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ABSTRACT 
We would like to evaluate the XCS [1] Learning Classifier 
System (LCS [2]) to see if it can be applied to a specific aviation 
industry problem. We are interested in seeing whether it can offer 
an accessible representation model and evolve feasible strategies 
to predict future demand patterns endogenously, and in parallel 
with the supply side simulation.   

Categories and Subject Descriptors 
D.3.3 [Distributed Artificial Intelligence]: – Multi-Agent 
Systems, Machine Learning. 

General Terms 
Algorithms, Economics, Experimentation. 

Keywords 
Machine Learning, XCS, LCS, Reinforcement Learning, 
Prediction accuracy. 

1. INTRODUCTION 
Agents selling goods or services in a competitive market need to 
adapt to the environment if they are to be successful.  In a 
dynamic market, agents may appear and disappear and individual 
bidding strategies may change, so it is difficult to know which 
strategy to apply in a particular situation which would maximize 
profit.  Hence agents need to learn their opponents’ strategies and 
adapt to the ever-changing market.  In a competitive market, 
agents often face each other in encounters in which the 
simultaneous actions of a set of agents lead to different utility 
payoffs for all the participants.  For example, a set of agents 
might submit their bids in an auction and, depending on the 
outcome of the auction, each agent may experience a utility gain 
or loss.  Agents learn from the results of the auction and over time 

begin to improve their performance. 
 
Accurate classifiers are classifiers that give an accurate prediction 
of the payoff that the agent should expect when using that 
particular classifier.  In order to build an effective, accurate 
learning classifier system, various combinations of learning and 
multi-strategy learning algorithms need to be explored.  For 
example, we would like to investigate whether agents learn to 
cooperate to forgo short term gain and increase mutual long term 
rewards.  These strategies in the current state of the environment 
can then be input into a Learning Classifier System (XCS LCS) 
[1] [2] which would improve upon them, evolve them and return 
them to the environment to be used in the next state.  The 
motivation for this study is to determine the applicability of these 
techniques to a specific aviation industry problem.  The 
complexity of this problem is so great with all users making 
multiple, interdependent decisions simultaneously, that a 
Learning Classifier System appears to be the ideal solution for it.  
Similar work has been done by others such as, Schulenburg et al. 
[3] in the stock market environment.  We would like to extend the 
work performed by them, as, their assumptions that the individual 
decision does not affect the overall output of the system does not 
apply to the complex world of the aviation industry.  In this study, 
we are interested in examining not only different agent learning 
strategies, such as reinforcement learning strategies but also the 
effectiveness of accurate classifiers in combination with them 
using the XCS [1] framework.  We would then like to test this 
framework with other market strategies, such as the Cournot and 
Bertrand solutions and finally our own 

2. PROBLEM 
At many large airports, demand far exceeds capacity resulting in 
costly delays and unpredictable operations.  As an interim 
solution, until additional facilities can be built, the Federal 
Aviation Administration (FAA) has recently begun investigating 
new resource allocation policies.  To assure Congress and the 
flying public that any new policy will be fair and efficient, the 
FAA needs quantitative results to back up their proposal with 
reasonable certainty that it will have the intended effects without 
substantial side effects.  In current practice, analysts typically 
make assumptions about how the market will respond to the new 
policy.  The relevant metrics are then computed to inform 
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decision makers about the relative merits of various policies.  
However, because any new resource allocation policy constitutes 
a significant deviation from the current economic and operational 
environment, simply extrapolating the market, or “demand” 
response from existing demand patterns would be a gross 
simplification of the problem and would most probably result in 
misleading conclusions.  In fact, any solution that requires an 
assumption about the future demand pattern would most likely 
suffer from the analyst’s bias. 
The MITRE Corporation’s Center for Advanced Aviation System 
Development (CAASD) is building the MarketFX™ model to 
predict future demand patterns endogenously, and in parallel with 
the supply side simulation.  By modeling the market-driven 
behavior of all direct aviation facility users (the airlines), the new 
environment in which they must operate and the passenger 
responses to airline schedule changes, the MarketFX™ model 
produces a high-fidelity simulation of the profit maximizing 
behavior of the airline industry while making very few high level 
assumptions. 
This is a particularly difficult problem because of the structure of 
the airline industry.  The industry consists of many airlines with 
unique schedule networks, business models, and cost structures.  
As a result, they typically value the same resources differently 
and, consequently, respond to new policies and capacity changes 
differently.  If we add to that the fact that all users are making 
multiple, interdependent decisions simultaneously, it soon 
becomes apparent that the profit maximization problem is simply 
intractable using traditional optimization techniques.  The 
MarketFX™ model solves this problem by coupling agent-based 
simulation with the latest machine learning and numerical 
techniques to model the airline planning process. 
Currently, MarketFX™ uses an adaptive regression algorithm to 
model the decision makers at every level within an airline.  The 
agents require feedback from the environment in the same form as 
the decisions being made.  In other words, if an agent makes a 
decision regarding fare, it will need to know what the “best” fare 
really was in the previous state; if it was a departure time agent, 
and it will need the “best” departure time; etc.  The obvious 
shortcoming for this domain is that we don’t really know what the 
best decisions should have been.  To get around this limitation in 
the latest design, we have transformed all decision variables into a 
profit prediction – a known quantity in every situation.  However, 
we have really had to bend the tool quite a bit to get it to do so.  
Therefore, we would like to explore an alternative machine 
learning technique that uses reinforcement learning (directly) so 
that our airline agents can be simple profit maximizers. 
Another feature of the domain is that the search space is 
enormous, if not infinite.  Therefore, we need (1) a means of 
transforming states into various classifications and (2) an efficient 
means of finding feasible strategies.  Learning classifier systems 
satisfy both of these requirements and additionally offer an 
accessible representation so results can be better understood 
(which is useful since validation will be difficult). 

3. BACKGROUND 
Reinforcement Learning (RL) [4] techniques and Genetic 
Algorithms have been applied successfully in many agent-based 
systems for learning the policy of an agent in uncertain 
environments.  Reinforcement learning can be applied to estimate 

the quality value for each state-action pair.  Genetic algorithms 
help create populations of possible solutions out of which the 
fittest are selected [5].  Genetic algorithms may be combined with 
reinforcement learning.  The incoming reward is exploited to 
guide the evolution of the agent’s behavior which, in learning 
classifier systems, is represented by a set of update rules, the 
classifiers.  The idea is to estimate the goodness/fitness of 
classifiers and use genetic algorithms to favor the reproduction 
and recombination of better classifiers, better suggestions of 
actions, that should be taken or better strategies that should be 
followed. 
Using these techniques, although many successful results have 
been achieved in the past in a Markov environment, composed of 
a finite set of states and actions, we do not find many applications 
of these techniques in a non-Markov environment, such as the 
Market structure, possibly composed of many different states.  
Some evidence of their success in abruptly changing 
environments such as the world of economics may be found in [6] 
and [7].  To effectively use these techniques to solve real world 
practical problems we must also extend them to non-Markov 
environments.  
A detailed description of the XCS and the algorithms it uses may 
be found in [1] and [8].  We would like to use the XCS [1] for the 
following reasons: 

• It is an LCS that uses Reinforcement Learning 
• It evolves optimal and accurate representations or 

condition/action rules 
• It has the ability to generalize condition/action rules   

As described in [9],  
“learning classifier systems evolve a set of condition-action rules 
by measuring the performance of individual rules and then 
periodically using crossover and mutation to breed new rules from 
old”.   
Why use the XCS [1] in particular?  We recognize that the XCS 
[1] was intended to be used in a Markov environment.  However, 
others, such as [10] and [11] have applied it in a non-Markov 
environment,  
“Corporate classifier systems develop chains of classifiers which 
potentially can be exploited for tackling non Markov problems 
and to anticipate the consequence of the classifier action” [11]. 
Given the fact that our problem is a non-Markovian problem, we 
would also like to test its effectiveness in dealing with a non-
Markov environment.  Another reason for using the XCS may be 
found in [8],  
“I suggest that XCS systems can evolve optimal populations 
(representations); populations which accurately map all 
input/action pairs to payoff predictions using the smallest possible 
set of non-overlapping classifiers”.   
Yet another significant reason is that,  
“in a competitive market, agents are primarily driven by the need 
to maximize profit on a daily basis, but in the real world more 
complex objectives such as maximizing market share may also 
affect agent behavior [12].   
As also mentioned in [9],  
“in early learning classifier systems, rules occasionally did an 
action that earned external reward, and this contributed to the 



rule's fitness and to the fitness of those that enabled it to fire. 
Earned rewards were spread by the so-called `bucket brigade 
algorithm' (effectively a trickle-down economy) or `profit-sharing 
plan' (essentially a communal reward-sharing) or other such 
algorithm.  However, in those early systems, a rule's fitness was a 
measure of the reward it might earn (when considering what rule 
to fire) and also a measure of the reward it had earned (when 
selecting rules for breeding).  This caused various problems, 
notably that rules which fired very rarely but were crucial when 
they did would tend to be squeezed out of the population by the 
evolutionary competition long before they could demonstrate their 
true value. XCS [20] largely fixed this by instead valuing a rule 
for the accuracy rather than the size of its prediction of reward.  
For this reason - because, in our application, there might be 
heuristics which were rarely used but crucial - we chose to use 
XCS” [9]. 
And finally, according to [7], 
“The particular implementation we choose (XCS) has another 
interesting property: their favor the accuracy of strategies instead 
of their brute strength. This enhances the expectation dimension 
of LCSs. This is a very important dimension for modeling 
learning because many evolutionary models neglect the formation 
of expectations by the firms and their influence on decisions (see 
Oltra & Yildizoglu [1999]).... Our results show that the use of 
XCS pays in terms of the efficiency of the learning process even 
if they are quite demanding in computational power. Industries 
formed by XCSFirms are more efficient at the level of technology 
dynamics, as well as of social welfare.” 
We hope to conduct experiments to see if they result in the 
creation of a number of classifiers each suited for a particular 
target/problem/environment.  By comparing and evaluating these 
classifiers or combinations of the different learning strategies 
under the same real-world conditions, we hope to create a single 
“best” robust classifier or learning system. 

4. METHODOLOGY 
As the above-mentioned evidence shows, this area is certainly not 
new.  Others have already tested it.  Our work borrows ideas from 
their experience in this area.  However, before we can reach the 
stage they have already arrived at and before we can apply the 
above mentioned technology to our current work, we need a better 
understanding of how agents develop, evolve and work.  How 
does learning take place in competitive environments?  Which 
experimentation strategy produces most effective learning [5]?  
We plan to use a system in which learning takes place not only in 
the external environment but also in the XCS.  The external 
environment in our system is a heterogeneous environment in 
which agents with different strategies, whether they are 
reinforcement learning strategies, such as Q-Learning or 
Temporal Difference Learning or other economic strategies such 
as the Cournot and Bertrand simultaneous matrix game solutions 
[Becker] interact with the XCS which helps them improve their 
current strategies.   

Given the complex and competitive situation that we are dealing 
with in the airline industry, the application of Game Theory 
appeared to be most suitable for us.  We have already 
experimented and still are experimenting with competitive game 
theory composed of simultaneous moves by agents, with a view to 

applying it to and exploiting "market competition".  Research 
literature [6], [13], [14], [15] and [16] shows that The Iterated 
Prisoner's Dilemma (IPD) problem has established itself as a 
central model in competitive multi-agent environments.  The 
prisoner's dilemma is a classic problem of conflict and 
cooperation. In its simplest form each of two players has a choice 
of cooperating with the other or defecting. Depending on the two 
players' decision, each receives payoff according to a payoff 
matrix.  The problem is made more interesting by playing it 
repeatedly with the same group of players, thereby permitting 
partial time histories of behaviour to guide future decisions [6].  
Here, we emphasize that our goal is to continue the work 
performed by others, since it is based on their work already done 
in this field and their advice, and use their insight into this 
complex problem by trying to make it successful in a truly multi-
agent environment.  We would like to investigate whether agents 
learn to cooperate to forgo short term gain and increase mutual 
long term rewards.  We hope that the potential for cooperation 
exists in certain environments with the characteristics of games 
such as the Prisoners' Dilemma.  Can multiple adaptive agents 
learn to behave in ways analogous to real world bidding 
strategies?  How do changes in the market structure affect agent 
behavior?  This is what we would like to find out. 

We started by first experimenting with different learning 
strategies, since we are interested in agents evolving optimal 
strategies.  Since we did not want to build a whole new system, 
we downloaded and adapted the GENEIPD system [14], [15] to 
the XCS [1] in order to build our experimental framework of a 
heterogeneous competitive market-like environment.  The 
GENEIPD system already has the IPD agents built into it and 
therefore provides us with a convenient multi-agent framework 
for our experiments.  Our heterogeneous agents play in this 
market, each using its own strategy and then periodically, after a 
certain number of games, new strategies are created by invoking 
the XCS [1] GA from the GENEIPD system.  The results of the 
experiments conducted so far are presented below. 

5. EXPERIMENTS 
Since we are concentrating on agents learning good machine 
learning strategies we first started by experimenting with different 
strategies.  We have conducted experiments with different 
reinforcement learning techniques as well as economic profit 
game theory strategies in order to ascertain which ones produce 
effective results in a competitive environment.   

The next step was to experiment with The Iterated Prisoner’s 
Dilemma strategies, with many agents.  As mentioned above, we 
believe that this has potential application in a non-Markov 
environment in which the agents make simultaneous moves in 
order to outdo each other.  The idea was to test whether the XCS 
could truly evolve better strategies to produce a more cooperative 
agent behavior.  As mentioned above, we are using the GENEIPD 
system [14], [15] integrated with the XCS [1].  We have 
experimented with the ALLC (all players cooperate), ALLD (all 
players defect), TFT (Tit-For-Tat players) and ATFT (All Tit–
For-Tat players).  Each agent suggests an action based on its past 
experience and feedback.  The genetic algorithm, i.e. the GA as a 
higher level agent then picks between them.  The function of the 



GA is to find the value of the update rule (x) which maximizes 
f(x).  The results of our experiments are presented below. 

6. Experiments with Reinforcement Learning 
Methods 
These experiments were performed in a Markov environment 
using the simple Game of NIM [17].  NIM is an old, simple game 
in which two agents take turns in picking up tokens from a pile.  
There are a number of versions of NIM.  We use the version in 
which the player who has to pick up the last token loses.  If you 
are in a winning state, you get a 1.0 reward.  If you are in a losing 
state, you get a -1.0 (negative) reward.  Otherwise the reward is 
0.0.  We explored some of the basic issues in machine learning.  
How agents learn when using Q-Learning [18] and Temporal 
Difference (TD) [18] methods.  The Q-Learner and the TD-
Learner play the game of NIM against each other each using its 
own strategy.  Figures 1 and 2 show that the Q-Learner is a stable 
learner, whereas the Temporal Difference learner can behave 
erratically depending on the learning rates. 
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Figure 1 - Agents learning utilities over time - Alpha = 0.5 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Agents learning utilities over time - Alpha = 0.9 

7. Experiments with Market games 
(Beckman) using the optimal policy 
These experiments are based on matrix choice games illustrating 
monopoly, shared monopoly, Cournot and Bertrand behavior and 
price wars.  The games use a profit table given the choices of two 
players. One player selects the column, the other the row, and the 
table gives the profit of the row chooser.  

The following results were obtained by actually making the 
agents go through a learning phase in which they choose an 
optimal policy in actual market conditions.  We use Beckman’s 
market games with Cournot and Bertrand solutions.  Figure 3 
shows the results of agents playing Profit Games using the 
Cournot solution.  It is based on the “best response” policy.  A 
simple demand function, P = (Q1+Q2), where Q1 and Q2 are the 
output choices of two agents.  The profits reported are just P*Q1.  
This policy eliminates dominated strategies. 

 
Figure 3 - Agent Price and Profit 

 
Figures 4, 5, 6 and 7 show the Bertrand solutions. 
The idea here is that whichever firm produces the least determines 
sales. The price of the combined bundle is given by: P = 12 – 
min(Q1,Q2).   The price is given by: P = 12 – min(Q1,Q2) and 
the profit is P *min(Q1,Q2). 
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Figure 5 - Profit vs. Moves 
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Figure 6 - Profit vs. Price 

 
Figure 7 - Profit vs. Price 

8. Experiments with the Iterated Prisoner’s 
Dilemma strategies 
The aim of this experiment was to see whether it was possible to 
change a dominant strategy environment into a more cooperative 
one using the XCS.  Before we go on to describe our experiments 
and the results that we have achieved so far, we would like to 
describe the representation of our problem.  Suppose the memory 
of each player is one previous turn. There are four possibilities for 
the previous turn: 
CC (case 1) 
CD (case 2) 

DC (case 3) 
DD (case 4) 
Table 1. Strategy Evolution – Tit For Tat 

Actions Strategy 

CC C 

CD D 

DC C 

DD D 
 
If CC (case 1), then C. 
If CD (case 2), then D. 
If DC (case 3), then C. 
If DD (case 4), then D. 
This results in the following strategy: CDCD 
Axel rod’s [6] tournaments involved strategies that remembered 
three previous turns.  Thus a strategy can be encoded by a 4x4x4 
= 64-bit string, e.g., CDCCCDDCCCDD [6], [16] 

We first ran the original system, GENEIPD [14], [15], the way it 
is originally set up with the five IPD rules.  Each agent is run in 
the current GENEIPD environment and uses the strategy defined 
by its chromosome to play an IPD with other strategies.  This 
produces results that show that Defector agents always win in 
competitive situations.  We then modified the system to use the 
XCS [1].  An examination of the chromosomes shows that the 
XCS produces improved chromosomes favoring the Cooperation 
agents.  An example of the results are presented below, where: 
For 0 = C = Cooperate 
and 1 = D = Defect 
After a game/competition: One parent chromosome before going 
into the XCS system: 
IPD sending chromosone (current state) to XCS: 
0010101111100000110 
Before the next game/competition: One child chromosome after 
the process of crossover and mutation from the XCS system to the 
IPD system: 
XCS sending modified chromo = 0000101110100000000 
Figures 8, 9, 10 and 11 show the results for the defector and 
cooperator agents. 

 
Figure 8 - IPD Agents before XCS processing 

 
Figure 9 - Payoff before XCS processing 
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Figure 10 - IPD Agents after XCS processing 

 
Figure 11 - Payoff after XCS processing 

9. CONCLUSION 
We have shown that because of its prediction accuracy and the 
ability to generalize condition/action rules, it is possible for the 
XCS to generate improved strategies.  We have presented here the 
first set of our experiments.  We now plan to experiment with 
other strategies, such as the different reinforcement learning 
strategies and other profit game strategies.  We are currently in 
the process of encoding these for input into the XCS.  Our work is 
by no means yet complete.  However, we are optimistic about 
these first results.  They show that it is possible for the XCS [1] to 
come up with better rules in competitive environments.  Our 
future plans are to test the XCS system with our own rules. 
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