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ABSTRACT
In medical research, being able to justify decisions is gener-
ally as important as taking the right ones. Interpretability
is then one of the chief characteristics a learning algorithm
must have, in order to be successfully applied to a medical
data set. Other important features are seamless treatment
of different data types, and ability to cope well with miss-
ing values. XCS and decision trees both appear to have this
desirable characteristics; we compared them on a data set re-
garding Head and neck squamous cell carcinoma (HNSCC).
This kind of oral cancer already been found to be associated
with smoking and alcohol drinking habits. However the in-
dividual risk could be modified by genetic polymorphisms of
enzymes involved in the metabolism of tobacco carcinogens
and in the DNA repair mechanisms. To study this relation-
ship, the data set comprised demographic and life-style (age,
gender, smoke and alcohol), and genetic data (the individual
genotype of 11 polymorphic genes), with the information on
124 HNSCC patients and 231 healthy controls. Results with
both algorithms are presented and analyzed.
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J.3 [Computer applications]: Life and medical sciences;
I.2.6 [Artificial Intelligence]: Learning—Learning classi-
fier systems
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1. INTRODUCTION
Personalized medicine is by many considered one of the

most fascinating and difficult challenges to current medical
science. Very often, two persons which the statistics would
classify as equal (same gender, age, lifestyle) have different
reactions to drugs, or have different chances to develop cer-
tain diseases. The key to understand these variations has
probably been found with the possibilty to decode DNA.
DNA has clearly a chief part in regulating the chemical and
biological responses of the human body; it can however be
very difficult to establish a clear gene-effect relationship, as
the biochemical responses are hard to trace through the hu-
man body. Moreover, genes often interact with each other,
and some singularly “detrimental” or ineffective alleles can
become beneficial when found together. These issues sug-
gest the use of machine learning algorithms which can ex-
tract complex patterns from the observed data, and present
them to the physicians in a human-readable form, amenable
to further investigation.

In this work we consider the development of head and
neck squamous cell carcinoma (HNSCC). This kind of can-
cer is mainly associated with smoking and alcohol drink-
ing, but genetic polymorphism of enzymes involved in the
metabolism of tobacco carcinogens and in the DNA repair
mechanisms can influence the risk factor. The subjects were
thus described with a combination of individual demographic
and lifestyle data (gender, age, smoking and drinking habits)
and genetic data (the individual genotype at 11 polymorphic
genes potentially relevant to this disease) — along with a
single value, which stated if they had cancer or not when
the database was compiled.

We developed an XCS classifier system tailored to work
with the different types of values found in this data set
(boolean, integer, real and gene-class). This kind of clas-
sifier system was chosen for its ability to build very general
accurate rules [7], whose interpretation is immediate. We
then extended it with a ruleset reduction algorithm, in or-
der to obtain a small set of mixed clinical and genetic rules
that could suggest to physicians which genes increase or re-
duce oral cancer risk, and the direction to follow for more
focused genetic research.

Preliminar results on this problem appeared in [2]. Here
we completed and extended the tests on XCS, and compared
our approach with decision trees, one of the most common
methodologies in rule-based learning, with respect to de-
scriptive power, predictive accuracy and clarity of results.



2. PROBLEM DESCRIPTION
The data set we analyzed was designed to explore the

influence of genotype on the chance to develop head and
neck squamous cell carcinoma (HNSCC). It is already well-
known that this kind of cancer is associated with smok-
ing and alcohol-drinking habits, it is more commong among
males and its incidence increases with age. The individual
risk however could be modified by genetic factors; there-
fore genotype information, regarding eleven genes involved
with carcinogen-metabolizing (CCND1, NQO1, EPHX1, CYP2A6,
CYP2D6, CYP2E1, NAT1, NAT2, GSTP1) and DNA repair sys-
tems (OGG1, XPD) was provided by molecular testing.

Nine of these genes have two allelic variants; let’s call them
a1 and a2. Since the DNA contains two copies of each gene,
there exist three possible combinations: a1a1, a2a2 (the ho-
mozygotes) and a1a2 (the heterozygote — order does not
matter). The homozygotes where represented with values 0
and 2, while the heterozygote with 1. Due to dominance,
the heterozygote is equivalent to one of the homozygotes;
however, for many of the considered genes this dominant
effect is not known. So class 1 is either equivalent to class
0, or to class 2. The remaining two genes (NAT1 and NAT2)
have 4 allelic variants, which result in 9 combinations; they
were sorted by their activity level, and put on an integer
scale from 0 to 8.

The full data consists of 355 records, with 124 positive ele-
ments (HNSCC patients) and 231 negative (controls). Each
record reports the person’s gender, age, total smoke and al-
cohol consumption, gene values, and a boolean target value
which specifies whether he had cancer when the database
was compiled or not. The data was collected in different pe-
riods between 1997 and 2003; this has led to many missing
data among the genotypic information of patients. Actu-
ally only 122 elements have complete genotypic description;
the remaining 233 have missing values ranging from 1 to
9, with the average being 3.58. As an overall figure, of the
11×355 = 3905 genotype values, just 3070 are present: 21%
of the genotype information is missing.

3. XCS
In [12] and then in [13], Wilson proposes XCS as an evo-

lution of Holland’s Learning Classifier Systems (LCS) [4], a
machine learning technique which combines reinforcement
learning, evolutionary computing and other heuristics to
produce adaptive systems. Similarly to its ancestors, an
XCS maintains and evolves a population of classifiers (rules)
through a genetic algorithm. These rules are used to match
environmental inputs and choose subsequent actions. Envi-
ronment’s reward to the actions is then used to modify the
classifiers in a reinforcement learning process.

XCS introduces a measure of classifiers’ fitness based on
their accuracy, i.e. the reliability of their prediction of the
expected payoff, and applies the GA only on the action set,
the subset of matching classifiers which suggest the chosen
action. This gives the system a strong tendency to develop
accurate and general rules to cover problem space and allow
the system’s “knowledge” to be clearly seen. In the following
we provide a brief description of XCS. For full details see [3].

3.1 System description
The core component of XCS is a set of classifiers, that

is condition-action-prediction rules, where the condition
specifies a pattern over the input states provided by the

environment, the action is the action proposed (e.g. a clas-
sification), and the prediction is the payoff expected by the
system in response to the action. Additionally each classi-
fier has associated an estimate of the error made in payoff
predictions, and a fitness value.

XCS implements a reinforcement learning process: at ev-
ery step the system is presented an individual from the data
set and it examines its set of classifiers to select those match-
ing the input situation. These classifiers form the match set.
Then for each possible action the system uses the fitness–
weighted average prediction of the corresponding classifiers
to estimate environmental reward. At this point, the XCS
can choose the best action looking for the highest predicted
reward. However, during learning, the action is usually se-
lected alternating the previous criterion with random choice,
useful to better explore the problem space. The actual re-
ward returned by the environment is then used to update the
classifiers in the action set, i.e. the subset of the match set
corresponding to the selected action. A genetic algorithm is
also executed on this set to discover new interesting classi-
fiers.

To reduce the number of rules developed, XCS imple-
ments various techniques, such as the use of macroclassi-
fiers, the subsumption and the deletion mechanisms. In fact
the system uses a population of macroclassifiers, i.e. normal
classifiers with a numerosity parameter, representing the
number of their instances (microclassifiers). This helps in
keeping track of the most useful rules and improves compu-
tational performance at no cost.

Subsumption is used to help generalization: when the GA
creates a new classifier with a condition logically subsumed
by his parent (i.e. matching a subset of the inputs matched
by the parent’s) it is not added to the population, but the
parent’s numerosity is incremented. A similar check is also
occasionally done among all the classifiers in the current
action set.

Finally the deletion mechanism keeps the number of mi-
croclassifiers under a fixed bound. The classifier to be re-
moved is chosen with a roulette wheel selection biased to-
wards low–fitness individuals and assuring approximately
equal number of classifiers in each action set.

As already stated this process leads to the evolution of
more and more general rules. For each classifier we can
define a measure of generality following [16], ranging from 0
(most specific) to 1 (most general). A possible termination
criterion is to stop evolution when the average generality
value of the population gets stable.

4. ADAPTATION TO THE PROBLEM
In facing the problem of HNSCC development prediction

from clinical and genetic data, we looked for a method which
could provide a meaningful insight of its classification pro-
cess, instead of focusing only on accuracy. In this regard,
XCS showed many advantages over other well-established
classification systems (for experimental comparison between
XCS and other machine learning algorhitms, see for instan-
ce [1]). As seen in Wilson’s works on Wisconsin Breast Can-
cer data [16] and Holmes’ ones on epidemiologic surveillance
data [5] (using EpiCS, a similar classifier system), the use of
explicit rules to match the input data allows an easy visual-
ization of the criteria the system employs in each classifica-
tion and a comparison with physicians’ previous knowledge.

As we have seen above, the data set is characterized by



the massive presence of missing data, especially in the geno-
type part. In these cases, essentially every classification
technique is expected to experience a degradation of per-
formance. However XCS allows at least their seamless man-
agement: an individual with missing data is matched only
by those classifiers which have a wildcard on that value. The
rationale underlying this choice is to avoid taking decisions
based on data we do not have. This is different from Holmes’
approach in [6], where missing values are matched by every
classifier — thus producing a kind of average value for that
data.

4.1 Data type integration
Another key aspect which lead us to choose XCS was the

easiness of integration of different kind of data. In fact, the
type of the information contained in the data set varies from
binary (i.e. sex), to continuous-valued (i.e. age, indicators
of smoking and alcohol-drinking habits), and to a special
class data for the genotype. Whilst the original formulation
of XCS is targeted to binary input, the shift to other data
types, such as real or integer ones, has already been proved
to be very easy (see respectively [16, 14]).

For the integer and real data types, our implementation
is based on those proposed in the cited literature. For the
nine genotypic values with two allelic variants we needed
instead an ad-hoc treatment. As discussed in Sec. 2, in
these values class 1 is either equivalent to class 0 or to class
2 — so it is meaningless to have a classifier isolating that
single class. The possible patterns for classifiers are then
the following: 00 matching class 0, 22 matching class 2, 01
(matching 0 and 1), 12 (matching 1 and 2) and ## (matching
all values, nulls included as for the other data types). This
is actually equivalent to modeling all the non-empty subsets
of the {0, 1, 2} set, without the options 11 and 02.

4.2 Ruleset reduction
During learning XCS tends to evolve an accurate and com-

plete mapping of condition-action-prediction rules matching
the data. Consequently, in particular on a very sparse data
set as in our study, the final number of rules is quite high.
Similar problems, which break the knowledge visibility prop-
erty, were experienced in other studies on “real” data sets
[16, 15]. These works suggest to let the system evolve many
steps after reaching the maximum performance, and then to
extract a small subset of rules which reach the same perfor-
mance level. This is the function of the Compact Ruleset
Algorithm (CRA), first proposed by Wilson [15], which we
implemented with a small modification: since we do not
reach 100% accuracy, CRA stops adding rules when the ac-
curacy obtained equals the value reached with all rules.

5. RESULTS
We had two aims in testing the system: evaluating its

ability to correctly classify unseen data after training and
checking if it could find interesting rules. We applied a
ten-fold cross-validation and repeated the experiment ten
times (each time with a different folding), in order to ob-
tain results independent from the particular folding. Each
experiment was allowed to run for 500, 000 steps, as a few
tests showed that the generality value reached stability by
this point. The used parameters were chosen following [3].
Experiments were run with several population sizes, ranging
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Figure 1: XCS performances with varying popula-
tion sizes.
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Figure 2: Plot of average evolution in the experi-
ments with a population of 400 microclassifiers.

from 6400 to 200 microclassifiers. Final results are summa-
rized in Table 1.

In the experiment with 6400 classifiers, the accuracy on
the training set reached almost optimal value, while it de-
creased in the experiments with lower population sizes. How-
ever the accuracy on the test set was at least comparable,
and even showed a slightly increasing trend with smaller
populations (see Fig. 1). This suggests that the high accu-
racy of the 6400 test is due to overfitting, and lower popu-
lation sizes are preferable. In particular, XCS performances
appear stable for populations in the range from 200 to 800.
In fact, ANOVA on the before-CRA test performance of
the 200–800 experiments failed to reject the null hypothesis
(p = 0.515), so it cannot be concluded that they are actually
statistically different. On the other side, the unpaired t-test
between the 6400 experiment and all the others showed a
significant difference (p = 0.0067). The evolution of the
system for a population of size 400 is plotted in Fig. 2.

The CRA successfully extracted a small subset of the orig-
inal rules which maintained the maximum performance on
the training set. It is interesting however to compare the
test set accuracy before and after CRA. While for smaller
populations the performance is stable, for bigger population
there is a significant worsening (see table 1; the reported p-
values are for a 2-tailed paired t-test). It could be profitable
to design CRA as a pruning algorithm — that is, allowing to
lose some accuracy on the training set, in order to perform
better on the test set.

Nevertheless the small sets of rules extracted made it fea-



Table 1: Summary of the ten 10-fold cross validation experiments. Specificity and sensitivity are relative to
the test set. Last column shows p values for the paired 2-tailed t-test on the effect of CRA over test accuracy.

Max CRA Final Accuracy Specificity Sensitivity CRA effect
rules rules Training Test (p values)
6400 Before 1659± 115 99± 1% 75± 2% 90± 2% 50± 5% 0.0034

After 47± 14 99± 1% 72± 3% 77± 2% 65± 3%
800 Before 413± 25 93± 1% 77± 1% 87± 2% 59± 3% 0.0009

After 49± 21 93± 1% 74± 2% 82± 1% 61± 5%
600 Before 333± 22 91± 2% 78± 2% 88± 2% 59± 3% 0.0014

After 34± 11 91± 2% 75± 2% 83± 3% 62± 3%
400 Before 236± 19 87± 2% 78± 2% 89± 3% 60± 2% 0.2048

After 16± 9 87± 2% 79± 1% 89± 2% 62± 3%
200 Before 119± 17 82± 4% 78± 2% 88± 5% 59± 5% 0.9988

After 9± 5 82± 4% 78± 2% 90± 2% 56± 5%

See5 Not
applicable 79± 2% 69± 2% 76± 2% 57± 4% Not

applicable

Table 2: Examples of rules extracted by the system,
with their correct/matched ratio, fitness and error.

Classifier Ratio Fitness Error

IF age≤ 41 THEN

cancer=false
37/37 0.200 0

IF smoke≥ 20 AND

EPHX1∈ {1, 2} AND GSTP1∈ {0, 1}
THEN cancer=true

50/56 0.347 160

sible to manually look for possibly interesting rules. As an
example we provide in Table 2 two of such rules in human
readable form. The first rule is common knowledge redis-
covered by the system. Instead the second one has been
judged interesting by physicians: in fact previous studies al-
ready reported an increased lung cancer risk associated to
GSTP1 in combination with EPHX1 polymorphisms [11], so it
will be interesting to investigate on the role of these genes
in relation to HNSCC risk.

6. COMPARISON WITH DECISION TREES
In order to evaluate our approach, we compared it to a

classical machine learning tool for classification and predic-
tion: decision trees [8]. Decision trees were since they are
a well-known machine learning method which complies with
our requirements about interpretability, treatment of differ-
ent data types, and robustness to missing data.

A decision tree is a classifier in the form of a tree struc-
ture, where each leaf node indicates the value of a target
class and each internal node specifies a test to be carried
out on a single attribute, with one branch and sub-tree for
each possible outcome of the test. The classification of an
instance is performed by starting at the root of the tree and
moving through it until a leaf node is reached, which pro-
vides the classification of the instance.

Among the variety of algorithms for decision trees induc-
tion from data, probably the most known and used are ID3
and its enhanced version C4.5 [9]. ID3 searches through
the attributes of the training instances and extracts the at-
tribute that best separates the given examples. The algo-
rithm uses a greedy search, that is, it picks the best attribute
and never looks back to reconsider earlier choices. The cen-
tral focus of the decision tree growing algorithm is selecting
which attribute to test at each node in the tree. The goal

Table 3: Decision tree obtained from the entire
dataset, along with the correct/matched ratio for
each branch.

packyears <= 0.04875: false (135.9/158.9)

packyears > 0.04875:

:...age > 0.78: false (12/12)

age <= 0.78:

:...gstp1 <= 0: true (63.3/102.1)

gstp1 > 0:

:...nat2 <= 3: false (30/43.6)

nat2 > 3: true (24.2/38.5)

is to select the attribute that is most useful for classify-
ing examples. A good quantitative measure of the worth of
an attribute is a statistical property called information gain
that measures how well a given attribute separates the train-
ing examples according to their target classification. This
measure is used to select among the candidate attributes at
each step while growing the tree.

6.1 Decision trees results
Decision tree induction on our dataset was performed us-

ing the See5 software [10]. After some testing, we found out
that the default parameters (pruning CF = 25%, minimum
case per branch = 4) worked well for this dataset; boosting
was not employed, since it did not appear to improve perfor-
mance. We applied a ten-fold cross-validation and repeated
it ten times, as in the experiments with XCS (that is, with
10 different foldings). In this case, results’ variability is due
only to the random folding in the cross-validation procedure,
since the decision tree induction algorithm is deterministic.

The results are reported in Table 1, where the accuracy,
sensitivity, and specificity obtained with See5 are compared
with those obtained with XCS. The accuracy value is close to
the one obtainable predicting always the most frequent class
(65%), but sensitivity and specificity ensure decision trees
are doing something more clever. Finally, the decision tree
obtained with the execution of See5 on the entire dataset is
reported in Table 3.

The figures in Table 1 show a clear performance advantage
of XCS over See5, both on training and test sets. This gives a
quite good level of confidence on extracted rules, suggesting
XCS managed to convey in them useful knowledge.



However, sets of rules obtained with XCS are slightly less
readable and interpretable than decision trees. Moreover,
XCS results show a quite high variability. In fact, classifica-
tion accuracy does not change much between runs, but the
actual rulesets appear quite different. Since interpretability
is our main concern, this constitutes a remarkable problem:
there is no evident way to get a single “final” set of rules.
In this respect an appealing See5 characteristic is that it
extracts a single decision tree from a given dataset.

7. CONCLUSIONS AND FUTURE WORK
In this work we applied an XCS system to the analysis

of a mixed clinical and genetic data set regarding the risk
of developing HNSCC. The long-term goal is to identify the
genes actually involved in the susceptibility to oral cancer,
and highlight possible interactions between them. XCS has
confirmed its flexibility in adapting to different data types
and seamless handling of missing values. The rules extracted
from the first experiments suggest that the system can pro-
duce interesting results. Moreover, they are easily converted
in human-readable form, and can be immediately evaluated
by physicians.

Classification accuracy was higher than that obtained us-
ing a standard algorithm, such as decision tree induction.
The reached performance value on test cannot be considered
“high” in an absolute sense; however, given the particular
nature of the input data, it is not completely clear how bet-
ter this value could become. For instance, this data set is
noisy not only on some input variables (smoke and alcohol
habits), but also on the target: more than other diseases,
cancer cannot be deterministically predicted. Regarding the
first issue, it would be useful to perform some tests on the
effects of noise in XCS. Concerning the target variable, a
possible direction is prediction of a risk factor instead of a
raw class, as in [5].

Another interesting aspect to investigate is the ruleset re-
duction algorithm: CRA is mainly focused on maintaining
the training performance achieved, while a more pruning-
like strategy could be beneficial for generalization. CRA
should moreover include as a chief goal to regularize the
algorithm output, in order to produce more stable results.
Results stability could also be achieved as a post-processing
step; for instance, it could be possible to find similar rules
recurring among different executions. This would require a
measure of similarity between rules, and a clustering algo-
rithm able to group them together.

8. ACKNOWLEDGEMENTS
We would like to thank the following people for provid-

ing the data set and supporting us during the analysis:
A. Abbondandolo, R. Barale, S. Bonatti, F. Canzian, G.
Casartelli, G. Margarino, P. Mereu.

9. ADDITIONAL AUTHORS
Additional authors: Alessio Micheli (Dipartimento di In-
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