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ABSTRACT
To obtain the expertise to correctly perform minimally–
invasive vascular interventions thorough training is required.
Training using simulation systems are increasingly becoming
an accepted methodology. Recently, a minimally–invasive
vascular intervention simulation (MIVIS) system has been
developed. At the heart of this system lies an optimization
problem to be solved repeatedly. In this paper, we inves-
tigate the advantages and disadvantages of using an evolu-
tionary algorithm (EA) to solve the optimization problem
instead of a problem–specific first–order analytical approxi-
mation algorithm. The results show that the use of the EA
as optimization algorithm is favorable. A substantial reduc-
tion in time can be obtained while the RMS error associated
with the simulation result differs only slightly.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-

ods; I.2 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search; I.6 [Simulation and Model-
ing]: Applications; J.3 [Life and Medical Sciences]: Health

General Terms
Algorithms, Performance, Experimentation

Keywords
Evolutionary Algorithms, Numerical Optimization, Gradi-
ents, Medical Simulation, Minimally Invasive, Vascular In-
tervention, Training, Guide wire

1. INTRODUCTION
In minimally–invasive vascular interventions instruments

manipulated outside the body (e.g. guide wire and catheter)
are navigated towards the vascular abnormality to be treated
while visual feedback is provided through intra–operative
imaging. Although compared to traditional open vascu-
lar surgery, minimally–invasive vascular interventions have
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some important advantages for patients, it is hard to master
the required skills. Therefore, thorough training is needed.
Simulation is becoming an accepted and established possi-
bility for training.

Several groups have developed simulation systems to serve
as a training possibility for minimally–invasive vascular in-
terventions over the last years [1, 7, 9, 17]. One system,
called the MIVIS (Minimally–Invasive Vascular Intervention
Simulation) system [2, 3, 4], is of particular interest to us
due to its clear modelling and definition in terms of an op-
timization problem to be solved. This system simulates the
propagation of a guide wire inside the vasculature. The
guide wire relaxes into a state of minimal energy after a
given translation or rotation. Hence, in a practical imple-
mentation this means that the optimization problem to be
solved can be defined as the minimization of the total en-
ergy. The energy is composed of an external component due
to vessel geometry and an internal component related to the
stiffness of the guide wire.

For a simulation system to be used in practice, two re-
quirements should be met. The system should be sufficiently
realistic and it should be real–time. Our goal in this pa-
per is to compare the primarily developed problem–specific
algorithm for the MIVIS system with an EA [8] and see
whether the simulation system can benefit from the use of
an EA with respect to the requirements. To this end we
have performed experiments with an implementation of the
problem–specific algorithm [12] and an EA for real–valued
optimization, specifically a hybrid EDA [6].

2. OPTIMIZATION PROBLEM
The simulation is founded upon an optimization problem:

a configuration of the guide wire should be found that cor-
responds to minimal total energy. The energy consists of
two sources: an internal energy term is associated with the
flexibility of the guide wire and an external energy term is
associated with the deformation of the vasculature. The
objective is to remain in a state of minimal energy.

The simulation is based on quasi–static mechanics, which
means that the velocity and acceleration aspects associated
with the propagation of the guide wire are ignored. This
is a valid approximation, as much of human movement is
performed at moderate speed, and is therefore essentially
quasi–static [11].



2.1 Guide wire and vasculature modelling
The guide wire is modelled using a set of joint positions

(x0, . . . , xk−1), where joint 0 is the tip of the guide wire and
joint k−1 the bottom. Between subsequent joints a straight,
not bendable or compressible segment is defined with a pre-
defined constant length (λi). Guide–wire thickness is taken
into account using sample points on the outer hull of the
guide wire instead of using the joint positions when calcu-
lating the interaction with the vasculature (Figure 1).
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Figure 1: Representation of a guide wire. Angle
(θi) between the two segments connected by joint i

as used in Equation 1 is illustrated for joint 3. For
joint 1 and 2 the sample points on the outer hull of
the guide wire are drawn.

2.1.1 Internal energy: bending of the guide wire
Hooke’s law [5] is used as a basis for modelling the flexi-

bility of the guide wire (internal bending energy) as well as
for modelling the deformation of the vasculature (external
vessel–wall energy). The bending energy (Ub(i)) per joint i

as well as the total bending energy (UTb) for the guide wire,
are defined as:

Ub(i) =
1

2
ciθ

2
i , UTb =

k−2
X

i=1

Ub(i) (1)

where θi denotes the angle between two segments connected
by joint i and ci is a spring constant related to the flexibility
of the joint. The dependency between the flexibility of the
guide wire and the segment length has been investigated
previously [3, 12] and can be formulated as ci = EI

λi
. Here,

EI denotes the flexural rigidity of the guide wire, which
is defined as the product of elasticity (E) and the second
moment of area (I).

Extension for guide wires with intrinsic curvature

Not only do guide wires vary in thickness, flexibility and
rigidity, they often also have intrinsically curved tips to allow
for enhanced navigation (i.e. turning left or right). To allow
for the modelling of such guide wires, two additional aspects
are introduced into the model:

• An intrinsic flexion angle γi indicating the strength of
the intrinsic curvature for joint i (the segment between
joints i and i−1) relative to the segment between joints
i and i + 1.

• A unit vector ê
(γ)
i indicating the direction of intrinsic

curvature at joint i.

The calculation of the angle θi between two adjacent seg-
ments now needs to be adapted. The former segment can
be used as reference segment for completely straight guide
wires, but for guide wires with intrinsic curvature this refer-
ence segment needs to be adapted according to the intrinsic

curvature as defined by γi and ê
(γ)
i . Specific details are

provided in the Appendix (Section 7).

2.1.2 External energy: deformation of the vessel wall
The external vessel–wall energy per joint (Uvw(i)) and

the external vessel–wall energy for the complete guide wire
(UTvw) are given by:

Uvw(i) =
1

2
ld

2
i , UTvw =

k−1
X

i=0

Uvw(i) (2)

The vessel–wall elasticity constant is denoted by l and the
vessel–wall deformation by di. The total energy now to be
minimized is just UTb + UTvw.

2.2 Processing of actions: performing opti-
mization

A continuous propagation action is discretized into a se-
quence of small, forced motions. To simulate the outcome
of each small forced translation of size ξinternal, first each
joint position is displaced in the propagation direction by
a length of ξinternal, i.e. as if no vasculature was present.
Then, the influence of the vasculature is taken into account
by minimizing UTb + UTvw as a function of joint positions
x0, x1, . . . , xk−3. The bottom two joint positions are fixed
as they define the propagation direction.

3. OPTIMIZATION METHODS
The problem dimensionality can be reduced using a 2D

parameterization (instead of the 3D joint positions). Such
a parameterization is possible because by construction the
distance between two neighbouring joints always remains
constant and hence each subsequent joint must lie on the
surface of a sphere. The actual mapping can be constructed
in various ways (see for instance [16]).

It is important to realize that the goal is not to globally
minimize the value of UTb + UTvw. The reason for this is
that the current guide–wire position depends on the history
of propagation; the guide wire cannot simply switch between
vascular branches. For this reason, the problem–specific op-
timization algorithm is a local–search method, which seems
a reasonable approach, especially if ξinternal is not too large
and the nearest local optimum is the one that would have
been obtained if a continuous motion had been used.

3.1 First–order analytical solution
An explicit analytical solution in the first–order approxi-

mation has been derived to minimize the energy per joint [12]
using a problem–specific 2D parameterization. An algo-
rithm has been formulated that applies this analytical solu-
tion to each joint sequentially, starting at the tip and moving
towards the bottom of the guide wire. As a result of displac-
ing joint i however, all joints j ∈ {i − 1, i − 2, . . . , 0} must
also be displaced to preserve the segment lengths, possibly
moving them away from their optimal position. Therefore,
to ensure convergence, this process is repeated several times.
These repetitions are called global iterations. In the deriva-
tion of the first–order solution, a number of assumptions and
approximations have been made which restrict the combina-
tions of values that can be chosen for the different parame-
ters (e.g. segment length and internal stepsize). Moreover,
the many involved computations that are required entail a
risk of numerical instability.



3.2 Evolutionary algorithm
Evolutionary algorithms (EAs) are generally applicable

optimizers. The optimization problem at hand is a real–
valued one and may grow to quite a large dimensionality as
the guide wire is advanced further into the vasculature. An
EA that has recently been shown to be a good generally–
applicable global optimizer for problems of various dimen-
sionalities is the Iterated Density–Estimation Evolutionary
Algorithm (IDEA) [6]. IDEA actually represents a similar
type of algorithms indicated by the more commonly used
acronym of EDA (Estimation–of–Distribution Algorithm).
The main difference with traditional EAs is that in EDAs
a probabilistic model is learned using the selected solutions.
The probabilistic model can capture various structural prop-
erties of the optimization problem at hand. By drawing
new solutions from the probabilistic model these structural
properties can be exploited to obtain more efficient opti-
mization. Especially if the probabilistic model is a low–
complexity, highly generalizing probability distribution such
as the normal distribution, EDAs tend to be good global
optimizers. To speed up convergence it has been shown
that the hybridization of such algorithms with local optimiz-
ers can be beneficial. For instance the Gradient–Leveraged
IDEA (GLIDE–EA) in which the conjugate–gradients algo-
rithm [15, 10] is applied to a small percentage of solutions
in the population has been shown to give superior results.
In this paper we performed experiments with GLIDE based
on the normal distribution in which each variable is taken
to be independent of all the other variables. This means
that for each variable the mean and standard deviation of a
one–dimensional normal distribution is estimated from the
selected solutions and that a new solution is constructed by
sampling one value per variable from the associated one–
dimensional normal distribution. This approach was previ-
ously observed to give good results [6]. The specific EA used
in this paper can be written in pseudo–code as follows:

GLIDE-EA-Relax

1 l ← 2k

→ Genotype encodes 2 parameters per joint position
2 P ← new vector of length n

3 for i ← 0 to |P | − 1 do
3.1 P i ← random genotypes of length l

3.2 Compute energy UTb + UTvw for P i (after decoding
genotype information in P i into joint positions)

4 Iterate until termination
4.1 S ← ⌊τn⌋ solutions from P with lowest energy
4.2 for i ← 0 to |S | − 1 do

4.2.1 µi ←
1

|S |

P|S |−1
j=0 (S i)j

4.2.2 σ2
i ← 1

|S |

P|S |−1
j=0 ((S i)j − µi)

2

4.3 O ← new vector of length n − |S |
4.4 for i ← 0 to |O| − 1 do

4.4.1 for j ← 0 to l − 1 do
4.4.1.1 (Oi)j ← random sample drawn

from N (µi, σ
2
i )

4.5 for i ← 0 to |O| − 1 do
4.5.1 P i+|S | ← Oi

4.5.2 Compute energy UTb + UTvw for P i+|S |

4.6 Apply conjugate gradients search to ⌊τGn⌋ randomly
chosen solutions in P (and update energy accordingly)

Since EAs are by construction capable of escaping local
optima to a certain extent, additional precautions need to
be taken to prevent physically incorrect behavior of the sim-
ulation when using the EA for optimization. Therefore, we

have added a penalty term to the total energy to be mini-
mized. The penalty term increases exponentially if the guide
wire is displaced by more than a predefined distance that is
based on the vessel diameter.

4. EXPERIMENTS AND RESULTS
The accuracy of the simulation has been determined by

comparing physical experiments with simulated outcomes.
Two phantoms, manufactured by Shelley Medical Imaging
Technologies, Ontario, Canada, have been used: a carotid
anthropomorphic vascular phantom and an elastrat normal
abdominal aorta phantom. Shelleys Carotid Anthropomor-
phic Vascular Phantoms are designed to very accurately
mimic complex physiological vascular geometries and are
made of acrylic. The elastrat normal abdominal aorta phan-
tom is derived from cadaveric specimens and made of sili-
cone. The vessels were extracted from a CT data set of these
phantoms by means of voxel–based segmentation. The dis-
tance of a joint to the vessel wall as required in Equation 2
is thus only available in a discretized fashion. This may
pose a problem for algorithms based on continuous gradi-
ents such as conjugate gradients. The first–order analytical
approximation (FOA) algorithm internally also works with
gradient information. Therefore, this algorithm is also ham-
pered. Preliminary experiments have shown however that
using trilinear interpolation provides a sufficiently smooth
representation for these algorithms to work.

Simulation results are evaluated based on a root–mean–
square (RMS) error measure. The RMS error is computed
from distances between the joint positions in the simulated
guide wire and corresponding reference points that have
been extracted from physical experiments. For a guide wire
with k joints the RMS error measure is defined as:

RMS =

v

u

u

t

1

k

k−1
X

i=0

(dSR
i )2, d

SR
i = ‖xS

i − x
R
i ‖ (3)

where x
S
i denotes the simulated joint position and x

R
i the

corresponding reference point. All experiments were run on
a 1.7 GHz Pentium with 512 Mb of RAM. Reported runtimes
do not involve online visualization.

4.1 Abdominal–aorta phantom
4.1.1 First–order analytical approximation algorithm

Experiments with various values for the internal step-
size ξinternal and for the segment length λi have been per-
formed, exploring the parameter space with respect to the
constraints used to derive the analytical first–order approx-
imation. For selected values for ξinternal and λi results are
tabulated in Table 1. A global iteration number of 8 was
used. For various parameter settings the first–order analyt-
ical approximation (FOA) algorithm supplies a guide– wire
configuration with an RMS error around 1 mm. The use
of segment lengths larger than 3 mm resulted in erroneous
results.

The best result is achieved for a segment length of 3 mm,
combined with an internal stepsize of 0.3 mm. The required
time to obtain this result was 92.040 seconds. This can be
reduced to 20.359 seconds by using only 2 global iterations.
However, the RMS error then increases to 1.232 mm. This
simulation result is illustrated in Figure 3.



4.1.2 GLIDE
The maximum allowed number of evaluations was set to

cevalk where k is the number of joints that the guide wire
currently consists of. If convergence occurred earlier, ter-
mination was enforced also. For selection we set τ to 0.3,
conforming to the rule–of–thumb for EDAs by Mühlenbein
and Mahnig [14]. Furthermore, we fixed τG to . . .

τ , τ
G

Since the EA uses a lot less problem–specific information,
the expected room for improvement lies in the use of settings
where the FOA algorithm failed. Indeed, using the same
settings as for the FOA algorithm the EA required more
time, although similar RMS errors were found. Hence, we
performed experiments with more coarse–grained settings.

First, we performed experiments in which we varied the
population size and the value of ceval. However, this time
we only performed experiments with a much larger inter-
nal stepsize. As cevalk increases, the algorithm is allowed
more precision and more time respectively to find a local
optimum. It is to be expected that precision comes at the
cost of time. The results as shown in Figure 2 indeed clearly
indicate a trade–off between the two ultimate objectives of
minimizing the required time and minimizing the RMS er-
ror. Based on these experiments we experimented further
with population sizes of 20 and 50 and ceval ∈ {50, 10000}
because these population sizes were prominently present on
the Pareto front. The results of these further experiments
are tabulated in Table 1. The results show that an RMS
error of 1.118 mm can be obtained in 2.984 seconds (λ =
3, ξint = 14). Furthermore, for a variety of parameter set-
tings the runtime is reduced to less than 1 second while the
RMS error increases to around 2 and 3 mm.

From the tabulated results we can conclude that GLIDE
is capable of quick and reliable optimization. Lower RMS
errors can be found if ceval is set large enough. However, this
greatly comes at the expense of time. Since the final objec-
tive is to build a real–time simulator, these settings are not
preferable. However, by choosing for instance a population
size of 20 combined with a ceval of 50, the EA is still able to
come up with good results. Moreover, the EA can still find
good solutions for extreme cases. In these cases, only a few
joints are required because the segment length is relatively
large. Therefore, as the guide wire is propagated further,
the scalability of the EA is much better as the optimiza-
tion problem to solve contains less variables. This is illus-
trated in Figure 2 where required simulation time is plotted
against the propagated length for different algorithms on a
logarithmic scale. Although the asymptotic runtime com-
plexity is the same for all algorithms, the constant different
is extremely significant. An illustration of the best obtained
result is supplied in Figure 3.

4.2 Carotid–bifurcation phantom
To test the performance of the algorithms in the case of

guide wires with intrinsic curvature, the propagation over a
distance of 102 mm of a guide wire with an intrinsically–
curved tip in a Carotid–bifurcation phantom was also sim-
ulated. For both algorithms the simulation system behaved
as desired when orienting the curved tip to turn either left
or right at the bifurcation (see Figure 4).

The FOA algorithm was run with λ = 3mm, ξint = 0.3mm
and a global iteration number of 2. The GLIDE algorithm
was run with λ = 3mm, and ξint = 14mm. The RMS errors

associated with the turning–left and turning–right simula-
tions were 1.1 mm and 1.3 mm respectively for FOA and
0.47 mm and 0.89 mm respectively for GLIDE. The associ-
ated runtimes were 5.7 and 5.6 seconds respectively for FOA

and 4.3 and 4.5 seconds respectively for GLIDE. The main
reason for the smaller difference in runtime for this phantom
is the smaller amount of interaction of the guide wire with
the vessel wall. The FOA algorithm performs less computa-
tions if such interaction is not present, whereas the GLIDE
algorithm does not use such problem–specific information.

5. DISCUSSION
Simulations are an approximation of reality. We have seen

that when comparing simulated results with results from
reality, RMS errors that are significantly smaller than 1
mm could not be obtained by both optimization techniques.
Most likely the reason for this is thus that the actual mini-
mum of the optimization problem does not correspond to the
minimum of physical reality, caused by the simplified model
of energy and kinetics. Therefore, an RMS error around 1
mm is likely to be close to the optimally obtainable result
using this model.

The experiments show that both optimization algorithms
can provide results with which a comparable RMS error is
associated. Nevertheless, the FOA algorithm turns out to be
less appropriate to use in a real–time application. GLIDE
still provides good solutions in the case of large segment
lengths. This allows for the advantage of keeping the run-
time small when the guide wire is propagated over a larger
distance as a result of improved scalability.

The deformation of the vessel wall di in Equation 2 is
computed using the distance transform from the segmented
vasculature. The problem–specific optimization algorithm
uses a vectorial image in which the vessel–wall energy gra-
dient is stored. GLIDE works directly by evaluating Equa-
tion 2. The distance transform can be refined by prepro-
cessing methods. Preliminary experiments have shown that
the problem–specific optimization algorithm does not ben-
efit from this refinement as it is based on the gradient of
the distance transform. However, GLIDE does benefit from
such a refinement. The refinement can be obtained by pre-
processing methods, therefore no additional running time is
associated with the use of this refinement.

6. CONCLUSIONS
We have investigated the applicability of different opti-

mization algorithms in the MIVIS system; a system devel-
oped for the simulation of minimally–invasive vascular in-
terventions. We compared the use of a problem–specific op-
timization algorithm with the use of an an EA, specifically
the GLIDE algorithm.

The results show that GLIDE is favorable. Compared to
the use of the first–order analytical approximation algorithm
a substantial reduction in simulation time is obtained while
the RMS error associated with the result remains accept-
able. Hence, the use of EAs in medical simulation systems
can bring these systems significant step closer to real–time
without significant loss of accuracy.

7. APPENDIX
For any configuration of the guide wire the two angles γi

and δi tell us the position of minimal bending energy for
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Figure 2: (Left) GLIDE results in a scatterplot for different simulation settings. (Right) Scale-up of algorithms
with propagated guide–wire length. Both λ and ξint are in mm.

Figure 3: Illustration of the reference guide wire configuration (black) and the simulated guide wire config-
uration (grey) using the FOA algorithm (top) and GLIDE (bottom). Settings for GLIDE: population size
= 20, ceval = 50, λi = 3 mm and ξint = 14 mm.



λi ξint FOA

RMS Time
1 0.1 0.996
1 0.05 1.217
1 0.025 1.141
1 0.0125 1.276
1 0.00625 1.215
2 0.2 1.066
2 0.1 0.995
2 0.05 1.117
2 0.025 1.120
2 0.0125 1.130
3 0.3 0.983
3 0.15 1.075
3 0.075 1.097
3 0.0375 1.140
3 0.01875 1.151

λi ξint GLIDE 20–50 GLIDE 20–10000 GLIDE 50–50 GLIDE 50–10000

RMS Time RMS Time RMS Time RMS Time
3 3 1.697 12.344 1.715 106.328 0.930 12.360 1.381 531.140
3 6 1.289 6.281 1.678 78.562 1.619 6.313 1.652 256.360
3 8 1.808 5.000 1.618 81.704 4.043 5.016 1.666 270.438
3 12 1.701 3.469 2.416 6.344 1.273 3.500 1.628 126.187
3 14 1.118 2.984 1.787 55.328 4.753 3.015 1.395 179.578
3 21 12.424 2.172 14.360 91.187 14.308 2.187 12.991 273.234
9 3 1.894 1.344 1.970 12.688 1.552 1.375 2.037 70.907
9 6 2.892 0.688 2.275 8.765 2.987 0.703 2.036 35.313
9 8 1.923 0.547 2.433 6.547 2.496 0.546 2.424 36.329
9 12 2.773 0.391 1.654 37.031 2.707 0.391 2.417 21.328
9 14 2.656 0.328 2.397 3.672 4.055 0.344 2.235 19.875
9 21 6.602 0.235 2.458 3.156 6.648 0.250 2.344 12.438

18 3 2.333 0.344 3.375 6.953 3.464 0.359 3.383 25.703
18 6 123.961 0.172 3.265 3.406 38.017 0.187 3.049 14.297
18 8 2.855 0.140 3.013 2.594 2.911 0.140 3.037 12.265
18 12 2.987 0.110 3.329 1.969 5.541 0.110 3.039 6.625
18 14 2.855 0.094 2.996 1.281 4.049 0.094 3.018 6.234
18 21 3.432 0.063 3.070 1.141 2.986 0.078 3.085 5.797

Table 1: Results of both the FOA algorithm (left) and of GLIDE (right). For different combinations of
segment length (λi) and internal stepsize (ξinternal) the RMS error (mm) is given. The index for GLIDE
represents: population size–ceval. Both the RMS error in mm and the required time in seconds are supplied.

Figure 4: Illustrations of two simulations of the propagation of an intrinsically–curved tip guide wire inside the
carotid bifurcation phantom. The reference guide–wire configuration is rendered in black and the simulated
guide–wire configuration in grey. The two visualizations on the left illustrate the simulation results obtained
with the problem–specific optimization algorithm. The two visualizations on the right illustrate the simulation
results obtained with GLIDE.



the segment between joints i − 1 and i. In the following all
vectors are assumed to be unit vectors.

Initially δi is zero. Knowing the value of δi the vector ê
(γ)
i

can be derived. The vector ê
(γ)
i is continuously defined in

a straightforward manner. Vector ri is the reference vector
that needs to be updated:

ri = (rx
i , r

y
i , r

z
i ) =

1

||xi − xi+1||
(xi − xi+1) (4)

We calculate the angle ρi between the z–axis and ri. Sub-
sequently the x–axis is rotated around the normal vector of
the plane spanned by z and ri with angle ρi. Since the dot
product always returns the smallest angle between two vec-
tors, a test is built in to determine whether ρi or 2π − ρi

should be used to obtain a vector perpendicular to ri: ê
(γ)
i .

Summarizing, the mathematical definitions involved in

the definition of ê
(γ)
i are as follows:

ri =
(xi−xi+1)
||xi−xi+1||

ρi = arccos(rz
i )

ζi =

(

ρi if sin(ρi)
q

r
x
i
2+r

y

i
2

= 1

2π − ρi otherwise

ê
(γ)
i =

“

r
y

i
2

r
x
i
2+r

y

i
2 (1−cos(ζi)) + cos(ζi) ,

−
r

x
i r

y

i

r
x
i
2+r

y

i
2 (1−cos(ζi)),

−
r

x
i

q

r
x
i
2+r

y

i
2

sin(ζi)

«

Subsequently, ê
(γ)
i needs to be rotated with angle δi around

ri. The reference vector ri and ê
(γ)
i now define the plane in

which the reference vector needs to be updated. To adapt
the reference vector according to the intrinsic curvature, the
reference vector needs to be rotated around the normal vec-
tor of the plane spanned by the reference vector and vector

ê
(γ)
i with the angle γi. This results in an updated reference

vector r
updated
i , see Figure 5.

The rotation of a vector v around another vector a can
be accomplished in the following way [13]:

vr = (1 − cos(ι))(a · v)a + cos(ι)v + sin(ι)(a × v) (5)
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