
Policy Transfer with a Relational Learning Classifier
System

Drew Mellor
School of Electrical Engineering and Computer Science
The University of Newcastle, Callaghan, 2308, Australia

Telephone: (+612) 4921 6034, Facsimile: (+612) 4921 6929

dmellor@cs.newcastle.edu.au

ABSTRACT
Policy transfer occurs when a system transfers a policy learnt
for one task to another task with little or no retraining, and
allows a system to perform robustly and learn efficiently, es-
pecially when the new task is more complex than the original
task. In this paper we report on work in progress into pol-
icy transfer using a relational learning classifier system. The
system, Fox-cs, uses a high level relational language (a sub-
set first order logic) in combination with a P -learning tech-
nique adapted for Xcs and its derivatives. Fox-cs achieved
successful policy transfer in two blocks world tasks, stack-
ing and onab, by learning a policy that was independent of
the number of blocks, thus avoiding the prohibitive train-
ing times that would normally arise due to the exponential
explosion in the number of states as the number of blocks
increases.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods—Predicate logic; Representations
(procedural and rule-based)

General Terms
Algorithms, Languages

Keywords
Policy transfer, relational learning, first order logic, learning
classifier system, Xcs, blocks world

1. INTRODUCTION
When a task or task environment is changed in some way,

very often much of the regularity that forms the basis for
generalisation remains the same, thus systems that are ca-
pable of expressing generalisations at a sufficiently abstract
level may be able to transfer them to other related tasks. For

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

online learning systems a capacity for transferring generali-
sations is of interest because generalisations reduce training
time (as well as memory requirements). In the reinforcement
learning setting, Dzeroski et al. [2] and Cole et al. [1] have
shown that using high level relational languages in conjunc-
tion with policy learning, or P -learning, successfully allowed
policies to be transferred between related tasks. The sys-
tems were applied to blocks world tasks with a given number
of blocks, and after the number of blocks was increased the
systems demonstrated the same level of performance with
little or no retraining. The experiments demonstrate two
advantages which arise from successful transfer: robustness,
because the systems could still perform after the environ-
ment was changed; and efficiency, because the time cost of
training was reduced by learning in the blocks worlds with
less blocks.

In this paper we show how the above approach can be ap-
plied to learning classifier systems. First we give a method
for doing P -learning with the Xcs system [6], and then
we demonstrate that an Xcs derivative system with a P -
learning extension can successfully transfer policies between
blocks worlds with different numbers of blocks. In order to
represent generalisations about blocks world in a relational
way the system we employed was the Fox-cs system [4],
which supports the use of first order logic languages for rep-
resenting inputs and classifiers.

2. APPROACH
In this section we show how to do P -learning with an Xcs

system. In P -learning a function P : S ×A → {0, 1}, where
S is the set of states for the task and A is the set of ac-
tions available to the system, indicates the optimality of a
state and action pair with respect to the Q function for the
task. Thus, if it is optimal in state s to execute action a
then P (s, a) �→ 1, otherwise P (s, a) �→ 0 (for a formal defi-
nition of P -learning see [2]). Note that the P function does
not return payoff values, thus it remains accurate when a
task’s Q function changes without affecting the optimal pol-
icy, which can be the case for related tasks. The P function
can be stored in a table, although similar to Q-learning,
P -learning is most beneficial when combined with general-
isation, in which case the P function is represented by an
inductive architecture, such as a decision tree or a list of
decision rules.

To calculate P , we follow the approach adopted in [2, 1]
of estimating it from the Q value estimates. Here we make
the common assumption that the prediction array in Xcs

Classifiers

[P]

Language 1

Classifiers

Classifier
Language 2

Credit
Assignment OptimalityPayoff

Evolution

[P]’

Covering

Classifier

Figure 1: Payoff classifiers and optimality classifiers are

separated into two populations, [P] and [P]′. Using two

classifier languages, generalisations about optimal be-

haviour can be described using a separate language from

generalisations about payoffs.

contains estimates of Q values. Accordingly, P̂ (s, a) = 1 if
the prediction value for a is equal to the maximum value in
the prediction array, and 0 otherwise:

P̂ (s, a) =

�
1 if p(a) = max

u∈A(s)
p(u),

0 otherwise,

where p(a) is the system’s prediction for action a when the
current state is s, andA(s) is the set of actions available in s.

We assign P̂ to individual classifiers, but rather than creat-
ing another parameter to store P̂ , we use separate classifiers
to estimate the payoff (Q value) and optimality (P value),

thus reusing the prediction parameter to store P̂ . Having
separate types of classifiers — let us call them payoff classi-
fiers and optimality classifiers — allows generalisations that
predict optimality to differ from generalisations that predict
payoff, in fact it allows two different classifier languages to
be used if necessary. Although standard Xcs systems may
not be able to use an additional language for the optimality
classifiers as there is a one-to-one correspondence between
the classifier language (for the conditions at least) and the
input language, nevertheless some Xcs systems that employ
higher level languages, such as Xcsl [3] and Fox-cs [4], can
make use of the capability because in those systems more
than one classifier language can be used for a given input
language. We introduce a second population [P]′ to contain
the optimality classifiers. Note that the introduction of a
second population to the system, [P]′, also brings with it
an additional match set, [M]′, and an additional action set,
[A]′, that are composed from classifiers belonging to [P]′.

Now we describe how to update the optimality classifiers
(the payoff classifiers are updated normally according to the
Xcs specification). For optimality classifier j, the predic-
tion parameter, pj , and error parameter, εj , is updated in
an analogous fashion to the corresponding updates for pay-
off classifiers; the main difference is that the optimality esti-
mate, P̂ , is used in the update instead of the Q-learning-like
payoff. Thus, the prediction parameter, pj , is updated ac-

cording to the following Widrow-Hoff delta rule with learn-
ing rate parameter β ∈ (0, 1]:

pj ← pj + β(P̂ (s, action(j)) − pj),

where action(j) returns the action specified by j. Similarly,
the error parameter, εj , is updated with:

εj ← εj + β(|P̂ (s, action(j)) − pj | − εj).

The update of the fitness parameter, including the accuracy
calculation, remains unchanged.

3. EXPERIMENTS
In this section our aim is to reveal whether an Xcs system

using P -learning can transfer its generalisations between
blocks worlds with different numbers of blocks. In order
to achieve the level of abstraction required for successful
transfer we used the Fox-cs system [4], with the above P -
learning extension, because it supports the use of first order
logic languages for representing generalisations. The sys-
tem was trained in separate experiments at the stack and
onab tasks [2] for a fixed number of episodes (an episode
starts with a randomly generated state and finishes when
the goal of the task is achieved).1 For both tasks the blocks
worlds contained 5 blocks while training, however at reg-
ular intervals the system performed 25 evaluation episodes
where at the beginning of each episode the number of blocks
was set randomly from the range 3 to 16 inclusive. During
evaluation all learning was switched off (all parameter up-
dates and evolution of the payoff and optimality classifiers
was ceased) and action selection was based on the optimal-
ity classifiers in an analogous procedure to action selection
over payoff classifiers. The performance measure was the
number of steps taken to reach the goal, which was summed
over the 25 evaluation episodes to give the final evaluation
at that point during training. The experiments were run 15
times for both tasks and the average performance graphed
(see figure 2).

The results show that on average the system had learnt an
optimal or near-optimal policy that transferred to environ-
ments with an arbitrary number of blocks by about 70,000
episodes for stacking and about 11,000 episodes for onab.
As the number of blocks increases the number of states in
blocks world grows exponentially and the amount of training
required becomes prohibitive, thus the transfer of generali-
sations can be an efficient way of scaling up to environments
with large state spaces when the underlying regularity re-
mains unchanged.

One of the advantages of the rule based approach adopted
by learning classifier systems is that the system’s hypothe-
ses are relatively comprehensible compared to other induc-
tive architectures such as neural networks. Inspection of
[P]′ revealed rules that were readily interpretable as useful
knowledge.

When we compare the performance of Fox-cs to Rrl [2]
we find that the most notable difference is in the learning
rate. Learning for Fox-cs proceeded at a couple of orders
of magnitude slower than for Rrl, thus Rrl trained over
tens of episodes whereas Fox-cs trained over tens of thou-
sands of episodes. The discrepancy in training time may be

1Random blocks world states are generated with a uni-
form distribution using the method given by Slaney and
Thiébaux [5]

0 2 4 6 8 10

x 10
4

0

200

400

600

800

1000

1200

Training episode (5 blocks)

E
va

lu
at

io
n

(3
−

16
 b

lo
ck

s)

Stacking

FOXCS
Optimal

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

Training episode (5 blocks)

E
va

lu
at

io
n

(3
−

16
 b

lo
ck

s)

Onab

FOXCS
Optimal

Figure 2: Performance of Fox-cs with P -learning at the

stack and onab tasks. Throughout training the system

learnt with 5 blocks, but during evaluation the number

of blocks was set randomly at the start of each episode

from the range 3–16. The optimal performance is shown

for comparison. Results are averaged over 15 runs.

accounted for by two factors: firstly learning classifier sys-
tems learn slower than other reinforcement learning systems
due to the stochastic nature of the evolutionary component;
and secondly there were differences in how the systems were
trained. The Rrl system trained with 3 blocks initially be-
fore proceeding to 4 and then 5 blocks, whereas the Fox-cs
system trained with five blocks right from the beginning,
thus Rrl made use of transfer effects whilst in training. On
the positive side for Fox-cs it does appear to have learnt the
onab task to a better performance level than Rrl, with Fox-
cs achieving essentially optimal performance whereas Rrl
achieves optimality in approximately 90% of its evaluation
episodes, although with an equivalent amount of training
time Rrl may have achieved a better result.

4. CONCLUSIONS
In this paper we reported on work in progress into policy

transfer using a relational learning classifier system. The
system, Fox-cs, used a high level relational language (a
subset first order logic) in combination with a P -learning
technique (generic to Xcs and its derivatives) and achieved
successful transfer in two blocks world tasks, stacking and
onab, by learning a policy that was independent of the num-
ber of blocks. An immediate advantage that arises from
policy transfer is that it provides a solution to the expo-
nential explosion in the number of states as the dimension
of the task increases. Using policy transfer the system can
efficiently “scale up” from small state spaces to larger ones,

thus avoiding the prohibitive training times associated with
higher dimensions.

We are currently conducting further experiments in blocks
world where the task can vary from episode to episode. In
this scenario there are a random number of subtasks to per-
form, each of which is an onab task in itself, hence the order
in which subtasks are solved is important. We hope to show
that Fox-cs can learn a transferrable policy, i.e. one that
is independent of the number of subtasks.

5. REFERENCES
[1] Joshua Cole, John Lloyd, and Kee Siong Ng. Symbolic

learning for adaptive agents. In Proceedings of the
Annual Partner Conference, Smart Internet Technology
Cooperative Research Centre, 2003.
www.smartinternet.com.au/SITWEB/publication/

publications.jsp.

[2] Sas̆o Dz̆eroski, Luc De Raedt, and Kurt Driessens.
Relational reinforcement learning. Machine Learning,
43(1–2):7–52, 2001.

[3] Pier Luca Lanzi. Mining interesting knowledge from
data with the XCS classifier system. In Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO-2001), pages 958–965, San Francisco,
California, USA, 2001. Morgan Kaufmann.

[4] Drew Mellor. A first order logic classifier system. In
Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2005), To Appear,
2005.

[5] John Slaney and Sylvie Thiébaux. Blocks World
revisited. Artificial Intelligence, 125:119–153, 2001.

[6] Stewart W. Wilson. Generalization in the XCS
classifier system. In Genetic Programming 1998:
Proceedings of the Third Annual Conference, pages
665–674, University of Wisconsin, Madison, Wisconsin,
USA, 1998. Morgan Kaufmann.

