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ABSTRACT 

In reinforcement learning problems it has been 
considered that neither exploitation nor exploration can 
be pursued exclusively without failing at the task. The 
optimal balance between exploring and exploiting 
changes as the training progresses due to the increasing 
amount of learnt knowledge. This shift in balance is not 
known a priori so an autonomous online adjustment is 
sought. Human beings manage this balance through logic 
and explorations based on feedback from the 
environment. The XCS learning classifier system uses a 
fixed explore/exploit balance, but does keep multiple 
statistics about its performance and interaction in an 
environment. Utilising these statistics in a non-linear 
manner, autonomous adjustment of the explore/exploit 
balance was achieved. This resulted in reduced 
exploration in simple environments, which could 
increase with the complexity of the problem domain. It 
also prevented unsuccessful 'loop' exploit trials and 
suggests a method of dynamic choice in goal setting. 

Categories and Subject Descriptors

F.2.2 Nonnumerical Algorithms and Problems 

General Terms

Algorithms, Design. 
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1. INTRODUCTION 

“The dilemma is that neither exploration nor exploitation 
can be pursued exclusively without failing at the task.” 
Sutton and Barto [1]. The optimal balance between 
exploring and exploiting changes as the training 

progresses due to the increasing amount of learnt 
knowledge and is not known a priori. Many 
reinforcement learning algorithms, such as XCS [2], use 
a fixed explore/exploit ratio that may lead to unnecessary 
exploration steps, repetitive loops in exploit trials and an 
increased time for training. Additionally, Whitley [3] 
identifies that repetition (resampling) is important to 
avoid in learning algorithms, which is to be considered 
in this work.  

1.1. Aims and objectives  

The aim of this project is to investigate whether the 
statistics held by an LCS can be used to create an 
autonomous explore/exploit strategy. Both Markov 
decision processes (MDP) and partially observable 
Markov decision processes (POMDP) will be tested to 
observe the effect of the strategy [4]. 

2. TYPES OF ENVIRONMENT 

2.1. Single/multi step 

In a single step environment the choice of action from 
any given state has no bearing on any future state of the 
environment, with the result of the action being an 
instantaneous reward level. If the choice of action affects 
the future states of the environment, with reward being 
(potentially) received after multiple steps then the 
environment is considered multi-step. The predominant 
multi-step environment used in Learning Classifier 
System (LCS) research is the ‘Woods’ environment (e.g. 
Figure 1).  

Figure 1. Woods 1  

The Woods environments are cell based environments 
where each cell contains one of several objects which 
may have a reward associated with it; the AI agent (or 
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animat) must navigate this environment to find the 
reward. In the most common woods environment there 
are 2 types of objects: T (tree) is an impassable object 
with zero reward, F (food) bestows a positive reward. 
Empty cells are indicated by a full stop and have zero 
associated reward. The animat has the ability to sense the 
objects in the surrounding 8 cells. 

2.2. Markovian/non-Markovian 

Within multi-step environments there is a distinct 
division between two types of environment, “If an 
environment has the Markov property, then its one-step 
dynamics enable us to predict the next state and expected 
next reward given the current state and action.” [1].  

Figure 2. Woods 100, 2 positions with identical sensor 
strings 

This is perhaps best illustrated with an example; in 
Woods1 (see Figure 1) each possible position of the 
animat results in a unique sensor string (note that the 
environment wraps around on each side) and so after 
learning the animat can tell instantly which cell it is in. 
However in Woods 100 (see Figure 2), there are two 
positions that give identical sensor readings, but with 
different subsequent states (and eventual rewards), this is 
therefore a POMDP environment. 

2.3. Static/dynamic 

In the standard woods environment nothing changes over 
time, to test more advanced aspects of AI the 
environment can be made to be dynamic, for example 
the objects could move over time, or certain properties of 
objects could change. There is also the possibility of 
having a Multi-Agent System (MAS) which would 
introduce the possibilities of competition and 
collaboration. Initially the system will be tested in Static 
environments only; although it is hypothesised that 
dynamic environments would require the simulation of 
more complex exploration. 

3. AI ARCHITECTURES 

3.1. Learning Classifier Systems 

Learning Classifier Systems are rule-based evolutionary 
learning systems. The fact that they are rule-based gives 
them an advantage over some learning systems in that 
they have a high level of knowledge transparency, as the 
rules governing the LCS can be interpreted relatively 
easily. The original LCS [5] has been adapted and 
improved by various researchers, of key importance is 

XCS [2], which (amongst other things) modifies 
Holland’ s LCS to use an accuracy-based fitness 
approach. There has also been relevant further work 
extending LCS to anticipate the effect of its actions, in 
the shape of Anticipatory Classifier Systems (ACS) [6]. 
Wilson outlined both global and local explore/exploit 
strategies and concluded much further work is needed as 
they are crucial for true autonomy [7]. 

3.2. Hybrid Explorer Classifier System  

The proposed system is a combination of a standard 
implementation of XCS [8] and the novel 'explorer' 
explore/exploit strategy. It supports the principle behind 
reinforcement learning in that an intelligent agent should 
learn from the interaction with its environment, and not 
from an explicit teacher. This leads to a Hybrid Explorer 
Classifier Systems (HECS). 

4. EXPLORER ARCHITECTURE 

The proposed explorer architecture for HECS bases the 
exploration level of the animat on three factors, whilst 
storing the explorer level as two separate real variables 
ranging from -1 to 1 (with 1 being fully satisfied). The 
equations proposed introduce several nonlinearities to 
the system, see figure 3, the precedence for the use of 
non-linear equations in LCS can be seen in their use for 
several other calculations, such as accuracy calculation, 
particularly where a sharp discrimination is required 
between similar inputs. 

Figure 3. Graph of explorer change based on 
prediction fitness and overshoot/undershoot 

4.1. Accuracy induced exploration  

The proposed explorer framework takes into account the 
accuracy of the predictions made by the animat, this 
calculation is based on the fitness of the prediction (how 
confident the animat is in the accuracy of its prediction) 
and the amount of overshoot/undershoot of the 
prediction (relative to maximum reward/punishment):
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The function ( )f F is dependent on the fitness of the 

prediction (F) and a parameter that limits the maximum 
change in exploration (0-1). 

( ) FEFf Max ×∆=  (2) 

MPA is a parameter which defines how close to ‘perfect 
accuracy’  a prediction has to be for a positive explorer 
increase (affects the gradient of the curve). 
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Where: 

maxE∆ is the parameter which limits the maximum 

change in exploration (0-1) 
F is the Fitness of prediction  
O is the Reward Overshoot, (positive value indicates 

reward was greater than prediction) 

rangeR is the animat’ s calculation of the range of rewards 

(max reward-max punishment) 

PAM is a parameter that defines the tolerance to perfect 

accuracy for a prediction to the reward obtained.  

4.2. Reward induced exploration 

When the animat receives immediate positive reward an 
explorer level is increased by an amount related to the 
amount of reward received relative to the maximum 
reward available, if the animat receives negative reward 
(or punishment) then the explorer level is decreased by 
an amount relative to the maximum punishment. The 
equation relating immediate reward to explorer change 
is, see figure 4: 
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Where: 

RS is the scaled reward/punishment 

MRS is a scaling factor which affects the slope of the 
curve 

Figure 4. Graph of explorer change against 
immediate reward 

4.3. Effect of time on explorations 

The effect of reward on the animat’ s explorer needs is 
made to decay over time so that as time proceeds the 
animat becomes less satisfied with the reward it received 
in the past, the opposite occurs with negative reward so 
that the animat begins to forget the negative reward it 
received in the past. For positive rewards this decay is 
delayed until the animat has made more steps than it has 
estimated as being the maximum amount required to 
reach a reward (nmax) based on the minimum and 
maximum predictions in the population, and the discount 
factor ( ) (see figure 5): 
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 Figure 5.  Explorer level decay as steps taken passes 
max steps estimate 

4.4. Effect of explorations 

The two explorer levels are used for two purposes: 
Firstly at the start of every trial the animat chooses 
whether to explore or exploit during this trial. This 
choice is based on the accuracy explorer level; if the 
animat is not satisfied with its accuracy it should explore 
more so as to improve its knowledge (and therefore 
accuracy), if however the animat has been largely 
accurate then it can assume that the environment has 
been learnt to a sufficient level and therefore the best 
choice of action is to maximise the immediate reward by 
exploiting this knowledge. 
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Note in eqn. (8) the factor of 0.9 is an arbitrary value 
between 0 and 1 which means there is always a chance 
of both exploration and exploitation (see figure 6). 

Figure 6. Graph showing the probability of the 
animat exploring at any given trial 

Secondly the animat uses the reward induced explorer 
level to ‘escape’  from unsuccessful exploit trials; at the 
start of every exploit step the animat has the possibility 
of switching to explore mode if its explorer level is too 
close to zero; as the explorer level does not begin to 
decay until the estimated maximum number of steps 
have been taken there is little chance of switching until 
several exploit steps have failed to find a reward.

SwitchToExplr 1 RP E= −  (9) 

5. RESULTS  

5.1. Woods1 – XCS 

The implementation of XCS in HECS was verified as it 
correctly reproduced known results in the Woods1 
environment [8]. HECS successfully learnt the best 
actions for each of the available positions (see figure 7) 

       

Figure 7. Woods1 - Best Actions (and key) 

Once the soundness of the basic XCS was established, 
the explorer side of the architecture was enabled and the 
results compared. Each experiment was run 10 times 
with the average values shown in table 1. The deviation 
between each run was not significant. 

With the explorer enabled the animat remained largely in 
explore mode for a period at the start, until it was 
satisfied with its accuracy, at which point it switched 
mainly to the exploit mode with occasional exploration 

trials. This suggests that the explore/exploit strategy 
enabled the animat to decide when to exploit effectively. 

Table 1. Woods1, effect of the explorer strategy on 
performance 

 XCS HECS 

Average Steps  

from start of training 

2.792 2.727 

Average Steps 

last 100 trials (optimum 1.6875) 

1.708 1.725 

Ave. No. Of Explores 2000 138 

Actual Time taken (s) 402 65 

Over the complete training cycle, 2000 exploit trials, 
HECS took fewer steps, which may be important during 
online learning where resources need to be conserved. 
The average steps taken to reward at the end of training 
was close to the optimum value, which was confirmed as 
the optimal policy was present in both systems.  

The number of explore trials was significantly reduced 
by the novel explore/exploit strategy. This resulted in a 
significant timesaving for the overall algorithm. 

The graph for macro population size, see Figure 8, 
shows that with explorations on HECS is still able to 
generalize, albeit less effectively than XCS. The graph is 
somewhat misleading in terms of the x axis, as HECS 
uses much less exploration trials and achieves a level of 
generalisation very close to that achieved with XCS after 
a greater number of exploration trials. 

Figure 8. Woods1 - graph showing effect of 
explorations 

5.2. Maze 4 

Figure 9. Maze4 

 ‘Maze4’  see figure 9, is also a static Markovian 
environment, but is a significantly larger environment 
than Woods1. This domain was used to test whether the 
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explore/exploit benefits of HECS scaled to larger 
environments.  

HECS managed to greatly improve its performance by 
using explorer based exploration as can be seen in the 
results, table 2, where both the number of explore trials 
and actual time taken were significantly reduced. The 
'average test steps’  is approximately the same. This 
environment is more complex than Woods1 due to the 
increase in average steps required to reward and less 
generalisation being possible. HECS was also able to 
generalise to a similar degree as XCS. 

Table 2. Results for Maze4 

XCS HECS 

Average Steps  

from start of training 

8.18 4.74 

Ave. No. Of Explores to optimum. 

Max explorer change = 1.0 

2000 208 

Actual Time taken (s) 1765 225 

Ave. No. Of Explores to optimum. 

Max explorer change = 0.5 

2000 3852 

Exploration could be increased in HECS by reducing the 
effect of the explorer, which shows that the 
explore/exploit strategy can be adapted to an 
environment. Despite this greater exploration, the time 
taken for the experiment was only slightly longer than 
XCS due to the explorer preventing the animat becoming 
stuck in long exploit trials, which occurred 147 times in 
XCS. 

It is noted that similar levels of generalization were 
achieved partly due to the low levels of generalisation 
possible, see figure 10. This figure also shows with the 
explorer the system found a good strategy quickly, 
whereas without the explorer the system kept trying 
alternative policies. 

Figure 10. Graphs showing steps taken and macro 
population size for Maze4 

5.3. Other environments 

The program was tested in Woods100, as this 
environment is a POMDP. Standard XCS is unable to 
learn rules that give the best actions. Extensions to the 
standard XCS, such as memory, or a different LCS 
architecture, such as ACS, are required in such 
environments. Therefore, it is not surprising that HECS 
failed to evolve appropriate classifiers. The explorer 
could not make an improvement, so the animat was 
always below the required accuracy, and so very rarely 
exploited. 

This does not indicate a problem with the 
implementation of the explorer; instead it suggests that it 
could be used to change algorithmic methods or 
algorithm goals. It may allow a system to recognise that 
its environment is not simple/Markovian and adjust 
behaviours accordingly. 

5.4. Effect of the explorer parameters 

The introduction of the explorer has increased the 
number of parameters required for HECS to run; it is 
worth noting which of these parameters HECS is most 
sensitive to, and which parameters are very robust. The 
‘Reward Slope Factor’ , MRS in eqn. (5) seems to be 
fairly robust to changes in value. Increasing the ‘Perfect 
Accuracy Weighting’ , MPA in eqn. (1), improved the 
generalization ability in Woods1, however the same 
increase in Maze4 caused HECS to do many more 
exploration trials, never reaching a satisfactory accuracy 
level to begin exploitation. This suggests that this 
parameter is not very robust in the current 
implementation, although perhaps it could be adapted in 
relation to the estimate of the environment size. 

An interesting parameter is the factor which multiplies 
the accuracy induced explorer level in eqn. (8), currently 
set at 0.9. If this factor is removed then the animat 
performs well in terms of requiring less explore trials (in 
Woods1) however it fails to generalise very much, as in 
effect it finds a set of classifiers which are accurate and 
lead to a reward from every location, and so it stops 
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exploring the environment and simply exploits its 
knowledge. Introducing this factor forces the animat to 
explore occasionally, and so causes the animat to 
continue to learn, whilst reducing the number of 
exploration trials required (compared to an unbiased 
explore/exploit choice). 

6. DISCUSSION 

This explore/exploit strategy is novel as it uses nonlinear 
combinations of feedback from reward, prediction 
accuracy and temporal performance. Although there are 
similarities to a number of explore/exploit strategies 
suggested by Wilson [7] nearly 10 years ago, the 
strategies have not been widely adopted. This is partly 
due to XCS without advanced explore/exploit strategies 
performing very well in terms of final 'average steps to 
reward' and rule generalisation where appropriate. 
However, the novel autonomous explore/exploit strategy 
enabled HECS to significantly reduce the number of 
exploration steps (and hence time taken) in MDP 
remains, whereas XCS is stuck with its a priori 
explore/exploit balance. The algorithm also adjusted to 
the needs of the system as training progressed, with the 
balance weighted towards exploration at the start of 
training. 

The use of a temporal measure based on the expectation 
of reward was successful in preventing loop 'exploits' 
trials, which were a problem for XCS. Setting a limit of 
50 consecutive unsuccessful exploit trials in XCS would 
reduce the time taken, but requires domain knowledge. 

When tested in a POMDP domain, both systems failed as 
they did not have been required structure. A different 
structure, such as ACS, could be triggered by the 
explore/exploit strategy, although this would be a 
sequential process. The use of memory has been 
proposed to improve performance in such problem 
domains. A modified strategy could allow HECS to 
consider its memory register only when considering a 
state where rules had low confidence of action. 

Implementing a memory system could also help prevent 
resampling in two ways. When a message is presented to 
the system it could be compared with a list of known 
difficulties, so exploration can be triggered. Secondly, a 
set of past training examples may be kept in memory 
along with associated rewards. Memory could be used so 
that the system exploits information until an unknown 
area of search space is reached. The system would 
actively search for areas that need greater exploration. 
This is similar to work done by Butz on biased 
exploration in anticipatory learning classifiers systems 
[9]. 

Care must be taken not to autonomously tune one 
parameter by introducing two parameters that require 
tuning. In the case of this explore/exploit strategy, the 
parameters introduced are reasonably robust and can 
lead to significant time savings. 

7. CONCLUSIONS 

A novel explore/exploit strategy has been introduced that 
provides a dynamic choice for each trial and escapes 
from unsuccessful exploit trials. This was achieved 
through the utilisation of statistics from environmental 
feedback and results in behaviour that offers 
performance benefits where domain knowledge cannot 
be used to set up a standard XCS. 

Although tested in a limited number of domains, HECS 
appears to scale well and have reasonably robust 
parameter settings. Further investigation is required, 
including how far statistics used to guide LCS 
performance can be taken. 
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