
Post-processing clustering to reduce XCS variability

Flavio Baronti
baronti@di.unipi.it

Alessandro Passaro
passaro@di.unipi.it

Antonina Starita
starita@di.unipi.it

Dipartimento di Informatica
Università di Pisa

Largo B. Pontecorvo, 3
56127 Pisa, Italy

ABSTRACT
XCS is a stochastic algorithm, so it does not guarantee to
produce the same results when run with the same input.
When interpretability matters, obtaining a single, stable re-
sult is important. We propose an algorithm to join the rules
produced from many XCS runs, based on a measure of dis-
tance between rules. We also suggest a general definition for
such a measure, and show the results obtained on a complex
data set.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Learning classi-
fier systems

General Terms
Algorithms

Keywords
Learning classifier systems, clustering

1. INTRODUCTION
Randomness of the search process is one of the chief char-

acteristics of evolutionary algorithms, and indeed one of its
strong points. It is randomness which allows them to escape
local optima, and ensures a broader portion of the search
space to be explored.

This non-deterministic behaviour is however a double-
edged weapon; in fact, for non-trivial problems, it is likely
that many repetitions of the algorithm will produce many
different final solutions. In some cases joining these results
can be easy, either picking the best one, or by merging them
together. When this is not possible, a viable alternative is to
keep all of them, and set up a voting mechanism to take ev-
ery one into account. Sometimes however joining the results
can be problematic, and voting undesirable (for instance, if
we want to maintain interpretability).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

XCS [7] too suffers from this problem; even after employ-
ing a ruleset reduction algorithm (like CRA [8]), on non-
trivial problems many runs will produce different rulesets,
each one with its own rules, with similar performance but
no evident way to build (or to choose) a single merged set.
The problem is exacerbated by the fact that the same rule
can come in many slightly variated forms, from whence the
need to define a measure of similarity between rules.

We present a post-processing algorithm which tries to
solve this problem, or at least mitigate it. The basic as-
sumption is that good rules will be preferred by XCS, and
will then appear more often in the output sets, although with
slight variations. We repeat an XCS experiment a number
of times; then a clustering algorithm is performed on all the
resulting rules, putting together similar ones. Bigger clus-
ters contain more frequent rules, so a representative from
each of the biggest clusters is chosen; finally, a reduced ver-
sion of XCS is executed again on this set of rules, in order
to train them together and to set their working parameters
(accuracy, fitness, etc.).

2. PROBLEM DEFINITION
In the following, we will make use of a measure of distance

D, and will assume a corresponding measure of similarity S
can be defined (which decreases as distance increases). The
measure S must lie in the range from 0 (maximally different
items) to 1 (equal items); if no assumptions can be made on
the source measure of distance, one possible definition for S
given D can be (for any α > 0)

S = (1 +D)−α (1)

The basic function required by the algorithm is a measure
of distance between rules. As the shape of rules is completely
problem-dependent, this measure could be thought to share
this characteristic. We suggest however a way to define it
which makes it independent, as long as the problem provides
a set of n input data to be learned; this is not always the
case, as XCS works by reinforcement learning, where the
existence of such a set is just a particular situation.

In case this set exists, we define the S-signature1 of a rule
r as the set of input patterns the rule applies to. We then
define two rules to be similar if they apply mostly to the
same inputs (with a maximum when their signatures are
equal); they are defined to be diverse instead when they
apply to different inputs (with a minimum when the signa-
tures do not have common elements). A suitable measure

1This S is for “set”; the S in Eq. 1 was for “similarity”.

of distance can then be the Jaccard coefficient [4]:

D(r1, r2) = 1− |S(r1) ∩ S(r2)|
|S(r1) ∪ S(r2)| (2)

= 1− |S(r1) ∩ S(r2)|
|S(r1)|+ |S(r2)| − |S(r1) ∩ S(r2)| (3)

This measure ranges from 0 (maximally different rules) to 1
(equal rules), and has been demonstrated to be a metric [5].
The corresponding similarity function is simply S(r1, r2) =
1−D(r1, r2).

An equivalent way to view a rule signature is as a boolean
vector. Since the input set size is a fixed value n, the B-
signature of a rule r could be represented as a vector b ∈
{0, 1}n, where bi = 1 iff rule r applies to input pattern i.
Jaccard distance becomes then

D(r1, r2) = 1−
∑n

i=1 B(r1)i ∧B(r2)i∑n
i=1 B(r1)i ∨B(r2)i

(4)

It is important to note that this measure is not strictly
related with the intuitive notion of similarity between two
rules. In fact, it bears no notion of how the rules actually
appear : two rules could look completely different, and still
apply to the same set of input patterns. This has experimen-
tally been found to be common when rules are “tailored” to
pick a very small subset of inputs — for instance, an outlier.
In that situation, the dataset probably offers many possible
ways to isolate that particular pattern with a number of
conditions on its values; this will produce many different-
looking rules, which for the system actually have the same
meaning. Consider for instance the situation where a single
condition is sufficient to isolate a pattern (say age>90, in a
dataset where only one person is that old). All the other
conditions of the classifier can then vary freely, as long as
they continue to cover the pattern, maintaining the same
signature — that is, the same meaning to the system.

Another advantage of this definition of distance is that
it does not require to choose a weighting strategy for at-
tributes. If we had to compute similarity on the rule ap-
pearance (that is, on its conditions), we should decide how
much importance to give to mismatches in the different at-
tributes. This becomes more challenging when attributes do
not have the same type.

As final notice, also within the same attribute choosing a
measure of similarity could be difficult. When modelling a
real value for instance, it is entirely possible that its distri-
bution is not uniform in the whole range of validity. Then, a
little variation where the values are more frequent should be
weighted more than a larger variation in areas where values
are few. Recalling to the previous example, if the only per-
son above 90 is 95, the two conditions age>90 and age>94
appear equal to the system — while age>50 and age>54,
although differing of the same amount, probably describe
quite different pattern sets.

The last requirement is a method to evaluate how much
the original results were different, and how much this differ-
ence changed after executing the proposed algorithm. We
thus need a measure of similarity between sets of rules —
that is, sets of items which have themselves a similarity mea-
sure (as opposed to a simple equals relationship). We extend
Jaccard coefficient to this more general setting.

Starting from equation 3, we need to define the size of the
intersection. Notice that maximizing this value will mini-
mize set distance (thus maximizing set similarity). We can

Table 1: Summary of XCS parameters. Naming of
the variables follows [1]

N 400
β 0.15
α 0.1
ε0 10
ν 5
γ N/A
θga 40

χ 0.8
µ 0.04
θdel 10
δ 0.1
θsub 20
P# 0.333
pI 500

εI 10
FI 0.01
θmna 2
pexplr 0.5
pGAsub 1.0
pASsub 1.0

put the items of the two sets in a fully connected bipar-
tite graph, where each edge is weighted with the similarity
between the two nodes. We then define the size of the inter-
section as the value of the maximal matching in the bipartite
graph. This means that we assign each item from one set
at most one item from the other set; the size of intersection
is then measured by taking the sum of similarities between
the matched items, and by picking the matching which max-
imizes this sum.

3. THE ALGORITHM
We now describe the algorithm we propose to join the re-

sults of many runs of XCS. We recall that the underlying
assumption is that more important rules will be discovered
and reported by XCS more often. This means in turn that,
when joining all the rules generated by many runs, they
will be more numerous than less important ones. Cluster-
ing all these rules, in order to put similar rules together,
should thus yield bigger clusters for more important rules,
and smaller clusters for less useful rules.

After each XCS run, a ruleset reduction algorithm (we ap-
plied CRA [8]) is performed, in order to pick the most useful
rules. Then the boolean signatures B(r) of all the m rules
resulting from the runs will be computed. This produces m
boolean vectors, which will be partitioned with a clustering
algorithm (like k-means [3], or ROCK [2]) according to the
chosen rule distance. Following the basic assumption, the
cluster sizes sort rules over their importance; the l biggest
clusters will then group the l most important rules. From
them, one representative rule must be chosen (if the cluster
has a centroid, this could be the rule closest to it). Finally,
the l chosen rules should be trained again to work together;
this can be done running XCS again with a fixed population
made of them, and allowing only the performance, error,
and fitness values to vary.

4. TESTING AND CONCLUSIONS
The first fact to verify is to check whether the basic as-

sumption actually holds, and whether picking rules from dif-
ferent sets does not impair performance (XCS evolves rules
to work together). The second regards clustering and re-
training own variance: will it stack up with XCS’ variance,
thus producing again unstable results? Or does the nature
of the data set to be clustered allow clustering methods to
produce stable results?

We tested the whole algorithm on the HNSCC data set,
a complex medical data set which produced high-variability
results (described in [6]). In order to evaluate the impact on
performance of clustering, we applied 10-fold cross-validation
to the whole process. More in detail, for each fold XCS with
CRA was run 10 times; then, the 10 resulting rule sets were

Table 2: Average results before and after clustering
and retraining

Accuracy Specificity Sensitivity Distance
Before .78± .02 .88± .02 .60± .04 .86± .05
After .79± .02 .90± .03 .58± .07 .74± .04

clustered, and the representatives for the clusters were then
re-trained together. Evaluation on the test set was done
before clustering, and after retraining. This process was re-
peated 10 times, giving a total of 100 XCS runs on each
fold; XCS evolved for 250’000 generations (full parameters
are reported in table 1).

Results reported in table 2 show that the process did not
impair performance, and did lead to a reduction in results
variability, altough not as marked as hoped (and still quite
far from results stability). Future work will include running
the clustering on increasingly bigger groups of results, to
see up to which point variability can be decreased, and on
different data sets to assess its robustness. Other points
to clear up are whether the proposed measure of distance
between sets is actually a metric, and testing other measures
of distance.

5. ACKNOWLEDGEMENTS
We would like to thank the following people for providing

the data set and supporting us during the analysis: A. Ab-
bondandolo, R. Barale, S. Bonatti, F. Canzian, G. Casartelli,
V. Maggini, G. Margarino, P. Mereu, A. M. Rossi.

6. REFERENCES
[1] M. V. Butz and S. W. Wilson. An algorithmic

description of XCS. In P. L. Lanzi and et al., editors,
IWLCS 2000, volume 1996 of LNAI, pages 253–272.
Springer-Verlag, 2001.

[2] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust
clustering algorithm for categorical attribute.
Information Systems, 25(5):345–366, 2000.

[3] Z. Huang. Extensions to the k-means algorithm for
clustering large data sets with categorical values. Data
Mining and Knowledge Discovery, 2(3):283–304, Sep
1998.

[4] A. K. Jain and R. C. Dubes. Algorithms for Clustering
Data. Prentice Hall, NJ, 1998.

[5] A. H. Lipkus. A proof of the triangle inequality for the
tanimoto distance. Journal of Mathematical Chemistry,
26(1–3):263–265, March 1999.

[6] A. Passaro, F. Baronti, V. Maggini, A. Micheli, A. M.
Rossi, and A. Starita. Exploring relationships between
genotype and oral cancer development through XCS. In
Proceedings of MEDGEC 2005. ACM, 2005.

[7] S. W. Wilson. Classifier fitness based on accuracy. Ev.
Comp., 3(2), 1995.

[8] S. W. Wilson. Compact rulesets from XCSI. In P. L.
Lanzi and et al., editors, IWLCS 2001, volume 2321,
pages 197–210. Springer-Verlag, 2001.

