RCS: A Learning Classifier System for Evolutionary
Robotics

Noah W. Smith
Colby College
Department of Computer Science
Waterville, ME USA

nwsmith@colby.edu

ABSTRACT

This paper introduces RCS, a learning classifier system de-
signed for evolutionary robotics research. In addition to
describing the system, it will present the results of RCS ap-
plied to a pursuit task. In this test, performance was good
and has been improved in ongoing work.

Catagories and Subject Descriptors: 1.2 [Computing
Methodologies]: Artificial Intelligence— Learning, Robotics

General Terms: Performance, Design, Experimentation

Keywords: Learning Classifier Systems, Robotics

1. INTRODUCTION AND BACKGROUND

In a robot system, sensors monitor the environment, a
controller chooses actions based at least in part on those
sensors, and effectors execute those actions. If a classifier
system is chosen as the controller, the input-output chain
sends abstracted sensor data to the classifier system, which
returns motor actions as output. This process works very
well for hand-crafted classifier sets in tasks where no dy-
namic behavior is required; however, if a learning classifier
system (LCS) is desired as a controller, the issue of rein-
forcement must be addressed.

John Holland’s original concept of a LCS[4] received in-
put from the environment, then allowed matching classifiers
to bid for the ability to fire. After one was chosen, it en-
tered the “bucket brigade” reinforcement system to adjust
its weight. Meanwhile, genetic operators were applied to
existing classifiers to gradually change the rule set.

In most non-trivial robotics tasks, success depends on a
long series of actions where, even if one classifier determines
every individual action, it is very difficult to assign fitness to
individual classifiers. Most LCSs based on Holland’s origi-
nal system are constructed with this reinforcement scheme.
The most influential of this group include Wilson’s ZCS|[6],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO' 05 June 25-29, 2005, Washington, DC, USA

Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

Clare Bates Congdon
Colby College
Department of Computer Science
Waterville, ME USA

ccongdon@colby.edu

XCSJ7], and Stolzmann’s ACS[5]. An alternative is to evalu-
ate groups of classifiers as a rule set which evolves as a whole
over time. RCS attempts to create such a system specifically
for evolutionary robotics research.

2. RCSSYSTEM DESIGN

The RCS algorithm is written in C and may be divided
into two parts: the static core, specifying program con-
trol, classifier selection, and evolution, and the user-specified
functions, which define the task to be completed. There are
also a number of parameters that influence the performance
of the system.

This element is responsible for running the correct number
of trials and generations. A trial is defined as the execution
of the task from beginning to end; each classifier set is al-
located n trials in each generation. During each trial, the
robot running RCS repeatedly updates its sensors, present-
ing input to RCS. A classifier is chosen and fired, enabling
the robot to move through the world. Trials are run one
after another until all the rule sets have been evaluated.
Once this is accomplished, the average of their fitnesses is
stored for use in the evolutionary selection process and the
generation is complete. After all the generations have been
completed, the final rule sets are written to disk.

Each classifier in a rule set is stored with the last gen-
eration it was altered and the number of times it has been
fired since that change. The former piece of information is
valuable for conflict resolution, while the latter is more for
after-the-fact analysis. Also stored with each rule set is a
default action which fires if no classifier matches.

The process of evolution begins with a tournament-style
selection made on the individuals in the current population.
The fitnesses of surviving individuals are then reset to zero.
Crossover then occurs in three variations: rule sets swapping
default behaviors, classifiers in the same rule set swapping
actions, and rearranging the order of two classifiers within
a rule set. Finally, random bits are mutated with each bit
having the same probability of mutation.

It is possible to adapt RCS to most robotics tasks by
merely editing four functions: one specifying what input
is presented to the classifier system, one dictating how the
output from the system is handled, another defining the
condition(s) at which a trial is complete, and finally one
indicating what data is to be written to disk for subsequent
analysis.

The maximum number of generations, the population and
tournament sizes, number of trials per generation, the size

of classifier components, and the mutation and crossover
rates may all be set by the user. In addition, there are flags
that enable elitism, favor more specific rules, maximize or
minimize the fitness function, and determine whether the
system should start by loading saved classifiers.

3. ASIMPLE PURSUIT TASK

The predator-and-prey task, also known as the pursuit do-
main, emerged in 1986[2], and was originally designed with
four predators and a single prey. The world was divided into
a grid, and the agents were restricted to orthogonal move-
ment. The target behavior for the predators was to capture
the prey by surrounding it on four sides. The goal for the
prey was to evade such capture, and it was found that even
random movement sufficed in many cases. In addition, full
knowledge of the world was known to all five agents. While
originally not a robotics domain, this task has recently been
gaining popularity in that community. Recent work[1, 3]
has limited the information available to each participant,
and also moved away from the rigid grid format, resulting
in a partial-knowledge system of robotic agents with a full
range of motion. In most cases, capture is now defined as a
predator coming into contact with a prey.

A simple pursuit task presented a good first test for RCS
because of the qualitative range in behaviors that can culmi-
nate in capture. There are very simple classifier sets that can
succeed, as well as more complex ones which may continue
to be refined as the system evolves. We executed the task
on K-Team’s Khepera robots, simulated in the Webots en-
vironment from Cyberbotics. This combination is common
in the evolutionary robotics community, and demonstrates
the challenges of the field well.

3.1 Setup

There are four predators and one prey in our system; the
prey behavior is static, while the predators utilize RCS. This
allows a relatively uniform opponent for the classifier system
to base its fitness function on. This prey behavior is very
simple: it moves in approximately straight lines, bouncing
off the walls around the arena. It has a slight speed edge over
the predators to insure that mediocre predator behaviors do
not usually result in capture.

The predators employ RCS, feeding camera and infra-red
data into the classifier system as input, and interpreting the
resulting output as wheel speeds. Each rule set contains
eight classifiers. RCS assigns three bits to the camera data,
representing the angle to target. The IR data is handled in a
slightly different manner: each of the six directions scanned
by these sensors is allocated one bit. This is because each
sensor is exclusive from all the others. These two elements
make up the entire input.

Trial length is capped at 350 classifier selection cycles,
although if the prey is captured before that time, the trial
is terminated. The fitness value is defined as the sum of
the number of cycles until trial termination and the average
distance between the predators and the prey. The system
was executed for 20 different runs at 100 generations each.

3.2 Resultsand Observations

Data recorded for this task consisted of minimum, maxi-
mum, and average fitness values for each generation. Also,
the final populations were available for analysis, and obser-
vations were made as evolution progressed in each run. Over

time, the average fitness gradually declined relative to the
steady maximum and minimum values. This indicates an
overall trend toward populations where more of the trials
resulted in captures. This should not be interpreted as nec-
essarily showing an increase in the depth of the rule sets,
although that phenomenon often accompanied the trend.

The final populations of classifiers also illustrated inter-
esting patterns. Rule sets that scored a fitness value of 275
or less in the final generation were collected into a group of
exemplary rule sets. They averaged approximately 3 firing
classifiers per set, with a range of 1-6. This demonstrates
that even rule sets with only a few firing classifiers were ef-
fective, and that some sophistication did develop. Further-
more, examining the corresponding default actions provided
a little more insight into the prevailing strategies. In forty
percent of the runs, each evolved separately, the same de-
fault action could be found: very quick forward movement
in a large-radius circle. These rule sets operated by turning
in a large circle until the prey is seen, then using three or
four classifiers to follow it.

4. CONCLUSIONSAND FUTURE WORK

While RCS completed the task satisfactorily, having only
one trial per rule set per generation often produced mislead-
ing fitness values, harming the evolutionary process. Cer-
tain circumstances tend to create such inacuracies, such as
accidental capture as a predator backs into the prey. The
easiest solution is to enable more trials per generation and
average the values; however, an increase from 1 to 2 dou-
bles the runtime for an experiment, and time is often at a
premium in evolutionary robotics. As a proof of concept,
we ran RCS on Wilson’s Woodsl environment[6] with vary-
ing numbers of trials per generation. The accuracy of the
fitness function increased polynomially with the number of
trials per generation, so that by 10 it was very good and by
25 it was almost perfect.

Unfortunately, raising this value from 1 to 10 is discourag-
ing in general use with robotics tasks as described here, even
when run in simulation. To make RCS more useful for those
types of applications, an alternative solution would be nice.
One possiblility would be to remember some remnant of a
rule set’s past fitness values and use it in the evolutionary
process. Future work could largely consist of investigating
this and other possibilities.

5. REFERENCES

[1] G. Bauson and T. Ziemke. Co-evolving task dependent visual
morphologies in predator and prey experiments. In GECCO,
pages 458-469, Chicago, IL, July 2003.

[2] M. Benda, V. Jagannathan, and R. Dodhiwala. On optimal
cooperation of knowledge sources - an empirical investigation.
Technical Report BCS-G2010-28, Boeing Advanced Technology
Center, Boeing Computer Services, Seattle, WA, July 1986.

[3] D. Floreano and S. Nolfi. Co-evolving predator and prey robots:
Do ‘arm races’ arise in artificial evolution? In Artificial Life,
volume 4, pages 311-335, 1998.

[4] J. H. Holland. Adaptation in Natural and Artificial Systems.
University of Michigan Press, Ann Arbor, 1975. Republished by
the MIT press, 1992.

[5] W. Stolzmann. Antizipative Classifier Systeme. PhD thesis,
Fachbereich Mathematik/Informatik, University of Osnabriick,
1997.

[6] S. W. Wilson. ZCS: A zeroth level classifier system.
Evolutionary Computation, 2(1):1-30, 1994.

[7] S. W. Wilson. Classifier fitness based on accuracy. Evolutionary
Computation, 3(2):149-175, 1995.

