
An Autonomous Explore/Exploit Strategy

Alex McMahon
University of Reading

Berkshire
RG6 6AY, UK

 + 44 (0)118 378-5123

siu01ajm@rdg.ac.uk

Dan Scott
University of Reading

Berkshire
RG6 6AY, UK

 + 44 (0)118 966 6893

siu01ds@rdg.ac.uk

Dr Will Browne
University of Reading

Berkshire
RG6 6AY, UK

 + 44 (0)118 378 6705

w.n.browne@rdg.ac.uk

ABSTRACT

In reinforcement learning problems it has been
considered that neither exploitation nor exploration can
be pursued exclusively without failing at the task. The
optimal balance between exploring and exploiting
changes as the training progresses due to the increasing
amount of learnt knowledge. This shift in balance is not
known a priori so an autonomous online adjustment is
sought. Human beings manage this balance through logic
and explorations based on feedback from the
environment. The XCS learning classifier system uses a
fixed explore/exploit balance, but does keep multiple
statistics about its performance and interaction in an
environment. Utilising these statistics in a non-linear
manner, autonomous adjustment of the explore/exploit
balance was achieved. This resulted in reduced
exploration in simple environments, which could
increase with the complexity of the problem domain. It
also prevented unsuccessful 'loop' exploit trials and
suggests a method of dynamic choice in goal setting.

Categories and Subject Descriptors

F.2.2 Nonnumerical Algorithms and Problems

General Terms

Algorithms, Design.

Keywords

Learning Classifier Systems, Genetics-Based Machine
Learning, Explore/Exploit Strategy.

1. INTRODUCTION

“The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task.”
Sutton and Barto [1]. The optimal balance between
exploring and exploiting changes as the training

progresses due to the increasing amount of learnt
knowledge and is not known a priori. Many
reinforcement learning algorithms, such as XCS [2], use
a fixed explore/exploit ratio that may lead to unnecessary
exploration steps, repetitive loops in exploit trials and an
increased time for training. Additionally, Whitley [3]
identifies that repetition (resampling) is important to
avoid in learning algorithms, which is to be considered
in this work.

1.1. Aims and objectives

The aim of this project is to investigate whether the
statistics held by an LCS can be used to create an
autonomous explore/exploit strategy. Both Markov
decision processes (MDP) and partially observable
Markov decision processes (POMDP) will be tested to
observe the effect of the strategy [4].

2. TYPES OF ENVIRONMENT

2.1. Single/multi step

In a single step environment the choice of action from
any given state has no bearing on any future state of the
environment, with the result of the action being an
instantaneous reward level. If the choice of action affects
the future states of the environment, with reward being
(potentially) received after multiple steps then the
environment is considered multi-step. The predominant
multi-step environment used in Learning Classifier
System (LCS) research is the ‘Woods’ environment (e.g.
Figure 1).

Figure 1. Woods 1

The Woods environments are cell based environments
where each cell contains one of several objects which
may have a reward associated with it; the AI agent (or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Gecco’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/ 05/0006…$5.00.

animat) must navigate this environment to find the
reward. In the most common woods environment there
are 2 types of objects: T (tree) is an impassable object
with zero reward, F (food) bestows a positive reward.
Empty cells are indicated by a full stop and have zero
associated reward. The animat has the ability to sense the
objects in the surrounding 8 cells.

2.2. Markovian/non-Markovian

Within multi-step environments there is a distinct
division between two types of environment, “If an
environment has the Markov property, then its one-step
dynamics enable us to predict the next state and expected
next reward given the current state and action.” [1].

Figure 2. Woods 100, 2 positions with identical sensor
strings

This is perhaps best illustrated with an example; in
Woods1 (see Figure 1) each possible position of the
animat results in a unique sensor string (note that the
environment wraps around on each side) and so after
learning the animat can tell instantly which cell it is in.
However in Woods 100 (see Figure 2), there are two
positions that give identical sensor readings, but with
different subsequent states (and eventual rewards), this is
therefore a POMDP environment.

2.3. Static/dynamic

In the standard woods environment nothing changes over
time, to test more advanced aspects of AI the
environment can be made to be dynamic, for example
the objects could move over time, or certain properties of
objects could change. There is also the possibility of
having a Multi-Agent System (MAS) which would
introduce the possibilities of competition and
collaboration. Initially the system will be tested in Static
environments only; although it is hypothesised that
dynamic environments would require the simulation of
more complex exploration.

3. AI ARCHITECTURES

3.1. Learning Classifier Systems

Learning Classifier Systems are rule-based evolutionary
learning systems. The fact that they are rule-based gives
them an advantage over some learning systems in that
they have a high level of knowledge transparency, as the
rules governing the LCS can be interpreted relatively
easily. The original LCS [5] has been adapted and
improved by various researchers, of key importance is

XCS [2], which (amongst other things) modifies
Holland’ s LCS to use an accuracy-based fitness
approach. There has also been relevant further work
extending LCS to anticipate the effect of its actions, in
the shape of Anticipatory Classifier Systems (ACS) [6].
Wilson outlined both global and local explore/exploit
strategies and concluded much further work is needed as
they are crucial for true autonomy [7].

3.2. Hybrid Explorer Classifier System

The proposed system is a combination of a standard
implementation of XCS [8] and the novel 'explorer'
explore/exploit strategy. It supports the principle behind
reinforcement learning in that an intelligent agent should
learn from the interaction with its environment, and not
from an explicit teacher. This leads to a Hybrid Explorer
Classifier Systems (HECS).

4. EXPLORER ARCHITECTURE

The proposed explorer architecture for HECS bases the
exploration level of the animat on three factors, whilst
storing the explorer level as two separate real variables
ranging from -1 to 1 (with 1 being fully satisfied). The
equations proposed introduce several nonlinearities to
the system, see figure 3, the precedence for the use of
non-linear equations in LCS can be seen in their use for
several other calculations, such as accuracy calculation,
particularly where a sharp discrimination is required
between similar inputs.

Figure 3. Graph of explorer change based on
prediction fitness and overshoot/undershoot

4.1. Accuracy induced exploration

The proposed explorer framework takes into account the
accuracy of the predictions made by the animat, this
calculation is based on the fitness of the prediction (how
confident the animat is in the accuracy of its prediction)
and the amount of overshoot/undershoot of the
prediction (relative to maximum reward/punishment):

()() () 1 1s PAO M
A PAE f F g M e− ×� �∆ = × × − +

� �
 (1)

E
xp

lo
re

r
ch

an
ge

Fitness
Overshoot/Undershoot

The function ()f F is dependent on the fitness of the

prediction (F) and a parameter that limits the maximum
change in exploration (0-1).

() FEFf Max ×∆= (2)

MPA is a parameter which defines how close to ‘perfect
accuracy’ a prediction has to be for a positive explorer
increase (affects the gradient of the curve).

()
PAMPA

e
Mg

−
=

1

2
 (3)

OS is the scaled overshoot

range
s R

O
O = (4)

Where:

maxE∆ is the parameter which limits the maximum

change in exploration (0-1)
F is the Fitness of prediction
O is the Reward Overshoot, (positive value indicates

reward was greater than prediction)

rangeR is the animat’ s calculation of the range of rewards

(max reward-max punishment)

PAM is a parameter that defines the tolerance to perfect

accuracy for a prediction to the reward obtained.

4.2. Reward induced exploration

When the animat receives immediate positive reward an
explorer level is increased by an amount related to the
amount of reward received relative to the maximum
reward available, if the animat receives negative reward
(or punishment) then the explorer level is decreased by
an amount relative to the maximum punishment. The
equation relating immediate reward to explorer change
is, see figure 4:

()() () 1S RSR M
R RS SE h M sign R e ×∆ = × × − (5)

()
1

1
max −

×∆=
RsMRS

e
EMh (6)

Where:

RS is the scaled reward/punishment

MRS is a scaling factor which affects the slope of the
curve

Figure 4. Graph of explorer change against
immediate reward

4.3. Effect of time on explorations

The effect of reward on the animat’ s explorer needs is
made to decay over time so that as time proceeds the
animat becomes less satisfied with the reward it received
in the past, the opposite occurs with negative reward so
that the animat begins to forget the negative reward it
received in the past. For positive rewards this decay is
delayed until the animat has made more steps than it has
estimated as being the maximum amount required to
reach a reward (nmax) based on the minimum and
maximum predictions in the population, and the discount
factor () (see figure 5):

��
�

�
��
	

=

max

min
max log

P

P
n γ (7)

 Figure 5. Explorer level decay as steps taken passes
max steps estimate

4.4. Effect of explorations

The two explorer levels are used for two purposes:
Firstly at the start of every trial the animat chooses
whether to explore or exploit during this trial. This
choice is based on the accuracy explorer level; if the
animat is not satisfied with its accuracy it should explore
more so as to improve its knowledge (and therefore
accuracy), if however the animat has been largely
accurate then it can assume that the environment has
been learnt to a sufficient level and therefore the best
choice of action is to maximise the immediate reward by
exploiting this knowledge.

E
xp

lo
re

r
ch

an
ge

E
xp

lo
re

r
le

ve
l

explr

0.9
0.5

2
AE

P
×
 �= −� �

	 �
 (8)

Note in eqn. (8) the factor of 0.9 is an arbitrary value
between 0 and 1 which means there is always a chance
of both exploration and exploitation (see figure 6).

Figure 6. Graph showing the probability of the
animat exploring at any given trial

Secondly the animat uses the reward induced explorer
level to ‘escape’ from unsuccessful exploit trials; at the
start of every exploit step the animat has the possibility
of switching to explore mode if its explorer level is too
close to zero; as the explorer level does not begin to
decay until the estimated maximum number of steps
have been taken there is little chance of switching until
several exploit steps have failed to find a reward.

SwitchToExplr 1 RP E= − (9)

5. RESULTS

5.1. Woods1 – XCS

The implementation of XCS in HECS was verified as it
correctly reproduced known results in the Woods1
environment [8]. HECS successfully learnt the best
actions for each of the available positions (see figure 7)

Figure 7. Woods1 - Best Actions (and key)

Once the soundness of the basic XCS was established,
the explorer side of the architecture was enabled and the
results compared. Each experiment was run 10 times
with the average values shown in table 1. The deviation
between each run was not significant.

With the explorer enabled the animat remained largely in
explore mode for a period at the start, until it was
satisfied with its accuracy, at which point it switched
mainly to the exploit mode with occasional exploration

trials. This suggests that the explore/exploit strategy
enabled the animat to decide when to exploit effectively.

Table 1. Woods1, effect of the explorer strategy on
performance

 XCS HECS

Average Steps

from start of training

2.792 2.727

Average Steps

last 100 trials (optimum 1.6875)

1.708 1.725

Ave. No. Of Explores 2000 138

Actual Time taken (s) 402 65

Over the complete training cycle, 2000 exploit trials,
HECS took fewer steps, which may be important during
online learning where resources need to be conserved.
The average steps taken to reward at the end of training
was close to the optimum value, which was confirmed as
the optimal policy was present in both systems.

The number of explore trials was significantly reduced
by the novel explore/exploit strategy. This resulted in a
significant timesaving for the overall algorithm.

The graph for macro population size, see Figure 8,
shows that with explorations on HECS is still able to
generalize, albeit less effectively than XCS. The graph is
somewhat misleading in terms of the x axis, as HECS
uses much less exploration trials and achieves a level of
generalisation very close to that achieved with XCS after
a greater number of exploration trials.

Figure 8. Woods1 - graph showing effect of
explorations

5.2. Maze 4

Figure 9. Maze4

 ‘Maze4’ see figure 9, is also a static Markovian
environment, but is a significantly larger environment
than Woods1. This domain was used to test whether the

HECS
XCS

explore/exploit benefits of HECS scaled to larger
environments.

HECS managed to greatly improve its performance by
using explorer based exploration as can be seen in the
results, table 2, where both the number of explore trials
and actual time taken were significantly reduced. The
'average test steps’ is approximately the same. This
environment is more complex than Woods1 due to the
increase in average steps required to reward and less
generalisation being possible. HECS was also able to
generalise to a similar degree as XCS.

Table 2. Results for Maze4

XCS HECS

Average Steps

from start of training

8.18 4.74

Ave. No. Of Explores to optimum.

Max explorer change = 1.0

2000 208

Actual Time taken (s) 1765 225

Ave. No. Of Explores to optimum.

Max explorer change = 0.5

2000 3852

Exploration could be increased in HECS by reducing the
effect of the explorer, which shows that the
explore/exploit strategy can be adapted to an
environment. Despite this greater exploration, the time
taken for the experiment was only slightly longer than
XCS due to the explorer preventing the animat becoming
stuck in long exploit trials, which occurred 147 times in
XCS.

It is noted that similar levels of generalization were
achieved partly due to the low levels of generalisation
possible, see figure 10. This figure also shows with the
explorer the system found a good strategy quickly,
whereas without the explorer the system kept trying
alternative policies.

Figure 10. Graphs showing steps taken and macro
population size for Maze4

5.3. Other environments

The program was tested in Woods100, as this
environment is a POMDP. Standard XCS is unable to
learn rules that give the best actions. Extensions to the
standard XCS, such as memory, or a different LCS
architecture, such as ACS, are required in such
environments. Therefore, it is not surprising that HECS
failed to evolve appropriate classifiers. The explorer
could not make an improvement, so the animat was
always below the required accuracy, and so very rarely
exploited.

This does not indicate a problem with the
implementation of the explorer; instead it suggests that it
could be used to change algorithmic methods or
algorithm goals. It may allow a system to recognise that
its environment is not simple/Markovian and adjust
behaviours accordingly.

5.4. Effect of the explorer parameters

The introduction of the explorer has increased the
number of parameters required for HECS to run; it is
worth noting which of these parameters HECS is most
sensitive to, and which parameters are very robust. The
‘Reward Slope Factor’ , MRS in eqn. (5) seems to be
fairly robust to changes in value. Increasing the ‘Perfect
Accuracy Weighting’ , MPA in eqn. (1), improved the
generalization ability in Woods1, however the same
increase in Maze4 caused HECS to do many more
exploration trials, never reaching a satisfactory accuracy
level to begin exploitation. This suggests that this
parameter is not very robust in the current
implementation, although perhaps it could be adapted in
relation to the estimate of the environment size.

An interesting parameter is the factor which multiplies
the accuracy induced explorer level in eqn. (8), currently
set at 0.9. If this factor is removed then the animat
performs well in terms of requiring less explore trials (in
Woods1) however it fails to generalise very much, as in
effect it finds a set of classifiers which are accurate and
lead to a reward from every location, and so it stops

HECS
XCS

HECS
XCS

exploring the environment and simply exploits its
knowledge. Introducing this factor forces the animat to
explore occasionally, and so causes the animat to
continue to learn, whilst reducing the number of
exploration trials required (compared to an unbiased
explore/exploit choice).

6. DISCUSSION

This explore/exploit strategy is novel as it uses nonlinear
combinations of feedback from reward, prediction
accuracy and temporal performance. Although there are
similarities to a number of explore/exploit strategies
suggested by Wilson [7] nearly 10 years ago, the
strategies have not been widely adopted. This is partly
due to XCS without advanced explore/exploit strategies
performing very well in terms of final 'average steps to
reward' and rule generalisation where appropriate.
However, the novel autonomous explore/exploit strategy
enabled HECS to significantly reduce the number of
exploration steps (and hence time taken) in MDP
remains, whereas XCS is stuck with its a priori
explore/exploit balance. The algorithm also adjusted to
the needs of the system as training progressed, with the
balance weighted towards exploration at the start of
training.

The use of a temporal measure based on the expectation
of reward was successful in preventing loop 'exploits'
trials, which were a problem for XCS. Setting a limit of
50 consecutive unsuccessful exploit trials in XCS would
reduce the time taken, but requires domain knowledge.

When tested in a POMDP domain, both systems failed as
they did not have been required structure. A different
structure, such as ACS, could be triggered by the
explore/exploit strategy, although this would be a
sequential process. The use of memory has been
proposed to improve performance in such problem
domains. A modified strategy could allow HECS to
consider its memory register only when considering a
state where rules had low confidence of action.

Implementing a memory system could also help prevent
resampling in two ways. When a message is presented to
the system it could be compared with a list of known
difficulties, so exploration can be triggered. Secondly, a
set of past training examples may be kept in memory
along with associated rewards. Memory could be used so
that the system exploits information until an unknown
area of search space is reached. The system would
actively search for areas that need greater exploration.
This is similar to work done by Butz on biased
exploration in anticipatory learning classifiers systems
[9].

Care must be taken not to autonomously tune one
parameter by introducing two parameters that require
tuning. In the case of this explore/exploit strategy, the
parameters introduced are reasonably robust and can
lead to significant time savings.

7. CONCLUSIONS

A novel explore/exploit strategy has been introduced that
provides a dynamic choice for each trial and escapes
from unsuccessful exploit trials. This was achieved
through the utilisation of statistics from environmental
feedback and results in behaviour that offers
performance benefits where domain knowledge cannot
be used to set up a standard XCS.

Although tested in a limited number of domains, HECS
appears to scale well and have reasonably robust
parameter settings. Further investigation is required,
including how far statistics used to guide LCS
performance can be taken.

Acknowledgements: The authors would also like to
thank Jan Drugowitsch for his useful advice.

8. REFERENCES

[1] R. Sutton and A. Barto, ‘Reinforcement Learning:
An Introduction’ , Cambridge, MA: MIT Press, 1998.

[2] S. Wilson. ‘Classifier fitness based on accuracy’ ,
Evolutionary Computation, vol. 3(2), pp. 149-175, 1995.

[3] L. D. Whitley, Plenary Lecture ‘Representation,
Search and Learning.’ , Abstract Proc 3rd Int. Conf. on
Artificial Neural Networks and Genetic Algorithms
(ICANNGA97), Eds. Smith G. D., Steele N. C. and
Albrecht R. F., Springer-Verlag Wein, New York, pp
624, 1997.

[4] M. V. Butz, ‘Rule-base evolutionary online
learning systems: learning bounds, classification and
prediction.’ PhD thesis University of Illinois, Illinois,
2004.

[5] J. H. Holland, ‘Adaptation’ , in Progress in
theoretical biology, Vol. 4, R. Rosen & F. Snell (Eds.),
New York: Academic Press, 1976, pp. 263-293.

[6] M. V. Butz, ‘Anticipatory learning classifier
systems’ , Boston, MA: Kluwer Academic Publishers,
2002.

[7] S. Wilson, ‘Explore/Exploit Strategies in
Autonomy’ , From Animals to Animats 4. Proceedings of
the Fourth International Conference on Simulation of
Adaptive Behaviour, eds. P. Maes, J. Pollack, J. A.
Meyer and S. W. Wilson, The MIT Press/Bradford
Books, Cambridge, 1996.

[8] TSI Artificial Intelligence. ‘Animat performance
of ZCS, XCS and ACS’ http://www.ai.tsi.lv.

[9] M. V. Butz, ‘Biasing exploration in an
anticipatory learning classifier system', Advances in
Learning Classifier Systems: 4th International
Workshop, IWLCS 2001, eds. P-L Lanzi, W. Stolzmann,
and S. W. Wilson, Berlin: Springer-Verlag, 2001, pp. 3-
22.

