED DATASETS
In order to isolate the class imbalance problem from other

factors that affect UCS’s performance, we designed an ar-
tificial domain. The domain has two real attributes which
can take values in the interval [0,1]. Instances are grouped
in two non-overlapping classes, drawing a checkerboard in
the feature space. We can vary the complexity along three
different dimensions: the degree of concept complexity (c),
which defines the number of squares in the checkerboard (it
has c2 squares); the dataset size (s); and the imbalance level

between the two classes (i), which specifies the ratio between
the number of minority and majority class instances.

The generation process creates a well balanced dataset by
randomly drawing s/c2 points in each checkerboard square.
Then, each unbalanced dataset of level i is obtained by tak-
ing out half of the minority class instances from the dataset
at level i − 1. For i = 0 the dataset is well balanced.

In order to analyze the performance of UCS over unbal-
anced datasets, we ran UCS in the checkerboard (chk) prob-
lem with s=4096, c=4, which corresponds to sixteen alter-
nating squares, and complexity levels from i = 1 to i = 7.
UCS was trained with each of the datasets for 200000 learn-
ing iterations, with the following parameter settings (see
[7] for the notation): N=400, α=0.1, β=0.2, δ=0.1, ν=10,
θdel=20, θsub = 20, acc0=0.99, χ=0.8, µ=0.04, θGA=25,
GASub = true, [A]Sub=false, Specify=true, Ns =20, Ps
=0.5.

Figure 1 shows the classification boundaries obtained by
UCS for imbalance levels 3, 4 and 5. Figure 1(a) shows the
model evolved by UCS at imbalance level i = 3. The model
evolved for lower imbalance levels is not shown as it is mostly
the same as that drawn for i = 3. In all these cases, UCS
is able to discover the optimal ruleset in spite of the class
imbalances.

The problem arises with imbalance levels equal to or greater
than 4. Figure 1(b) shows that the system is not able to
classify correctly any of the minority class squares. Almost
all the feature space is classified with the majority class.
This behavior is also observed for higher imbalance levels.
For imbalance levels i = {5, 6, 7}, UCS evolves models that
classify all instances as they belonged to the majority class.

A deeper analysis of the population evolved in these high
imbalance levels reveals that UCS is able to discover accu-
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Figure 1: Boundaries evolved by UCS in the chk

problem with imbalance levels of 3, 4 and 5. Black

regions belong to the minority class and gray regions

belong to the majority class.

rate and maximally general classifiers that predict the mi-
nority class regions. Nevertheless, their vote in the predic-
tion array is not strong enough to encourage the correct
classification of those regions with the minority class. This
effect is due to the presence of overgeneral classifiers in the
population predicting the majority class. These overgeneral
rules cover nearly all the feature space, overcoming jointly
the vote of the minority class rules. Specifically, the most
numerous rules evolved by UCS at imbalance level i = 4
are those that predict the eight minority class regions of
the feature space. All of them are accurate and maximally
general. An example of this type is: x ∈ [0.509, 0.750] and

y ∈ [0.259, 0.492] then class=1, where 1 is the minority class.
In addition, the population contains some overgeneral rules
of type x ∈ [0, 1] and y ∈ [0, 1] then class=0, where 0 is
the majority class. The population contains 32 microclas-
sifiers1 covering each minority class square, and more that
100 microclassifiers covering all the feature space with the
majority class. Therefore, when classifiers vote for the class
of a given example, the vote of such a huge number of over-
generals voting for the majority class overcomes the vote of
the minority class.

We hypothesize that the presence of these overgeneral
rules is due to the generalization pressure induced by the
GA. Once created, these rules are activated in nearly any
action set, because of their overgeneral condition. In bal-
anced or low-unbalanced datasets, these overgeneral rules
tend to have low accuracy and consequently, low fitness.
For example, the most general rule has a 0.50 of accuracy
in a balanced dataset. Thus, overgeneral rules with low
fitness tend to have low probabilities of participating in re-
productive events and finally, they are removed from the
population. The problem comes out with high imbalance
levels, where overgeneral rules have a high tendency to be
maintained in the population. The reason is that the data
distribution does not allow to penalize the classifier’s accu-
racy so much, as long as the minority class instances are
sampled in a lower frequency. So, the higher the imbalance
level, the more accurate an overgeneral classifier is consid-
ered (and also the higher fitness it has). Consequently, in
high imbalance levels overgeneral rules tend to have higher

1A microclassifier refers to the regular classifier. We dis-
tinguish it from the term macroclassifier, which refers to a
classifier containing several copies of microclassifiers, shar-
ing identical conditions, actions and parameters.



accuracies, presenting more opportunities to be selected by
the GA, and also lower probabilities of being removed by
the deletion procedure.

4. STRATEGIES FOR DEALING WITH CLASS
IMBALANCES

In the literature, several strategies for dealing with class
imbalances have been proposed [9]. Some of them are based
on resampling the training dataset so that the classifier sys-
tem receives the same proportion of examples per class, ei-
ther by oversampling the minority class examples or under-

sampling the majority class examples. Other strategies alter
the relative costs of misclassifying each of the classes. We
have designed and adapted these strategies for UCS. We
describe and analyze them in the following.

4.1 Random Oversampling
Random oversampling resamples at random the minority

class examples until their number is equal to the number of
instances in the majority class. In this case, we only mod-
ify the training dataset so that UCS perceives a balanced
dataset.

We tested UCS in the checkerboard problem for imbalance
levels from i=0 to i=7, using the same parameter settings
as in the previous section.

Figure 2 shows the boundaries evolved by UCS under ran-
dom oversampling with imbalance levels from 5 to 7. The re-
sults for the lower imbalance levels are not shown for brevity.
They correspond to cases where the model evolved by UCS
is accurate (i.e., both classes are predicted correctly). For
the highest imbalance levels, note that UCS has been able
to evolve some of the boundaries belonging to the minor-
ity class examples. In many cases, these boundaries do not
reach the real boundaries of the original balanced dataset.
But this result is reasonable since the distribution of training
points has changed with respect to the original dataset.

Under oversampling, UCS works as the problem was a well
balanced dataset, because the proportion of minority class
examples has been adjusted a priori. UCS sees a dataset
with the same number examples per class, but with some
gaps in the feature space that are not represented by any
example. These gaps are mostly covered by rules predicting
the majority class rather than by minority class rules. In
fact, rules from both classes tend to expand as much as pos-
sible into these gaps until they reach points belonging to the
opposite class. That is, rules tend to expand as long as they
are accurate. Thus, there are overlapping rules belonging to
different classes in the regions that are not covered by any
example. When we test UCS in these regions, the majority
class rules have higher numerosities and their vote into the
prediction array is higher. Consequently, these regions get
classified by the majority class.

4.2 Adaptive Sampling
This method consists of adapting the sampling probabili-

ties of the training examples according to their classification
[2]. To be exact, the method maintains a weight for each
instance, which estimates the sampling probability of the
instance. Weights are updated incrementally when the sys-
tem performs a prediction under test mode. If the instance
is well classified, then the weight is decreased by a propor-
tion α of its value; otherwise, the weight is increased by the
same proportion α. In these experiments, α was set to 0.1.
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Figure 2: Class boundaries evolved by UCS with

random oversampling in the chk problem with im-

balance levels from 5 to 7.
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Figure 3: Class boundaries evolved by UCS with

adaptive sampling in the chk problem with imbal-

ance levels from 5 to 7.

Figure 3 shows the results obtained by UCS under the
adaptive sampling strategy with imbalance levels from 5 to
7. The results for the lowest imbalance levels are not shown
for brevity. They correspond to very accurate approxima-
tions of the real boundaries. For i=5, the boundaries evolved
by UCS are fairly accurate. For higher imbalance levels,
UCS has found more difficulties in finding good approxima-
tions for the minority class squares. In these cases, the result
achieved under the adaptive sampling strategy is worse than
that achieved by UCS under oversampling (see figure 2).

Analyzing the behavior of UCS under these two strate-
gies (not detailed for brevity), we found that under adap-
tive sampling there is less generalization pressure towards
the minority class rules than with oversampling. The rea-
son is that, with adaptive sampling, once all instances are
well classified, weights stabilize and then, all instances are
sampled as the original a priori probabilities. Under over-
sampling, minority class instances are always sampled at the
same a priori probability as majority class instances, keeping
the same generalization pressure towards both classes. This
may justify why, under adaptive sampling, UCS finds more
difficulties to generalize the minority class rules, especially
for the highest imbalance levels.

4.3 Class-Sensitive Accuracy
Class-sensitive accuracy modifies the way in which UCS

computes accuracy so that each class is considered equally
important regardless of the number of examples represent-
ing each class. In the UCS’s original design, accuracy is
computed as the ratio of the number of correctly classified
examples to the number of covered examples. Herein, we
compute the accuracy for each class separately and average
the result. Additionally, we smooth this computation by a
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Figure 4: Class boundaries evolved by UCS with

class-sensitive accuracy in the chk problem with im-

balance levels from 5 to 7.

function of class experience to give opportunities to rules
approaching class boundaries (see [10] for the details).

Figure 4 shows the results of UCS under class-sensitive
accuracy. Note that the boundaries evolved in all imbalance
levels are better at discovering minority class regions than
those evolved by raw UCS.

For imbalance level i=5, UCS with class-sensitive accu-
racy clearly improves raw UCS in terms of the boundaries
evolved. Furthermore, the tendency of evolving overgeneral
rules, as mentioned in section 3, has been restrained. The
population evolved by UCS (not detailed for brevity) con-
tains accurate and maximally general rules predicting each
of the squares of the checkerboard problem, both the minor-
ity class and the majority class squares.

Finally, figures 4(b) and 4(c) show the models evolved
with imbalance levels i=6 and i=7 respectively. As the im-
balance level increases, the system finds it harder to evolve
the minority class regions. For the highest class imbalance,
UCS can only draw partially four of the minority class re-
gions. Looking at the evolved population, not shown for
brevity, we confirm that the problem is not attributable to
the evolution of overgeneral rules but to the fact that the
imbalance ratio is so high (1:128) that the imbalance prob-
lem almost becomes a sparsity problem. There are so few
representatives of the minority class regions that we may
debate whether these points are representative of a sparse
class region or whether they belong to noisy cases. In the
latter case, we would agree that UCS should not find any
distinctive region.

4.4 Further Results
To further test the strategies for dealing with class imbal-

ances, we ran these strategies with another kind of class im-
balance problem. Particularly, we select the position prob-
lem (denoted as pos) from [4] for presenting multiple classes
and different proportions of examples per class. The prob-
lem is defined as follows. Given a binary input x of fixed
length l, the output class corresponds to the position of the
leftmost one-valued bit. If there is not any one-valued bit,
the class is zero. The length of the string l determines both
the complexity of the problem and the imbalance level.

We ran UCS with imbalance levels from l=8 until l=15.
Figure 5 depicts the percentage of the optimal population2

achieved by UCS during training. Curves are averages over
five runs. Note that UCS has difficulties in learning all the

2The optimal population for a classification problem is the
ruleset formed by accurate and maximally general rules.

optimal classifiers as the condition length grows. Particu-
larly, UCS can not discover the most specific rules, because
they cover very few examples.

We tested whether the strategies for dealing with class
imbalances could improve this result and helped UCS dis-
cover the minority class rules. Figures 6, 7 and 8 show the
results of UCS under oversampling, adaptive sampling and
class-sensitive accuracy respectively.

Figure 6 shows that under oversampling, there are high
oscillations in the learning curves of UCS. Making a deeper
analysis, some harmful traits of oversampling, which were
not observed in the chk problem, come out. In the pos prob-
lem, changing the a priori probabilities of examples makes
accurate generalizations very hard to be evolved. UCS learns
accurate and maximally general rules by the presence of
the appropriate examples and counter-examples. While the
presence of numerous examples favor the generalization of
rules, counter-examples set the limit for these generaliza-
tions. If rules overgeneralize, the presence of counter-exam-
ples makes the rule inaccurate. In the pos problem, we over-
sample the minority class examples. Thus, the system gets a
higher number of examples for the minority class rules, but
on the contrary receives few proportion of counter-examples
for these rules. The result is that UCS tends to overgener-
alize the rules covering the minority class examples. And
the discovery of specific rules for the minority class exam-
ples remains unsolved. This problem did not arise in the
chk problem, because this problem has originally the same
generalization for each of the rules. Oversampling makes
each rule to receive the same proportion of examples and
counter-examples. So in this case it is easier to find accu-
rate generalizations.

Figure 7 shows the percentage of optimal population achi-
eved by UCS under adaptive sampling. See that the over-
sampling effect does not appear here. If a rule is inaccu-
rate because it does not classify properly an example, the
probability of sampling that example is increased. Thus,
this example will serve as a counter-example for overgen-
eral rules, and as an example to help discover rules covering
it accurately. Note that the learning curves have improved
with respect to the original problem, although there is still
a high difficulty in discovering the optimal populations for
the highest complex levels.

Figure 8 shows the percentage of optimal population evol-
ved by UCS with class-sensitive accuracy. The figure does
not reveal significant improvements with respect to raw UCS.
The problem here is that UCS is receiving very few instances
of the most specific classes. Thus, even though UCS weighs
the contribution of each class equally, if the minority class
instances come very sparsely, rules covering them have few
reproductive events.

5. CONCLUSIONS
We analyzed the class imbalance problem in UCS clas-

sifier system. We found that UCS has a bias towards the
majority class, especially for high degrees of class imbal-
ances. Isolating the class imbalance problem by means of
artificially designed problems, we were able to explain this
bias in terms of the population evolved by UCS.

In the checkerboard problem, we identified the presence
of overgeneral rules predicting the majority class which cov-
ered almost all the feature space. For a given imbalance
level, these rules overcame the vote of the most specific ones
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ranging from l=8 to l=15.

and thus, UCS predicted all instances as belonging to the
majority class. Different strategies were analyzed to pre-
vent the evolution of these overgeneral rules. We found that
all tested strategies (oversampling, adaptive sampling, and
class-sensitive accuracy) prevented UCS from evolving these
overgeneral rules, and class boundaries, for both the minor-
ity and majority classes, were approximated fairly better
than with the original setting. However, the analysis on
the position problem revealed many inconveniences in the
oversampling strategy which make UCS’s learning unstable.
This leads us to discard this method for real-world datasets.

The study would be much enhanced with the analysis
of the class imbalance problem on other classifier schemes.
Also, we would like to extend this analysis to other artificial
problems, as well as to real-world datasets.
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Evolutivos y Bioinspirados (MAEB’2004), pages 203–210,
2004.

[3] N. Chawla, K. Bowyer, L Hall, and W. Kegelmeyer.
SMOTE: Synthetic Minority Over-sampling Technique.
Journal of Artificial Intelligence Research, 16:321–357,
2002.
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