
Be Real! XCS with Continuous-Valued Inputs

Hai H. Dam
Artificial Life and Adaptive

Robotics Laboratory,
School of ITEE,
UNSW@ADFA

Canberra, ACT 2600, Australia
z3140959@itee.adfa.edu.au

Hussein A. Abbass
Artificial Life and Adaptive

Robotics Laboratory,
School of ITEE,
UNSW@ADFA

Canberra, ACT 2600, Australia
abbass@itee.adfa.edu.au

Chris Lokan
Artificial Life and Adaptive

Robotics Laboratory,
School of ITEE,
UNSW@ADFA

Canberra, ACT 2600, Australia
cjl@itee.adfa.edu.au

ABSTRACT
XCS is widely accepted as one of the most reliable Michigan-
style learning classifier system (LCS) for data mining. In or-
der to handle real-valued inputs effectively, the traditional
ternary representation has been replaced by the interval-
based representation and the modified XCS has shown to
work well. Existing interval-based representations still suf-
fer from a few drawbacks which this paper address. In this
paper, we propose an alternative approach called the Min-
Percentage representation which produces comparable re-
sults to other methods in the literature with the extra ad-
vantage of overcoming the drawbacks in these methods.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Design

Keywords
XCS, Learning Classifier System, ternary representation, in-
terval representation

1. INTRODUCTION
Many implementations of XCS are based on the ternary

representation, which is unnatural for continuous-valued in-
puts when using real-world data. To overcome this problem,
Wilson [5] modified XCS and introduced the Center-Spread
representation. His experiments showed that XCS works
well on the 6-Real-Multiplexer problem. In the Center-
Spread Representation (CSR), an interval predicate takes
the form (ci, si) where ci, si ∈ [pmin, qmax), pmin, qmax are
the lower and upper bound of an interval. ci is the center
of the interval and si is the width of the interval from the
center. The use of this representation requires a truncation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

when mapping a genotype to phenotype and after applying
genetic operators. Therefore, the bias generated through
this truncation process has been shown to be undesirable
[4].

Wilson later introduced another representation called the
Min-Max Representation (MMR) [6] for integer-valued in-
puts and showed that XCS is able to learn oblique data with
integer-valued inputs. In the MMR, the interval predicate
is represented as (li, ui) where li, ui are the minimum and
maximum bounds of the interval. The MMR overcomes the
bias in the CSR caused by truncation operator. However,
the problem of this representation occurs after the use of
Genetic Algorithm operators where it can generate an in-
feasible interval with li > ui.

Stone and Bull [4] argued that the MMR can also be ap-
plied for real-valued inputs and they extended it to what
they called the Unordered-Bound Representation (UBR).
Stone and Bull proposed this representation to fix the prob-
lem of the MMR by allowing the interval to be represented
as (pi, qi) where either pi or qi can be the maximum or min-
imum bound. UBR has solved the problem of generating
infeasible intervals but raises another challenge.

Holland’s schema theorem and the building block hypoth-
esis [3] explain why genetic algorithm is an adaptive and
efficient search method [2]. XCS depends heavily on the
evolutionary learning process to drive the classifier of low
accuracy to those of high accuracy [1]. However, the UBR
changes the semantics of the chromosome by alternating be-
tween the min and max genes; that is, in one generation the
genes representing the lower bound of an interval can be-
come the genes representing the upper bound of an interval
in the following generation. This discrepancy will generate
a challenge to building blocks.

In this paper, we present the Min-Percentage representa-
tion, which performs equivalent to other representations but
overcomes the previous drawback.

2. THE MIN-PERCENTAGE REPRESENTA-
TION

To overcome the problem of the UBR, we propose the
Min-Percentage Representation (MPR) which maintains the
semantics of the genotype. Similar to other approaches, each
attribute in the Condition of the classifier is represented as
an interval predicate in the form of (mi, pi) where mi is

the minimum bound of an interval in phenotype and pi is
the proportion of the distance between the minimum and
maximum bound of an interval and the distance between
the upper bound and minimum bound of an interval of the
phenotype. The transformation from genotype (mi, pi) to
phenotype (li, ui) is taken as follows:

li = mi (1)

si = pi ∗ (pmax − li) (2)

ui = mi + si (3)

where si is the distance between the lower and upper bound.

In order for XCS to work with the continuous represen-
tation, we also need to change the genetic operators such
as mutation and crossover; covering function; and subsump-
tion function. We used the same mutation, crossover, and
subsumption operators used by [4]. However, because of the
change in the representation, we needed to modify the cov-
ering operator.

The covering technique introduces a new classifier into the
system when the population does not contain any classifier
to match a current input. Similar to the UBR, the covering
operator creates a classifier containing intervals (li, ui) in
phenotype given by:

li = xi −R[0, s0) (4)

ui = xi + R[0, s0) (5)

where s0 is a constant number, R[0, s0) is a random num-
ber between 0 and s0, and xi is an input value. After the
truncation, li and ui fall within the range [pmin, pmax), mi

is set to li; pi is calculated as:

pi =
ui − li

pmax − li
(6)

3. EXPERIMENTS SETUP
In order to verify XCS in the continuous environment,

Wilson [5] modified the Multiplexer problem to Real-Multiplexer
problem. Stone and Bull lately claimed that the Real-Multiplexer
problem is biased towards intervals which contains a pred-
icate. They introduced an alternative problem called the
Checkerboard. We decided to test on both the 6-Real-Multiplexer
and Checkerboard problems.

Stone and Bull [4] showed the better performance of the
UBR when compared to other representations. Therefore,
we decided to compare the MPR against the UBR.

We used the same parameter settings used by Wilson [5]
and Stone and Bull [4] as follows: N = 800, β = 0.2, α =
0.1, ε0 = 10, v = 5, θGA = 12, χ = 0.8, µ = 0.04, θdel =
20, δ = 0.1, θsub = 20, pI = 10, εI = 0, fI = 0.01, θnma =
2, m = 0.1, s0 = 1.0.

All experiments presented are averaged over 30 indepen-
dent runs. The random number generators for all represen-
tations are synchronized so that they all deal with the same
data.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

6 Real Multiplexer − Unordered Bound Representation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

6 Real Multiplexer − Min−Percentage Representation

Figure 1: System Performance, System Error (o),
Macro-classifier Fraction (+), Intervals within Up-
per and Lower Bound Proportion (triangle down),
Intervals contain only Lower Bound Proportion (tri-
angle up) , Intervals contain only Upper Bound Pro-
portion (triangle left), Intervals contain both Lower
and Upper Bound Proportion (or Don’t Care inter-
val)(triangle right)

4. RESULTS
Figure 1 shows the system performance of XCS on the 6-

Real-Multiplexer problem using the UBR and MPR respec-
tively. The result shows that the MPR converges a little bit
faster than the UBR in the beginning, then UBR catches up
and both representations achieve equivalent performance at
the end. It is also shown that the MPR produces slightly
more macro-classifiers, more don’t care and within intervals
than the UBR.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Checkerboard − Unordered Bound Representation

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of steps

Checkerboard − Min−Percentage Representation

Figure 2: System Performance, System Error (o),
Macro-classifier Fraction (+), Intervals within Up-
per and Lower Bound Proportion (triangle down),
Intervals contain only Lower Bound Proportion (tri-
angle up) , Intervals contain only Upper Bound Pro-
portion (triangle left), Intervals contain both Lower
and Upper Bound Proportion (or Don’t Care inter-
val) (triangle right)

Figure 2 shows the performance of XCS on the Checker-
board problem with the UBR and MPR respectively. Simi-
lar to the 6-Real-Multiplexer problem, the MPR converges
quicker than the UBR up to 50,000 steps, then both ob-
tain almost equivalent performance at the end. Again, the
number of macro-classifiers of the MPR seems to be slightly
higher than the UBR. Also, more don’t care and within in-
tervals are produced with the MPR than the UBR.

In general, both representations behave almost similar in
both problems and achieve equivalent performance. How-

ever, the MPR maintains the semantics of the genotypes and
thus is unlikely to cause discrepancies in building blocks.

5. CONCLUSION
In this paper, we introduced the Min-Percentage repre-

sentation for continuous valued inputs. The tests on the
6-Real-Multiplexer and Checkerboard problems reveal that
the Min-Percentage representation can perform as well as
the Unordered-Bound representation but converges a little
bit quicker at the beginning. Also, the Min-Percentage rep-
resentation maintains the semantics of the genes all over the
evolutionary run; therefore unlikely to cause discrepancy to
building blocks

6. ACKNOWLEDGMENTS
Work reported in this paper was funded by the Australian

Research Council Linkage grant number LP0453657.

7. REFERENCES
[1] M. V. Butz, D. E. Goldberg, and K. Tharakunnel.

Analysis and improvement of fitness exploitation in
XCS: Bounding models, tournament selection, and
bilateral accuracy. Evolutionary Computation,
11(3):239–277, 2003.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addision-Wesley
Publishing Company, INC., 1989.

[3] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
1975. Republished by the MIT press, 1992.

[4] C. Stone and L. Bull. For real! XCS with
continuous-valued inputs. Evolutionary Computation,
11(3):299–336, 2003.

[5] S. W. Wilson. Get real! XCS with continuous-valued
inputs. In P. Lanzi, W. Stolzmann, and S. Wilson,
editors, Learning Classifier Systems, From Foundations
to Applications, LNAI-1813, pages 209–219, Berlin,
2000.

[6] S. W. Wilson. Mining oblique data with XCS. In P. L.
Lanzi, W. Stolzmann, and S. W. Wilson, editors,
Proceedings of the Third International Workshop
(IWLCS-2000), Lecture Notes in Artificial Intelligence,
pages 158–174, 2001.

