
A Framework for Learning Coordinated Behavior
Albert Esterline

Comp. Sci., N. Carolina A&T SU
Greensboro, NC 27411, U.S.A.

1-336-334-7245

esterlin@ncat.edu

Chafic BouSaba
Abdollah Homaifar

Elect. & Comp. Eng., NC A&T SU
Greensboro, NC 27411, U.S.A.

1-336-334-7760

{cbousaba,homaifar}@ncat.edu

Dan Rodgers
R. & D. Dept., General Dynamics

Austin, TX, U.S.A.
1-512-264-8782

drodgers@gdrs.com

ABSTRACT
We sketch a framework for learning structured coordinated
behavior, specifically the tactical behavior of Experimental
Unmanned Vehicles (XUVs). We conceptualize an XUV unit as
a multiagent system (MAS) on which we impose a command
structure to yield a holarchy, a hierarchy of holons, where a holon
is both a whole and a part. The formalism used is a conservative
extension of Statecharts, called a Parts/whole Statechart, which
introduces a coordinating whole as a concurrent component on a
par with the coordinated parts; wholes are related to common
knowledge. We use X-classifier systems (XCSs). Exploiting
Statechart semantics, we translate Statechart transitions into
classifiers and define data structures that interact with an XCS.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—knowledge acquisition.
D.2.2 [Software Engineering]: Design Tools and Techniques—
State diagrams.

General Terms
Design, Theory.

Keywords
Coordinated behavior, Parts/whole Statecharts, XCS, Semantics.

1. INTRODUCTION
This paper sketches a framework for learning highly structured
coordinated behavior in the tactical behavior area of Experimental
Unmanned Vehicles (XUVs). We conceptualize a unit of
cooperating XUVs as a multiagent system (MAS) [7]. The
hierarchical structure of military command and control is imposed
on the underlying MAS to yield a holarchy [8], a hierarchy of
holons, where a holon is both a whole and a part. Parts/whole
Statecharts, a conservative extension of Statecharts, is used as the
formalism [10]. Since the implicit coordination of normal
Statecharts eliminates encapsulation, a Parts/whole Statechart
introduces a coordinating whole as a concurrent component on a

par with the coordinated parts. The learning technique we use is
X-classifier systems (XCSs) [11], where learning consists in
acquiring a population of weighted condition-action classifier
rules that direct behavior. By exploiting Statechart semantics, we
translate Statechart transitions into classifiers and define data
structures that support a simulation that interacts with an XCS.

The remainder of this paper is organized as follows.
Section 2 introduces the standard notions of MAS and
holarchy; it also presents Parts/whole Statecharts. In
section 3, we present the translation of Statecharts to XCS.
Section 4 develops the XCS operations and is followed by
GA operations. Section 6 discusses the learning of wholes.
Section 7 concludes and discusses future work.

2. PARTS/WHOLE STATECHARTS,
HOLARCHIES
A MAS is a group of autonomous agents cooperatively
accomplishing complex tasks that any individual agent alone is
incapable of [7] by a knowledge-level communication. Complex
coordinated operations require social organization about which
the general MAS paradigm is mute. Classically, social
institutions with efficient communication and control have
hierarchical structures. To analyze the coordination hierarchy of
agents, we use Koestler’s notion of a holarchy [8], which is a
hierarchy of holons. “Holon” is a combination of the Greek word
“holos,” meaning whole (self-assertive), and the suffix “on,”
meaning part (cooperative).

A holarchy is a concurrent structure. Due to the difficulty of the
analysis of concurrent systems, it is thus highly desirable to use
rigorous methods in specifying, designing, and testing them. Of
the various formal methods for modeling concurrent systems,
automata are the most concrete and hence most accurately reflect
the operations of implemented systems. The most popular
automata for modeling concurrent systems are Statecharts [5], a
visual formalism for the behavioral description of complex
systems that extends classical state diagrams in several ways.

A Statechart lets us represent hierarchies of states and
concurrently active states. A superstate that contains substates
and transitions that elaborate its sequential behavior is called an
XOR state since, when it is active, exactly one of its substates is
active. A superstate with concurrent substates—“orthogonal
components”—is called an AND state. A basic state has no
substates so is neither an XOR nor an AND state. A transition has
a label e/a indicating that, when the system is in the source state
and event e happens, it can move to the target state on performing
action a; the action part is optional. One substate of an XOR state

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’05, June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00.

is identified as the default state, the substate that becomes active
when a transition is made to the XOR state. A transition may
have a non-basic state as either its source or target. In fact, it may
have several source states or several target states. A transition
label more generally may be of the form e[c]/a (a again being
optional), where c is a condition that must be true for the
transition to fire. Frequently, the condition indicates that an
orthogonal component is in a given state. The hierarchical
structure of a Statechart makes it easy to suppress detail (zoom
out) or to focus on detail (zoom in). The Statechart formalism is
characterized not only by hierarchy (XOR states) and
orthogonality (AND states) but also by broadcast communication:
an action in one orthogonal component can serve as a triggering
event in other components. This is one way components of a
Statechart are implicitly coordinated. Others ways are by
transition conditions that test the state of another component and
by using the same event as a trigger in transitions in different
orthogonal components. This implicit coordination introduces a
web of references and eliminates encapsulation, adversely
impacting the reusability, understandability, and extendibility of
the resulting abstractions. We therefore follow Pazzi [10] in
using an explicit approach to modeling aggregate entities,
introducing a whole as an orthogonal component on a par with the
parts that are coordinated. A part communicates only with the
whole, never with other parts. The resulting Parts/whole
Statecharts introduce no new notation but simply put constraints
on how orthogonal components coordinate and require a specific
section for the whole and different sections for the parts. A
parts/whole Statechart naturally supports two kinds of hierarchies,
XOR hierarchies and parts/whole hierarchies, the latter modeling
holarchies. In fact, the Parts/whole extension of Statecharts is the
perfect modeling technique to represent the holons’ most
fundamental characteristics, the “self-assertiveness tendency” and
the “integrative tendency”.

When we model a holarchy, since the purpose of the whole is
coordination, it is reasonable to consider it as corresponding to
common knowledge, which is a necessary condition for
coordination [4]. We can also characterize common knowledge in
terms of shared situations [2]. Barwise [2] concludes that the
fixed-point approach is the correct analysis of common
knowledge, but that common knowledge generally arises via
shared situations. Implementing a part endows an individual with
the capacity for certain public behavior so that it may realize the
role described by the part. To avoid an infinite regress, however,
wholes are not implemented apart from the individuals
instantiating the parts. So the whole must be instantiated in each
part. The parts must be synchronized so that their instances of the
whole are always the same. Each whole instance interacts with its
co-instantiated part instance and with the part instances
instantiated in the other parts.

3. TRANSLATING STATECHARTS TO
CLASSIFIERS
To apply an XCS to a Statechart, we must translate the Statechart
into classifiers with a well-defined structure. To keep things
simple, we restrict ourselves to transitions that have a single
source state, a single target states, and labels of the form e[in s]/a,
where a is optional. We also ignore history symbols and
structural features other than XOR, AND, and basic states and
transitions of form just mentioned. The basic idea, then, is that a

classifier represents a transition (or a class of transitions if there
are don’t cares in the condition). One step through the XCS cycle
corresponds to taking one transition in the Statechart, although the
actions performed in the step must be remembered for any
transitions they might subsequently trigger (all transitions in the
current micro step in the sense of [6]). The format for a classifier,
then, is
 <source state><event><cond state>:<action><target state>
Each classifier part is called a role. There are two categories of
elements that roles denote: states and acts. The <source state>,
<cond state>, and <target state> roles denote states, while the
<event> and <action> roles denote acts. The condition in this
classifier, then, is the source state of the transition and the event
and condition from the transition’s label. The consequent is the
action from the transition’s label and its target state.

Each of the three roles in the condition can be a don’t care, but a
role cannot be encoded with some positions occupied by don’t
cares and some not. So no partial matching on roles is allowed.
Note that a don’t care in the <cond state> role corresponds to the
absence of a condition in the transition label.

For applying the GA part of the XCS, it is not enough to capture
just the structure. This is because the event and action on a
transition generally have a semantic relation to the source and the
target state. The event is something that can happen when in the
source state, causing a change to the target state, and the action is
something that can be done in the source state, ending that
activity and initiating the activity represented by the target state.
In addition, there is also a semantic relation between the event
and the action: the action is an appropriate response to the event
(when we are in the source state). Therefore, each state and act is
associated with a feature vector. Each feature has a value in {0,1}
and is represented by a unique position in the feature vector.
There are consistency rules for each category, which forbid
certain combinations of features. There are also agreement rules,
analogous to the agreement rules in natural languages (e.g., that
subject and verb must agree in person and number), which restrict
the features a state or act may have in a given role in terms of the
features of the elements filling the other roles.

4. XCS OPERATION
To carry out the operation of the XCS, besides the classifiers, we
need to store general information about each state, which we
assume is available in a state table indexed by state names. For
each state, this records its type (the ψ function of [6]), its children
(the ρ function of [6]), and its feature vector. For an XOR state,
the state table also records its default state (the δ function in [6]).
In the next subsection, we mention several other data structures
for feature vectors.

The operation of the XCS is most easily pictured when the
environment is a simulation that maintains a set of data structures
that relate directly to Statechart semantics. The detectors then
simply read from these data structures and the effectors simply
write to them, and the simulation performs whatever adjustments
are needed to these data structures so that they conform to
Statechart semantics. To begin with, we need to record the set of
acts corresponding to actions that have been performed and are
still available as triggering events; we call this the active set. As
mentioned, an act may reside in the active set for more than one

XCS cycle. The active set also includes events that occur in the
environment of the Statechart. We must also record the set of
basic states currently active. This corresponds to the partial state
configuration in [6] that is a component of the micro system
configuration; we refer to it, however, as the state configuration.
To find the set of all active states (not just the active basic states),
we use a table, the foundation table, that associates with each
non-basic state the set of its basic descendants.

When the XCS is implemented in a group of agents corresponding
to the Statechart, each agent runs an instance of the XCS
procedure. Each agent is viewed as an instance of a part in the
holarchy and has its own instances of the whole of which it is an
immediate part and of all the wholes above it. Each agent has
states that, along with the states of the other agents, contribute to
the environment of the instance of the XCS procedure run by that
agent. The environment itself in this sense maintains all the
information that in simulation is maintained by the active set, the
state configuration, and the foundation table.

In the remainder of this subsection, we focus on the case where
the system is run in simulation, and we address only aspects of the
XCS that are specific to Statecharts: handling non-determinism,
forming the match set, what to do once a consequent is selected,
and reward evaluation. The more involved issue of the operation
of the GA is deferred to the following subsection and issues
relating to coordination and wholes are deferred to the section
after that. To begin with, then, non-determinism (as when there
are two transitions with the same source state and triggering event
but no distinguishing condition) is an important aspect of
Statecharts. The random selection that is built into XCSs for
exploration can be used here as well.

As regards forming the match set, a condition matches if (1) the
state in its <source state> role is in the state configuration or has a
descendant in the state configuration (as determined by the
foundation table), (2) the act in its <event> role is in the active
set, and (3) the state (if any) in its <cond state> role is in the state
configuration or has a descendant in it.

Next, when a consequent is selected, the act in its <action> role is
added to the active state. We must also remove from the state
configuration the basic states that are descendants of the state
filling the <source state> role. These are found by recursively
querying the state table. Finally, we must add to the state
configuration the basic states descended from the state in the
<target state> role that become active when the corresponding
transition is taken. For this, we construct a set of states,
initialized to contain only the target state, by recursively querying
the state table. When we come to an AND state, we remove it
from the set and add its children. When we come to an XOR
state, we replace it with its default state. The procedure
terminates when only basic states remain in the set.

Finally, following [6] we take a run to consist of a sequence of
transitions that begins with the initial configuration, where the
state comprising the entire Statechart (the root) is entered.
Statecharts of interest to us, unlike many, model systems expected
to terminate—the mission is accomplished, aborted, cancelled, or
modified. We therefore restrict the notion of a run further by
requiring that it end with a final configuration. Note that, because
of both non-determinism and the GA, there may be several
alternative runs even in the same environment. Part of the reward

evaluation is assigning points for the final states, but various
characteristics also contribute—e.g., how long it took, resources
used, risks taken, and opportunities lost. The overall reward for a
part should include something for the performance of its unit, the
larger unit of which it is a unit, and so on. How a unit’s
performance contributes to a part’s reward, however, is a complex
issue since being part of a poor unit may actually enhance our
judgment of a reasonable agent.

5. GA OPERATION
Since the action set contains only classifiers that advocate the
same consequent, crossover has an effect only on the condition
parts of classifiers, although mutation can affect both the
condition and the consequent of a classifier. Since the names of
states and acts are largely arbitrary, and because of the semantic
relations among the elements that occur in the roles in classifiers,
we apply crossover and mutation to the feature vectors for these
elements. We assume that there is an isomorphism between act
names and act feature vectors. Thus, given an act name in a
classifier, we can get its feature vector to perform crossover and
mutation, and, given a feature vector that results from crossover
or mutation, we can get the associated name to insert into the new
classifier. In contrast, there might be several states with the same
feature vector since states can be distinguished by where they
occur in the Statechart.

A new classifier with only an act feature vector changed
essentially adds this transition to the Statechart as long as the
feature vector is consistent. The transition, however, may disrupt
coordination with a whole. A straightforward way out of this
problem is to record which acts are used for coordination and to
block changes to such acts in classifiers. The alternative is to
invoke a repair procedure that updates the whole and the other
parts that coordinate with the whole.

When we have a new classifier with a state feature vector
changed, the feature vector may be associated with one or more
existing states, or there may be no state with that feature vector.
If there is exactly one state, then a new transition to or from that
state is added. If there are several states, then we can choose a
state closest (in terms of the structure of the Statechart) to the
other state in the classifier. If this rule does not determine a
unique state, then we can turn to the feature vectors of elements
filling other roles in the classifier and apply a rule based on
semantic distance. If the modified state feature vector in a new
classifier is associated with no existing state, we must create a
new state, which generally would be in the same orthogonal
component as the state filling the other state role in the new
classifier. Where to place the state could again be determined in
terms of structural and semantic distance.

When a new state is added, it initially occurs in only one classifier
or, equivalently, takes part in only one transition (as either the
source or target). If it is a target, then there is no way out of it. If
it is a source, there is no way into it. A procedure similar to
covering could introduce a new, rather general classifier
corresponding to multiple transitions to or from the new state.

There are many issues that could be addressed regarding
modifications a GA may make to the structure of a Statechart.
Some changes, such as changing an XOR to an AND state or vice
versa, are clearly forbidden. Certain large-scale changes have

significant intuitive appeal. For example, moving a large
coherent part of the substructure of one state to another
corresponds to assigning the responsibility for part of an activity
to another agent. Space restrictions prohibit exploration of such
issues.

6. LEARNING WHOLES
If we consider the XCS applied to a Parts/Whole Statechart in
simulation, learning coordination behaviors is apparently no more
difficult than learning other behaviors except for changes caused
by the GA. Such changes may modifying structure and generally
require modifications to the behaviors of the parts.
Accommodating these kinds of changes is similar to
modifications required when goals are elaborated in some
approaches to parallel planning. There has also been relevant
work in game theory on communication and coordination
protocols appropriate in various strategic situations [3]. In
general, restructuring the coordination structure is a large problem
that can be related to several relatively mature approaches.

If we consider the XCS implemented in a system modeled with a
Parts/Whole Statechart, learning coordination behaviors is much
more difficult since we have a copy of the whole for each group
member. We can frame this problem in terms of acquiring new
common knowledge, and a formal analysis reveals that this is
surprisingly difficult [4]. In a controlled setting, we can generally
arrange for checks, but it is obvious that a dynamic environment
over which we have little control is not good for learning
coordination strategies. A particular problem is how the group
may agree on an innovation, and it is easy to show that agreement
implies common knowledge [4]. Interest here is perhaps more
with innovation, hence flexibility and autonomy, than with
learning. This is accommodated by associating wholes with
common knowledge rather than seeing coordination as the
coherence of behaviors assigned to agents.

7. CONCLUSION
We consider a group of XUVs learning military tactical
behaviors, especially the coordination of units, given a formal
representation of the behavior of the group. We conceptualize the
group as a multiagent system and view the control structure as a
holarchy. The formalism used is an extension of the Statechart
notation, called Parts/whole Statecharts [10], which introduces a
coordinating whole as a concurrent component on a par with the
coordinated parts. We relate wholes to the technical notion of
common knowledge, a necessary condition for coordination. The
learning technique used is X-classifier systems (XCSs).

We sketched a framework for adapting XCSs to learning behavior
represented by Parts/whole Statecharts. We showed how to
translate a Statechart transition into a classifier. The XCS
environment includes the events and states of the Statechart,
represented by data structures in the simulation, and the
simulation maintains the data structures in a way consistent with
the Statechart semantics of [6]. States and events in a transition
are not just structurally related but also semantically related. We
capture the semantics with feature vectors and consistency and
agreement rules.

Two parts of our framework needing more work are learning
structure and learning coordination (wholes). An attractive

general approach is to zoom out to learn gross behavior of a group
and zoom in to learn detailed behavior of its parts. Zooming in
restricts the sources and targets of transitions and so alleviates
part of the problem with new states. Finally, there are several
automated translations [9] of Statecharts represented in automated
tools into other representations, some close to our manual
translations. We are investigating the translations to see whether
we can adapt them or create similar tools.

8. ACKNOWLEDGMENTS
This work reported here is supported by General Dynamics under
task ICA-05-03 (Tactical and Cooperative Behaviors).

9. REFERENCES
[1] Albus, J. et al. 4D/RCS: A Reference Model Architecture for

Unmanned Vehicle Systems, Version 2.0, National Institute
of Standards and Technology, Gaithersburg, MD, 2002.

[2] Barwise, J. The Situation in Logic. CLSI Publications,
Stanford, CA, 1989.

[3] Chwe, M. Strategic Reliability of Communication Networks,
http://www.chwe.net/michael/p.pdf, 1995.

[4] Fagin, R., Halpern, J.Y., Moses, Y., and Vardi, M.Y.
Reasoning About Knowledge. The MIT Press, Cambridge,
MA, 2003.

[5] Harel, D. Statecharts: A visual formalism for complex
systems”, Science of Computer Programming, 8, 3 (June
1987) 231-274.

[6] Harel, D., Pnueli, A., Schmidt, J., and Sherman, R.. On the
formal semantics of Statecharts. In Proceedings of the
Symposium on Logic in Computer Science (LICS '87) (Ithaca,
New York, USA, June 22-25, 1987). IEEE Computer Society
Press, Piscataway, NJ, 1987, 54-64.

[7] Huhns, M.N. and Stephens, L.M. Multiagent systems and
societies of agents. In Weiss, G. (ed.), Multiagent Systems.
MIT Press, Cambridge, MA, 2000, 79-120.

[8] Koestler, A. The Ghost in the Machine. Macmillan, New
York, 1968.

[9] Mikk, E., Lakhnech, Y., Siegel, M., and Holzmann, G.J.
Implementing Statecharts in PROMELA/SPIN,” In
Proceedings of the 2nd IEEE Workshop on Industrial
Strength Formal Specification Techniques (Boca Raton, FL,
Oct. 20-23, 1998). IEEE Computer Society Press,
Piscataway, NJ, 1998, 90-101.

[10] Pazzi, L. “Extending Statecharts for Representing Parts and
Wholes,” In Proceedings of the 23rd EUROMICRO
Conference '97 New Frontiers of Information Technology
(Budapest, Hungary, Sept. 1-4 1997). IEEE Computer
Society Press, Piscataway, NJ, 2000, 207-214.

[11] Wyatt, D. Applying the XCS Learning Classifier System to
Continuous-Valued Data-mining Problems. Technical
Report UWELCSG05-001, Learning Classifier Systems
Group, University of the West of England, Bristol, UK,
2004.

	INTRODUCTION
	PARTS/WHOLE STATECHARTS, HOLARCHIES
	TRANSLATING STATECHARTS TO CLASSIFIERS
	XCS OPERATION
	GA OPERATION
	LEARNING WHOLES
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

