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ABSTRACT
Digital subtraction is a promising technique used in radi-
ographic studies of periapical lesions and other dental disor-
ders for which the treatment must be evaluated over time.
This paper presents a fast and reliable automated image reg-
istration method for subtracting two digitized radiographs
where an unpredicted mismatch is present. An optimal
affine transformation is found using an adaptive Genetic
Algorithm (GA) as the optimization strategy and a cor-
relation ratio as the similarity measure. The parallel GA
implemented takes advantage of the CPU idle cycles of a
computational grid, resulting in an application with a com-
putational time of less than three minutes when processing
pairs of standard intra-oral radiographs.

Categories and Subject Descriptors
G.1.6 [Global Optimization]; I.4 [Image Processing]:
Applications; J.3 [Life and Medical Sciences]: Health

General Terms
Design, algorithms

Keywords
Genetic algorithms, image registration, distributed comput-
ing

1. INTRODUCTION
Digital subtraction radiography detects tissue mass changes

by subtracting two digital radiographs. This method has
shown to be very useful in early diagnosis of disease and
follow-up examination [7, 10, 11]. When subtracting two
radiographs taken over time, the image features which are
coincident to both images can be removed and the small
changes can be amplified to highlight their presence. For
many years, digital subtraction radiography in dentistry has
been used to qualitatively assess changes in radiographic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

density. Numerous authors have demonstrated the ability of
this method to improve diagnostic performance for the de-
tection of approximal dental caries [10], periapical pathology
[11] and periodontal disease [12]. The use of digital subtrac-
tion radiography has also been shown to markedly increase
the detection of destruction in the periodontal bone[21], as
well as secondary caries detection [7]. A large variety of
odontological diseases result in destruction of mineralized
tissues, which are relatively small in the initial progression
of the disease. A reliable detection and follow-up exami-
nation necessarily requires a precise alignment of the two
images for the tissue changes to be detectable. Different ap-
proaches have been proposed for correcting such geometrical
distortions. It goes from manual correction [28], to differ-
ent devices used to ensure a consistent geometric projection
which can be reliably reproduced over time [17]. However,
in daily clinical practice, clinicians do not count with de-
vices for adequate patient fixation, a drawback that has not
allowed the application of this method to the series of rou-
tine examinations needed for progression estimation of le-
sions or treatments. In fact, since most clinicians do not
pay attention to this issue, radiographic examinations gen-
erally produce strong geometrical distortions which makes it
inappropriate to apply conventional correction approaches.
Under these circumstances, standard numerical techniques
for extrema searching in a parameter space like the Pow-
ell’s method or the Downhill Simplex method [19] can yield
irrelevant results.

In this paper, an entirely automatic method is proposed
for spatial radiographic alignment in those cases where a
considerable amount of distortion is present. The process
starts by selecting one of the two images as the reference
while the other is considered the floating image. Afterward,
illumination differences are eliminated by means of an equal-
ization algorithm explained below. Consecutive affine trans-
formations are then performed on the floating image and the
transformed image is compared to the reference using the
correlation ratio as the similarity measure. An adaptive GA
is used in order to find the transformation that produces the
best match. The process is robust, reliable and reproducible
on the test group of images.

2. IMAGE REGISTRATION PROBLEM
Conventional registration approaches have been success-

fully used in those situations where the patient’s head has
been appropriately fixated, therefore producing images with
little distortions [24]. However, anatomical variations ei-
ther from patient to patient or for the same patient in two



different moments, have been a major inconvenient for ra-
diographic subtraction to become an applicable method in
routine evaluations. Our problem can be therefore defined
as a multi-parametric search in a highly irregular space of
possible transformations, for which conventional approaches
have a high probability of remain trapped in local extrema.

2.1 Parametric transformations
Small tissue deformations are conveniently modeled using

affine or projective transformations. The affine transfor-
mation implemented in this analysis is defined as T (x) =
SRx+ t, where S is the scale matrix, R the rotation matrix
and t the displacement vector.

2.2 Similarity measure
Mutual information measure[19], successfully applied to

multimodal image registration[19, 27], assumes only statis-
tical dependence between image intensities. It treats inten-
sity values in a purely qualitative way, without considering
any correlation or spatial information conveyed by nearby
intensities. Mutual information tries to reduce entropy and
this can be observed as a trend to form intensity clusters in
the joint histogram. In our case, since we are dealing with
monomodal images of natural tissue, the mutual information
measure is under-constrained and we can assume a func-
tional correlation. The concept of functional dependence,
fundamental in statistics, provided us with the framework
for the computation of similarity between the two images.
To use this concept we consider images as random variables
and interpret an image histogram as a probability density
function. Furthermore, we consider the 2D histogram of a
pair of images as their joint probability density function[23].
Thus when a pixel is randomly selected from an image X
having N pixels, the probability of getting an intensity i
is proportional to the number of pixels, Ni, in X having
intensity i, i.e.,

P (i) =
Ni
N
. (1)

In order to define the joint probability density function of
an image pair we consider two images (X,Y ) and a spatial
transformation T that maps the set of pixels of Y , Ωy, to
the the set of pixels of X, Ωx. As we are working with
digitized radiographs, we can also assume that images X
and Y take their intensity values from a known finite set
A = {0, ..., 255}:

X : Ωx → A, Y : Ωy → A.
Now, by applying transformation T to image Y , a new

mapping is defined from the transformed positions of Y to
A:

YT : T (Ωy)→ A

ω 7→ Y [T−1(ω)].

We now have to find the intensities that a given point
of T (Ωy) simultaneously takes in X and YT . Since we are
dealing with continuous spatial transformations, points of
the grid T (Ωy) do not, in general, transform to points of the
grid Ωx. So in order to define the joint probability density
function of the images, we used the interpolation approach
explained below, discarding the points of T (Ωy) that do not
have eight neighbors in Ωx. If we denote by T (Ωy)∗ the

subset of accepted points and by eX the interpolation of X,
we can define the image pair as the following couple:

ZT : T (Ωy)∗ → A2

ω 7→
� eX(ω), Y [T−1(ω)]

�
,

and, in a similar way as we did for a single image in (1),
their joint probability density function as:

PT (i, j) =
Card {x|ZT (x) = (i, j)}

Card T (Ωy)∗
. (2)

On the other hand, the total variance theorem presented
in [23]:

V ar(Y ) = V ar[E(Y |X)] + EX [V ar(Y |X = x)], (3)

expresses the fact that the variance can be decomposed as
a sum of two energy terms: a first term V ar[E(Y |X)] that
is the variance of the conditional expectation and measures
the part of Y which is predicted by X, and a second term
EX [V ar(Y |X = x)] which is the conditional variance and
stands for the part of Y which is functionally independent
of X.

Now based on the previous equation, that can be seen
as an energy conservation equation, we can define the cor-
relation ratio as the measure of the functional dependence
between two random variables:

η(Y |X) =
V ar[E(Y |X)]

V ar(Y )
.

The correlation ratio takes on values between 0 and 1,
where a value near 1 indicates high functional dependence.
Then, for a given transformation T , in order to compute
η(YT |X) we can use the following equation:

1− η(YT |X) =
EX(V ar(YT |X = x)]

V ar(YT )
,

that by means of (2) and (3) can be expressed as:

1− η(YT |X) =
1

σ2

X
i

σ2
i Px,T (i),

where:

σ2 =
X
j

j2 Py(j)−m2, m =
X
j

j Py(j),

σ2
i =

1

Px(i)

X
j

j2 P (i, j)−m2
i , mi =

1

Px(i)

X
j

j P (i, j).

The correlation ratio just discussed, measures the similar-
ity between two images and is assumed to be maximal when
the images are correctly aligned, thus will be used in our
GA as the fitness value of the individuals.

2.3 Optimization problem
The problem we face is to find the optimal transformation

that maximizes the correlation ratio between the pair of im-
ages. Therefore, the parameters to be found are the scale
factor, the rotation angle and the horizontal and vertical
translations.



3. PROPOSED APPROACH

3.1 Interpolation approach
In terms of linear interpolation, the reconstructed signal

is obtained by convolution of the discrete signal (defined as
a sum of Dirac functions) with a convenient selected kernel.
We used spline interpolation [26] due to its accuracy and
acceptable computing speed. Spline interpolation of order n
is uniquely characterized in terms of a B-spline expansion:

s(x) =

∞X
κεZ

c(κ)βn(x− κ),

which involves integer shifts of the central B-spline. The
parameters of the spline are the coefficients c(κ). In the
case of images with regular grids, they are calculated at the
beginning of the procedure by recursive filtering. A three
order approximation was used in the present work.

3.2 Search strategy
Genetic Algorithms are based on adaptive stochastic ran-

dom search [13] simulating the natural selection process where
only the fittest individuals survive. Despite their computa-
tional cost, genetic algorithms have been chosen over stan-
dard numerical methods because of their strong immunity to
local extrema, their intrinsic parallelism and robustness, as
well as their ability to cope with large and irregular search
spaces. A good and diverse set of examples is presented in
[2]. Multiple successful applications of GAs to image regis-
tration can be found in the literature [4, 16, 15], using mono-
modal and multi-modal images, 2D and 3D registration, in
both sequential and parallel versions. However, references
about the use of GAs to the specific case of subtraction ra-
diography is limited to a very few cases (see for example
[1]). Upon reviewing the most relevant works in this area, it
can be concluded that the most crucial aspects refer to the
coding scheme and the design of the fitness function. All
seem to agree that for this kind of application, real-number
encoding performs better than both binary and Gray encod-
ing.

Accordingly, our genome has been coded as four float-
ing point numbers representing the parameters used in the
affine transformation [Fig. 1]. The initial population is cre-
ated by applying random mutations over an individual that
is either the null transformation or the center of mass trans-
formation. The fitness of an individual, indicating the simi-
larity between the transformed image and the reference im-
age, is computed using the correlation ratio previously ana-
lyzed. Fit candidates, selected by tournament, are used for
crossover in order to produce a new population.

Figure 1: Real number encoding of the genome that
represents a possible solution.

Crossover is performed applying a variation of the averag-
ing crossover operator suggested by Davis in [5]. The genes

of the offspring’s chromosome are the result of a convex in-
terpolation of the genes of the two mates selected from the
population:

xi = pi ∗ x1i + (1− pi) ∗ x2i

pi ∈ U(0, 1).

A mutation operator is applied to guarantee that the prob-
ability of searching a particular subspace of the problem
space is never zero [3]. This prevents the algorithm from
becoming trapped in local extrema [14, 9]. The mutation
operator used, known as real number creep, sweeps the indi-
vidual adding or subtracting a Gaussian distributed random
noise to each parameter [5]. The creep operator implements
a variation of neighborhood search by looking in the neigh-
borhood of a good solution to see if better solutions exist.

Each new generation is then evaluated looking for a solu-
tion better than the best obtained so far. If a better solu-
tion is not found, the process is repeated in an inner loop
reducing the search range for each iteration, until a better
offspring is generated. Otherwise, if a maximum number of
iterations is reached, the algorithm stops.

Figure 2: Search range is reduced linearly in each
step of the inner loop.

3.3 Algorithm parallelization
The evaluation of the fitness function consists of apply-

ing an affine transformation and then computing of the cor-
responding correlation ratio. This computational intensive
operation is required for each individual of the population.
Since the operation can be computed independently for each
individual, this part of the algorithm was parallelized and
executed on a computational grid based on the JavaSpaces1

computing model, using the well known replicated-worker
pattern[8]. The grid is composed of forty general purpose
workstations, with 1GHz processors and memory ranging
from 256 to 512 Mbytes. Source code of the GA imple-
mented and additional documentation about the computa-
tional grid is available at the unGrid Project site (http:
//ungrid.unal.edu.co/telemedicine).

4. ALGORITHM VALIDATION
To validate the correctness of the GA implemented, two

sets of experiments were conducted. In both cases, the

1Java and JavaSpaces are trademarks of Sun Microsystems,
Inc.



implemented GA was compared to a standard numerical
method, the Downhill Simplex method due to Nelder and
Mead[22]. This method was chosen because of its ease of
implementation and because, amid the standard numerical
optimization methods, it is the least sensitive to initial con-
ditions. Firstly, a series of synthetic images was created by
applying a set of known transformations to ten reference ra-
diographs. Then the transformed images were registered to
the original ones to verify the ability of each algorithm to
find the values used in the transformation. In the second set
of experiments the algorithms were evaluated with pairs of
images obtained from real radiographs.

4.1 Synthetic transformation experiments

4.1.1 Experimental setup
The set of synthetic images was created by applying the

transformations shown in Table 1, using a reliable image
processing program. The algorithms were executed ten times
for each pair of reference and synthetic image. The GA was
executed on the computational grid while the Downhill Sim-
plex implementation was executed on a single machine of the
same grid.

Transformation Applied

Rotation Angle Scale Factor Tx Ty

1 1◦ 0.8 10 10

2 1◦ 0.8 100 100

3 1◦ 1.2 10 10

4 1◦ 1.2 100 100

5 30◦ 0.8 10 10

6 30◦ 0.8 100 100

7 30◦ 1.2 10 10

8 30◦ 1.2 100 100

Table 1: Some combinations of rotation, scaling and
translation applied to the set of synthetic images.

4.1.2 Results and discussion
The transformation values and correlation ratio obtained

by the Genetic Algorithm and the Downhill Simplex method,
are presented in Table 2 and Table 3, respectively.

Values found by GA

R S Tx Ty CR Error%

1 1.016 0.791 9.426 9.897 0.922 2.7

2 1.115 0.798 96.667 98.034 0.884 6.8

3 0.984 1.190 9.972 10.267 0.936 1.3

4 1.230 1.177 94.564 95.996 0.895 8.6

5 29.794 0.797 9.196 9.9105 0.939 2.5

6 29.653 0.822 101.326 91.455 0.872 3.4

7 29.602 1.148 10.802 9.027 0.820 5.9

8 28.749 1.065 96.669 75.906 0.740 10.7

Table 2: Transformation values found by the Ge-
netic Algorithm.

Values found by DS

R S Tx Ty CR Error%

1 1.035 0.723 8.547 8.782 0.719 10.0

2 1.215 0.618 85.378 116.802 0.630 18.9

3 1.117 0.975 7.742 8.754 0.569 16.4

4 1.230 0.912 78.781 72.349 0.536 24.0

5 26.127 0.607 13.396 8.910 0.576 20.5

6 21.653 0.522 111.873 127.572 0.589 25.5

7 24.367 0.985 14.431 8.535 0.522 23.9

8 19.756 0.769 111.304 123.761 0.556 26.3

Table 3: Transformation values found by the Down-
hill Simplex method.

Where the accuracy error was computed as:

E = 100 ∗
4X
i

(ovi − evi)/evi,

where ov represents the output value and ev the expected
value.

From these results, it can be concluded that for trans-
formations in the expected range, the GA outperforms the
Downhill Simplex and provides clinically acceptable regis-
tration accuracy.

4.2 Real images experiments

4.2.1 Image Acquisition
Ten intra-oral radiograph pairs, taken at different occa-

sions, were randomly selected from an unrelated study of
periodontal therapy. No film holders or any other fixation
device were mechanically coupled to the cone of the x-ray
machine. Radiographs were digitized in a HP 3570 scan-
ner using a transparent material adapter at a resolution of
600× 600 DPI, producing 724× 930 pixel images.

4.2.2 Preprocessing
Even though acquisition conditions are standardized as

much as possible, illumination differences are inevitable. Thus,
the histogram of the floating image is equalized by using the
reference image luminances [25]. This transformation first
computes the histogram of each image and then luminances
are homogeneously distributed in the floating image accord-
ing to the levels found in the reference image.

4.2.3 Experimental setup
The properties compared were accuracy, in terms of the

similarity measure obtained, and efficiency, in terms of ex-
ecution time and use of resources. Both algorithms were
coded in Java and use the same routines to compute the
correlation ratio between the transformed and reference im-
age. The GA was executed on a computational grid while
the Downhill Simplex implementation was executed on a
single machine of the same grid.

4.2.4 Results and discussion
A summary of the results obtained is presented in Table 4:
It is worth noting that the Downhill Simplex method ap-

peared to be very sensitive to the initial parameters and not
always converged to the global optimum. While in some



Property Simplex GA

Average Correlation Ratio 0.587 0.876

Average Execution Time (secs) 42 171

Number of CPUs 1 40

Table 4: Simplex-GA comparison

executions it obtained better results than the GA, in other
executions it produced meaningless values and this is re-
flected in the low overall accuracy shown in Table4. It is
also important to note that the computational grid used to
run the GA, only uses the free CPU cycles of the computers
that comprise it.

Fig. 3 shows a pair of radiographs to be subtracted (top
row). The bottom row displays subtraction without geomet-
ric correction on the left and with correction on the right.
Null intensity level is shifted to 128 in order to make tissue
changes easily observed.

Figure 3: The upper row shows the two images to
subtract. Bottom row shows the subtracted images:
left without geometrical correction and right after
automatic correction.

In this particular example it can be appreciated that the
match is precise enough to make objective measurements de-
spite the fact that in the second radiograph, the fifth tooth
(from left to right) is nearly hidden. The small spot, likely
an artifact, that appears in both images is observed in the
resultant image in white indicating that a pure difference
is present. In this image it can also be observed that a

difference appears at the root of the third tooth which cor-
responds to new tissue developed after treatment. These
changes are impossible to be observed at the raw difference
image (bottom left). Similarly, in this image the bone pat-
tern is blurred and impossible to be unrecognizable, while
in the resultant image the trabecular bone pattern is clear.
For the entire set of test images, matching has been visu-
ally assessed by two experts in the domain who have judged
that the alignment is sufficiently accurate to get objective
measurements, while maintaining acceptable computation
times.

4.3 GA parameter analysis
A number of 4580 experiments were performed in order

to guarantee a complete analysis of the parameter space.
An experiment is the execution of the algorithm with a par-
ticular set of images and parameters, i.e. population size,
tournament size and genetic operators probabilities. In this
task the grid became an essential tool and allowed us to
achieve a second level of parallelism.

The first analysis was conducted to determine two basic
parameters of the GA: population size and selection scheme
used to choose the parents for crossover.

Figure 4: Most appropriate population size averaged
120 in the ten radiographs pairs subtracted. Above
this value, the process slows down and no better
results are obtained.

Two common selection options are tournament selection
and elitism. In tournament selection of sizeN , N individuals
are selected at random and the fittest is chosen. Elitism is
a particular case of tournament selection where the size of
the tournament equals the size of the population, so the best
individual is always preserved. Fig. 4 shows the experiments
performed to find the most appropriate population size.

Fig. 5 shows that for this particular problem, tournament
selection is the best option for selecting the parents for a
new generation. The other parameters analyzed were the
crossover and mutation probabilities. The combination of
probabilities that yielded the best results were 0.65 and 0.21
respectively.



Figure 5: Best selection scheme was found to be
tournament of size 20 in average.

The average time to compute an experiment with a pop-
ulation of 120 individuals is about 48 minutes if run on a
single machine. This time was reduced to less than three
minutes using the parallel implementation of the GA. The
speedup obtained by parallelizing the algorithm is near 17
and can be explained by examining the timing profile of the
sequential GA, where about 95 percent of the time is spent
on applying the affine transformation and computing the
correlation ratio (eighty and fifteen percent, respectively).

5. CONCLUSION
An entirely automatic and fast method for strong geomet-

ric correction in subtraction radiography is proposed. The
method uses the correlation ratio as the similarity measure
and a GA strategy for searching an optimal transformation.
Preliminary results show the consistency of the technique in
ten different cases of clinical subtraction radiography, ran-
domly selected from a set of one hundred studies. It must
be stressed that in these studies no attention was paid to
the fixation protocol and indeed we used no fixation at all.
For although fixation methods based on anatomical consid-
erations such as repair points or implementation of routine
angles of the x-ray cone can help obtain similar positions of
the radiographs, the chance of variation in angles is strong
enough to produce radiographs whose main planes result in
very large geometrical distortions. Under these conditions,
the GA used, although costly computationally, showed good
and fast convergence toward a satisfactory solution, evalu-
ated by two different experts in the domain. Furthermore,
the computational burden was lessened considerably by par-
allel implementation. The fact that the tournament selec-
tion scheme proved to be the best approach, shows that
diversity is a necessary condition when using evolutionary
algorithms. Finally, we can conclude that the registration
method turned out to be a useful and objective measure-
ment of the differences between pairs of radiographs. Fur-
ther clinical studies will be conducted in order to evaluate
our approach in larger samples and more complex cases.

Figure 6: Timing profile of the sequential GA.
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