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ABSTRACT 
We sketch a framework for learning structured coordinated 
behavior, specifically the tactical behavior of Experimental 
Unmanned Vehicles (XUVs).  We conceptualize an XUV unit as 
a multiagent system (MAS) on which we impose a command 
structure to yield a holarchy, a hierarchy of holons, where a holon 
is both a whole and a part.  The formalism used is a conservative 
extension of Statecharts, called a Parts/whole Statechart, which 
introduces a coordinating whole as a concurrent component on a 
par with the coordinated parts; wholes are related to common 
knowledge.  We use X-classifier systems (XCSs).  Exploiting 
Statechart semantics, we translate Statechart transitions into 
classifiers and define data structures that interact with an XCS.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning—knowledge acquisition.  
D.2.2 [Software Engineering]: Design Tools and Techniques—
State diagrams. 

General Terms 
Design, Theory. 

Keywords 
Coordinated behavior, Parts/whole Statecharts, XCS, Semantics. 

1. INTRODUCTION 
This paper sketches a framework for learning highly structured 
coordinated behavior in the tactical behavior area of Experimental 
Unmanned Vehicles (XUVs).  We conceptualize a unit of 
cooperating XUVs as a multiagent system (MAS) [7].  The 
hierarchical structure of military command and control is imposed 
on the underlying MAS to yield a holarchy [8], a hierarchy of 
holons, where a holon is both a whole and a part.  Parts/whole 
Statecharts, a conservative extension of Statecharts, is used as the 
formalism [10].  Since the implicit coordination of normal 
Statecharts eliminates encapsulation, a Parts/whole Statechart 
introduces a coordinating whole as a concurrent component on a 

par with the coordinated parts.  The learning technique we use is 
X-classifier systems (XCSs) [11], where learning consists in 
acquiring a population of weighted condition-action classifier 
rules that direct behavior.  By exploiting Statechart semantics, we 
translate Statechart transitions into classifiers and define data 
structures that support a simulation that interacts with an XCS.   

The remainder of this paper is organized as follows.  
Section 2 introduces the standard notions of MAS and 
holarchy; it also presents Parts/whole Statecharts.  In 
section 3, we present the translation of Statecharts to XCS.  
Section 4 develops the XCS operations and is followed by 
GA operations. Section 6 discusses the learning of wholes.  
Section 7 concludes and discusses future work. 

2. PARTS/WHOLE STATECHARTS, 
HOLARCHIES 
A MAS is a group of autonomous agents cooperatively 
accomplishing complex tasks that any individual agent alone is 
incapable of [7] by a knowledge-level communication. Complex 
coordinated operations require social organization about which 
the general MAS paradigm is mute.  Classically, social 
institutions with efficient communication and control have 
hierarchical structures.  To analyze the coordination hierarchy of 
agents, we use Koestler’s notion of a holarchy [8], which is a 
hierarchy of holons.  “Holon” is a combination of the Greek word 
“holos,” meaning whole (self-assertive), and the suffix “on,” 
meaning part (cooperative). 

A holarchy is a concurrent structure.  Due to the difficulty of the 
analysis of concurrent systems, it is thus highly desirable to use 
rigorous methods in specifying, designing, and testing them.  Of 
the various formal methods for modeling concurrent systems, 
automata are the most concrete and hence most accurately reflect 
the operations of implemented systems.  The most popular 
automata for modeling concurrent systems are Statecharts [5], a 
visual formalism for the behavioral description of complex 
systems that extends classical state diagrams in several ways.  

A Statechart lets us represent hierarchies of states and 
concurrently active states.  A superstate that contains substates 
and transitions that elaborate its sequential behavior is called an 
XOR state since, when it is active, exactly one of its substates is 
active.  A superstate with concurrent substates—“orthogonal 
components”—is called an AND state.  A basic state has no 
substates so is neither an XOR nor an AND state.  A transition has 
a label e/a indicating that, when the system is in the source state 
and event e happens, it can move to the target state on performing 
action a; the action part is optional.  One substate of an XOR state 
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is identified as the default state, the substate that becomes active 
when a transition is made to the XOR state.  A transition may 
have a non-basic state as either its source or target.  In fact, it may 
have several source states or several target states.  A transition 
label more generally may be of the form e[c]/a (a again being 
optional), where c is a condition that must be true for the 
transition to fire.  Frequently, the condition indicates that an 
orthogonal component is in a given state.  The hierarchical 
structure of a Statechart makes it easy to suppress detail (zoom 
out) or to focus on detail (zoom in).  The Statechart formalism is 
characterized not only by hierarchy (XOR states) and 
orthogonality (AND states) but also by broadcast communication: 
an action in one orthogonal component can serve as a triggering 
event in other components.  This is one way components of a 
Statechart are implicitly coordinated.  Others ways are by 
transition conditions that test the state of another component and 
by using the same event as a trigger in transitions in different 
orthogonal components.  This implicit coordination introduces a 
web of references and eliminates encapsulation, adversely 
impacting the reusability, understandability, and extendibility of 
the resulting abstractions.  We therefore follow Pazzi [10] in 
using an explicit approach to modeling aggregate entities, 
introducing a whole as an orthogonal component on a par with the 
parts that are coordinated.  A part communicates only with the 
whole, never with other parts.  The resulting Parts/whole 
Statecharts introduce no new notation but simply put constraints 
on how orthogonal components coordinate and require a specific 
section for the whole and different sections for the parts.  A 
parts/whole Statechart naturally supports two kinds of hierarchies, 
XOR hierarchies and parts/whole hierarchies, the latter modeling 
holarchies.  In fact, the Parts/whole extension of Statecharts is the 
perfect modeling technique to represent the holons’ most 
fundamental characteristics, the “self-assertiveness tendency” and 
the “integrative tendency”.   

When we model a holarchy, since the purpose of the whole is 
coordination, it is reasonable to consider it as corresponding to 
common knowledge, which is a necessary condition for 
coordination [4].  We can also characterize common knowledge in 
terms of shared situations [2].  Barwise [2] concludes that the 
fixed-point approach is the correct analysis of common 
knowledge, but that common knowledge generally arises via 
shared situations.  Implementing a part endows an individual with 
the capacity for certain public behavior so that it may realize the 
role described by the part.  To avoid an infinite regress, however, 
wholes are not implemented apart from the individuals 
instantiating the parts.  So the whole must be instantiated in each 
part.  The parts must be synchronized so that their instances of the 
whole are always the same.  Each whole instance interacts with its 
co-instantiated part instance and with the part instances 
instantiated in the other parts. 

3. TRANSLATING STATECHARTS TO 
CLASSIFIERS 
To apply an XCS to a Statechart, we must translate the Statechart 
into classifiers with a well-defined structure.  To keep things 
simple, we restrict ourselves to transitions that have a single 
source state, a single target states, and labels of the form e[in s]/a, 
where a is optional.  We also ignore history symbols and 
structural features other than XOR, AND, and basic states and 
transitions of form just mentioned.  The basic idea, then, is that a 

classifier represents a transition (or a class of transitions if there 
are don’t cares in the condition).  One step through the XCS cycle 
corresponds to taking one transition in the Statechart, although the 
actions performed in the step must be remembered for any 
transitions they might subsequently trigger (all transitions in the 
current micro step in the sense of [6]).  The format for a classifier, 
then, is 
     <source state><event><cond state>:<action><target state> 
Each classifier part is called a role.  There are two categories of 
elements that roles denote: states and acts.  The <source state>, 
<cond state>, and <target state> roles denote states, while the 
<event> and <action> roles denote acts.  The condition in this 
classifier, then, is the source state of the transition and the event 
and condition from the transition’s label.  The consequent is the 
action from the transition’s label and its target state.  

Each of the three roles in the condition can be a don’t care, but a 
role cannot be encoded with some positions occupied by don’t 
cares and some not.  So no partial matching on roles is allowed.  
Note that a don’t care in the <cond state> role corresponds to the 
absence of a condition in the transition label. 

For applying the GA part of the XCS, it is not enough to capture 
just the structure.  This is because the event and action on a 
transition generally have a semantic relation to the source and the 
target state.  The event is something that can happen when in the 
source state, causing a change to the target state, and the action is 
something that can be done in the source state, ending that 
activity and initiating the activity represented by the target state.  
In addition, there is also a semantic relation between the event 
and the action: the action is an appropriate response to the event 
(when we are in the source state).  Therefore, each state and act is 
associated with a feature vector.  Each feature has a value in {0,1} 
and is represented by a unique position in the feature vector.  
There are consistency rules for each category, which forbid 
certain combinations of features.  There are also agreement rules, 
analogous to the agreement rules in natural languages (e.g., that 
subject and verb must agree in person and number), which restrict 
the features a state or act may have in a given role in terms of the 
features of the elements filling the other roles. 

4. XCS OPERATION 
To carry out the operation of the XCS, besides the classifiers, we 
need to store general information about each state, which we 
assume is available in a state table indexed by state names.  For 
each state, this records its type (the ψ function of [6]), its children 
(the ρ function of [6]), and its feature vector.  For an XOR state, 
the state table also records its default state (the δ function in [6]).  
In the next subsection, we mention several other data structures 
for feature vectors. 

The operation of the XCS is most easily pictured when the 
environment is a simulation that maintains a set of data structures 
that relate directly to Statechart semantics.  The detectors then 
simply read from these data structures and the effectors simply 
write to them, and the simulation performs whatever adjustments 
are needed to these data structures so that they conform to 
Statechart semantics.  To begin with, we need to record the set of 
acts corresponding to actions that have been performed and are 
still available as triggering events; we call this the active set.  As 
mentioned, an act may reside in the active set for more than one 



XCS cycle.  The active set also includes events that occur in the 
environment of the Statechart.  We must also record the set of 
basic states currently active.  This corresponds to the partial state 
configuration in [6] that is a component of the micro system 
configuration; we refer to it, however, as the state configuration.  
To find the set of all active states (not just the active basic states), 
we use a table, the foundation table, that associates with each 
non-basic state the set of its basic descendants.   

When the XCS is implemented in a group of agents corresponding 
to the Statechart, each agent runs an instance of the XCS 
procedure.  Each agent is viewed as an instance of a part in the 
holarchy and has its own instances of the whole of which it is an 
immediate part and of all the wholes above it.  Each agent has 
states that, along with the states of the other agents, contribute to 
the environment of the instance of the XCS procedure run by that 
agent.  The environment itself in this sense maintains all the 
information that in simulation is maintained by the active set, the 
state configuration, and the foundation table.   

In the remainder of this subsection, we focus on the case where 
the system is run in simulation, and we address only aspects of the 
XCS that are specific to Statecharts: handling non-determinism, 
forming the match set, what to do once a consequent is selected, 
and reward evaluation.  The more involved issue of the operation 
of the GA is deferred to the following subsection and issues 
relating to coordination and wholes are deferred to the section 
after that.  To begin with, then, non-determinism (as when there 
are two transitions with the same source state and triggering event 
but no distinguishing condition) is an important aspect of 
Statecharts.  The random selection that is built into XCSs for 
exploration can be used here as well. 

As regards forming the match set, a condition matches if (1) the 
state in its <source state> role is in the state configuration or has a 
descendant in the state configuration (as determined by the 
foundation table), (2) the act in its <event> role is in the active 
set, and (3) the state (if any) in its <cond state> role is in the state 
configuration or has a descendant in it.   

Next, when a consequent is selected, the act in its <action> role is 
added to the active state.  We must also remove from the state 
configuration the basic states that are descendants of the state 
filling the <source state> role.  These are found by recursively 
querying the state table.  Finally, we must add to the state 
configuration the basic states descended from the state in the 
<target state> role that become active when the corresponding 
transition is taken.  For this, we construct a set of states, 
initialized to contain only the target state, by recursively querying 
the state table.  When we come to an AND state, we remove it 
from the set and add its children.  When we come to an XOR 
state, we replace it with its default state.  The procedure 
terminates when only basic states remain in the set. 

Finally, following [6] we take a run to consist of a sequence of 
transitions that begins with the initial configuration, where the 
state comprising the entire Statechart (the root) is entered.  
Statecharts of interest to us, unlike many, model systems expected 
to terminate—the mission is accomplished, aborted, cancelled, or 
modified.  We therefore restrict the notion of a run further by 
requiring that it end with a final configuration.  Note that, because 
of both non-determinism and the GA, there may be several 
alternative runs even in the same environment.  Part of the reward 

evaluation is assigning points for the final states, but various 
characteristics also contribute—e.g., how long it took, resources 
used, risks taken, and opportunities lost.  The overall reward for a 
part should include something for the performance of its unit, the 
larger unit of which it is a unit, and so on.  How a unit’s 
performance contributes to a part’s reward, however, is a complex 
issue since being part of a poor unit may actually enhance our 
judgment of a reasonable agent. 

5. GA OPERATION  
Since the action set contains only classifiers that advocate the 
same consequent, crossover has an effect only on the condition 
parts of classifiers, although mutation can affect both the 
condition and the consequent of a classifier.  Since the names of 
states and acts are largely arbitrary, and because of the semantic 
relations among the elements that occur in the roles in classifiers, 
we apply crossover and mutation to the feature vectors for these 
elements.  We assume that there is an isomorphism between act 
names and act feature vectors.  Thus, given an act name in a 
classifier, we can get its feature vector to perform crossover and 
mutation, and, given a feature vector that results from crossover 
or mutation, we can get the associated name to insert into the new 
classifier.  In contrast, there might be several states with the same 
feature vector since states can be distinguished by where they 
occur in the Statechart. 

A new classifier with only an act feature vector changed 
essentially adds this transition to the Statechart as long as the 
feature vector is consistent.  The transition, however, may disrupt 
coordination with a whole.  A straightforward way out of this 
problem is to record which acts are used for coordination and to 
block changes to such acts in classifiers.  The alternative is to 
invoke a repair procedure that updates the whole and the other 
parts that coordinate with the whole. 

When we have a new classifier with a state feature vector 
changed, the feature vector may be associated with one or more 
existing states, or there may be no state with that feature vector.  
If there is exactly one state, then a new transition to or from that 
state is added.  If there are several states, then we can choose a 
state closest (in terms of the structure of the Statechart) to the 
other state in the classifier.  If this rule does not determine a 
unique state, then we can turn to the feature vectors of elements 
filling other roles in the classifier and apply a rule based on 
semantic distance.  If the modified state feature vector in a new 
classifier is associated with no existing state, we must create a 
new state, which generally would be in the same orthogonal 
component as the state filling the other state role in the new 
classifier.  Where to place the state could again be determined in 
terms of structural and semantic distance. 

When a new state is added, it initially occurs in only one classifier 
or, equivalently, takes part in only one transition (as either the 
source or target).  If it is a target, then there is no way out of it.  If 
it is a source, there is no way into it.  A procedure similar to 
covering could introduce a new, rather general classifier 
corresponding to multiple transitions to or from the new state. 

There are many issues that could be addressed regarding 
modifications a GA may make to the structure of a Statechart.  
Some changes, such as changing an XOR to an AND state or vice 
versa, are clearly forbidden.  Certain large-scale changes have 



significant intuitive appeal.  For example, moving a large 
coherent part of the substructure of one state to another 
corresponds to assigning the responsibility for part of an activity 
to another agent.  Space restrictions prohibit exploration of such 
issues. 

6. LEARNING WHOLES 
If we consider the XCS applied to a Parts/Whole Statechart in 
simulation, learning coordination behaviors is apparently no more 
difficult than learning other behaviors except for changes caused 
by the GA.  Such changes may modifying structure and generally 
require modifications to the behaviors of the parts.  
Accommodating these kinds of changes is similar to 
modifications required when goals are elaborated in some 
approaches to parallel planning.  There has also been relevant 
work in game theory on communication and coordination 
protocols appropriate in various strategic situations [3].  In 
general, restructuring the coordination structure is a large problem 
that can be related to several relatively mature approaches. 

If we consider the XCS implemented in a system modeled with a 
Parts/Whole Statechart, learning coordination behaviors is much 
more difficult since we have a copy of the whole for each group 
member.  We can frame this problem in terms of acquiring new 
common knowledge, and a formal analysis reveals that this is 
surprisingly difficult [4].  In a controlled setting, we can generally 
arrange for checks, but it is obvious that a dynamic environment 
over which we have little control is not good for learning 
coordination strategies.  A particular problem is how the group 
may agree on an innovation, and it is easy to show that agreement 
implies common knowledge [4].  Interest here is perhaps more 
with innovation, hence flexibility and autonomy, than with 
learning.  This is accommodated by associating wholes with 
common knowledge rather than seeing coordination as the 
coherence of behaviors assigned to agents. 

7. CONCLUSION 
We consider a group of XUVs learning military tactical 
behaviors, especially the coordination of units, given a formal 
representation of the behavior of the group.  We conceptualize the 
group as a multiagent system and view the control structure as a 
holarchy.  The formalism used is an extension of the Statechart 
notation, called Parts/whole Statecharts [10], which introduces a 
coordinating whole as a concurrent component on a par with the 
coordinated parts.  We relate wholes to the technical notion of 
common knowledge, a necessary condition for coordination.  The 
learning technique used is X-classifier systems (XCSs). 

We sketched a framework for adapting XCSs to learning behavior 
represented by Parts/whole Statecharts.  We showed how to 
translate a Statechart transition into a classifier.  The XCS 
environment includes the events and states of the Statechart, 
represented by data structures in the simulation, and the 
simulation maintains the data structures in a way consistent with 
the Statechart semantics of [6].  States and events in a transition 
are not just structurally related but also semantically related.  We 
capture the semantics with feature vectors and consistency and 
agreement rules.   

Two parts of our framework needing more work are learning 
structure and learning coordination (wholes).  An attractive 

general approach is to zoom out to learn gross behavior of a group 
and zoom in to learn detailed behavior of its parts.  Zooming in 
restricts the sources and targets of transitions and so alleviates 
part of the problem with new states.  Finally, there are several 
automated translations [9] of Statecharts represented in automated 
tools into other representations, some close to our manual 
translations.  We are investigating the translations to see whether 
we can adapt them or create similar tools. 
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