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ABSTRACT
Several binary rule encoding schemes have been proposed
for Pittsburgh-style classifier systems. This paper focus on
the analysis of how rule encoding may bias the scalability
of learning maximally general and accurate rules by classi-
fier systems. The theoretical analysis of maximally general
and accurate rules using two different binary rule encoding
schemes showed some theoretical results with clear implica-
tions to the scalability of any genetic-based machine learning
system that uses the studied encoding schemes. Such results
are clearly relevant since one of the binary representations
studied is widely used on Pittsburgh-style classifier systems,
and shows an exponential shrink of the useful rules available
as the problem size increases.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.

General Terms
Algorithms, Design, Theory.

Keywords
Learning Classifier Systems, Maximally General Classifiers,
Compact Classifier System, Binary Rule Encoding.

1. INTRODUCTION
The work of Wilson in 1995 [6] was the starter of a ma-

jor shift on the way that fitness was computed on classi-
fier systems of the so call Michigan approach. Accuracy
became a central element in the process of computing the
fitness of rules (or classifiers). With the inception of XCS,
the evolved rules targeted became the ones that were max-
imally maximally general (cover a large number of exam-
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ples) and accurate (good classification accuracy) . The work
presented here analyzes two different binary rule encoding
schemes. Surprisingly, one of the most commonly used rule
encoding scheme [2] of Pittsburgh-style systems inherently
posses a bias that challenge the scalability of any system that
uses such encoding. In this representation, theory show how
the area of meaningful rules shrinks exponentially, leading
the learning mechanism into a nail-in-a-haystack situation.
Such situation can be corrected using alternating binary en-
coding schemes, as we show with a simple alternative binary
encoding mechanism using the representation proposed by
Butz, Pelikan, Llorà, & Goldberg [1].

2. BINARY RULE ENCODING
Regardless of the Pittsburgh or Michigan approach taken,

a wide variety of knowledge representations have been used
in the genetics-based machine learning community [4, 3, 2].
This paper focuses on the rule representation proposed by
De Jong & Spears [2] widely adpted in the early works on
Pittsburgh-style classifier systems. The main property of
such representation is it simple mapping on binary string,
when compared to the χ-ary mapping required by the ini-
tial Michigan one proposed by Holland [4] and later mainly
followed by Goldberg [3] and Wilson [6]. We also analyzed
the encoding scheme proposed by Butz, Pelikan, Llorà, &
Goldberg [1].

The rule representation proposed by De Jong [2] is based
on a finite set of attributes with a finite number of possi-
ble values, and a close world assumption. One of the main
differences between this representation and the usual one
used in the Michigan approach is that it holds internal dis-
junctions among attribute values [2]. It also presents the
existence of unmatchable rules. In other words, rules that
have conditions that will never be satisfied [5]. Moreover,
the initial proposal by De Jong [2] assumed that rules match
positive examples of the concept to be learnt. Any exam-
ple not matched by a given rule set is, therefore, a negative
example of such concept—or close world assumption.

3. MAXIMALLY GENERAL AND
ACCURATE RULES

In order to promote maximally general and maximally ac-
curate rules a la XCS [6], we need to compute the accuracy
of a rule (α) and its error (ε). In a Pittsburgh-style classifier,



the accuracy may be computed as the proportion of overall
examples correctly classified, whereas the error is the pro-
portion of incorrect classifications issued by the activation
of the rule. For computation simplicity we assume ε(r) = 1
when all the predictions were accurate, and ε(r) = 0 when
all were incorrectly issued. Let nt+ be the number of posi-
tive examples correctly classified, nt− the number of nega-
tive examples correctly classified, nm the number of times
that a rule has been matched, and nt the number of exam-
ples available. Using this values the accuracy and error of a
rule r can be computed as:

α(r) =
nt+(r) + nt−(r)

nt
; ε(r) =

nt+

nm
(1)

It is worth to note that the error (equation 1) only take into
account the number of correct positive examples classified1.
This is a byproduct of the close world assumption of this
knowledge representation. Once the accuracy and error of a
rule are known, the fitness can be computed as follows.

f(r) = α(r) · ε(r)γ (2)

where γ = 1.
The total number of possible binary-encoded rules Σ for

De Jong & Spears [2] given a given length ` is,

Σ(`) = 2` (3)

A rule is matchable if it guarantees that for each binary
attribute, the two coding bits are not both 0 simultaneously.
Thus, for any given binary attribute, four possible combina-
tions are possible (00, 01, 10, and 11), and one (00) needs
to be avoided to guarantee that the attribute is matchable.
Since the total number of attributes of the rule is `/2, the
number of matchable rules Ψ(`)—the ones that none of the
attributes contain the 00 combination—is:

Ψ(`) = 3
`
2 (4)

Hence, the size of the plateau of unmatchable rules Φ(`),
is computed as

Φ(`) = Σ(`)−Ψ(`) = 2` − 3
`
2 (5)

After the normalization, the grow of the plateau is ob-
vious. Such growth needs to be compared to the growth
of matchable rules. The ratio between unmatchable and
matchable rules ρ(`) shows how scallable such rule encoding
is. The ρ(`) ratio may be computed using equations 4 and
5 as

ρ(`) =
Φ(`)

Ψ(`)
=

2`

3
`
2
− 1 (6)

Equation 7 computes the exact ratio among unmatchable
and matchable rules. Since we are interest on how ρ(`)
grows, such ratio may be approximated as follows ,

ρ(`) ≈ ec` ; c = ln

„
2√
3

«
= 0.143 (7)

Figure 1 compares the growth ρ(`) of unmatchable rule in
DeJong & spears representation to the growth of randomly
guessing (the hazard equivalent) rules in the Butz, Pelikan,
Llorà, & Goldberg [1] representation.

1We also assume that if a rule is never matched, no error is
made and, hence, ε(r) = 1.
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Figure 1: Figure compares ρ(`) between the two rule
encodings studied as a function of the problem size.

4. CONCLUSIONS
The binary rule-encoding representation proposed by De

Jong & Spears [2] inherently posses a bias that challenges
the scalability of any system that uses such encoding. In
this representation, theory shows how the area of meaningful
rules—the ρ ratio—shrinks exponentially, leading the learn-
ing mechanism into a nail-in-a-haystack situation. However,
an alternative representation—proposed by Butz, Pelikan,
Llorà, & Golberg [1]—show that such an exponentially trend
is only linked to the encoding scheme used.
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