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ABSTRACT
Predicting prospective healthcare costs is of increasing im-
portance. Genetic search is used to discover attribute sets
and associated posterior probability classifiers that predict
the top 0.5% most costly individuals in year N +1 based on
previous medical conditions and costs in year N . The predic-
tive performance of single-variable classifiers (cost-drivers),
found using statistical measures familiar from datamining,
as well as Naive Bayesian analysis, are compared and con-
trasted with that of classifiers found using genetic search.
Comparison is also made with two well known benchmarks
from the healthcare literature.

Categories and Subject Descriptors
I.5.1 [Computing Methodologies]: Pattern Recognition-
Design Methodology[Classifier design and evaluation, fea-
ture evaluation and selection]

General Terms
Performance, Measurement

Keywords
Data mining, healthcare, prediction, costs, genetic algorithm,
classifier, search

1. INTRODUCTION
In the battle to control escalating health care costs pre-

dictive models of varying degrees of sophistication are in-
creasingly being employed to try and predict from a given
population who is most likely to be a high cost case. This
is clearly of great importance for many different types of
player in the healthcare sector, both public and private:
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ranging from private sector insurance companies, to large
government agencies, such as Medicare and Medicaid, and
healthcare service providers, such as hospitals. The esti-
mated costs of an individual or group of individuals play a
crucial role in setting insurance rate premiums and estimat-
ing risk, estimating public healthcare costs, pricing health-
care services and identify the “best” cases for preventive case
management, among others. In general, better prediction
permits a more optimal alocation of healthcare resources.

Healthcare cost distributions are known to be highly skewed,
with a few people generating the majority of costs [1, 2].
For instance, a 1996 government survey [2] found that the
most costly 1 percent of the population consumed 27 per-
cent of the resources, while the top 5 percent consumed 55
percent. This suggests the importance of prospectively iden-
tifying those individuals most likely to incur excessively high
healthcare costs. Various methods have been used to pre-
dict high cost individuals. A common actuarial technique
[3] uses total year N cost, age and gender to predict year
N + 1 costs. Such methods, however, do not focus on med-
ical conditions as the primary drivers of cost, and therefore
their conclusions fail to provide actionable information to
medical practitioners. Diagnostic Cost Groups (DCGs) [4,
5], on the other hand, use age, gender and the range of med-
ical problems encountered in year N to predict year N + 1
costs. Specifically, cost weights for different classes of medi-
cal problems are determined via a linear regression analysis
of year N +1 costs versus year N medical problems, age and
gender. More sophisticated techniques, such as Bayesian
Markov Chain Monte Carlo methods [6], in the context of
predicting mean annual costs, and neural networks [7], in
the context of predicting length of hospital stay, have been
used, but not in the context of identifying high cost individ-
uals, i.e. those individuals most likely to lead to very high
medical costs and who might benefit from medical interven-
tion.

The goal of this research was to predict the top 0.5% most
costly individuals for year N + 1 given a population in year
N . Two performance metrics were considered: i) classifi-
cation accuracy, i.e. the proportion of correctly classified
individuals in the top 0.5% and ii) the total number of dol-
lars associated with the predicted top 0.5% of most costly
individuals. Predictions are produced by using a Genetic
Algorithm (GA) to search for sets of attribute values, X,
that are predictive of the class, Y , of most costly individ-
uals. Posterior probability classifiers of the form P (Y |X)
then form the “raw material” from which predictions are



made. Of course, classification is an enormous field, with a
large number of associated tools, both from standard sta-
tistical analysis and artificial intelligence (see [8] or [9] for
good overviews).

2. THE DATA SET AND BENCHMARKS
Data for the period 1997-2001 was taken from the MED-

STAT Marketscan Research Database for a cohort of pri-
vately insured individuals diagnosed with diabetes.1 The
years N = 1997, 1998 and 2000 were considered. For each
year N , an individual was associated with a set of year N
data that forms an attribute array XN

ijk, where k refers to
the individual, N the year, i to the attribute and j to the
corresponding attribute value.2 Also, associated to each in-
dividual is their year N + 1 total costs.3 For example, the
data for 1997 individuals were 1997 data - DCGs, 1997 costs
etc. - and 1998 total costs, while the data for 1998 individ-
uals contained 1998 DCGs etc. and 1999 total costs. The
size of the cohort varied significantly from year to year with
29,062 1997 cases, 38,879 1998 cases and 90,104 2000 cases.

Predicted next year costs were determined principally from
current year medical conditions and current year medical
costs. Current costs were given quarterly in three classes
- inpatient, outpatient and pharmacy. Medical conditions
were classified according to DCGs (Hierarchical Condition
Categories - HCCs) in which all medical conditions are clas-
sified into one of 184 HCCs. The HCC variables are binary
in that an individual either did or did not manifest the con-
dition in year N . Additional variables were also utilized,
such as an individual’s age and gender.

To evaluate performance two benchmarks that are widely
used in the industry were used for comparison. Benchmark
1 [3] used year N cost as a predictor of year N +1 costs, the
intuition being that people who are expensive in one year are
likely to be expensive in the next. Of course, this is less true
for someone with an acute condition. Benchmark 2 [4] used
“out-of-the box” year-N DCG prospective risk scores from
DxCG Inc.’s proprietary software. Note that Benchmark
2 purposely avoids using year N cost information, because
it seeks to measure medical need, independent of practise
style variations, as much as possible. The goal in this paper
is different: to predict people likely to be expensive, whether
or not that expectation is driven by pure need. Finally, we
compared our results to those found using a Naive Bayesian
classifier, the latter being widely regarded as an oustanding
model for classification [10].

3. THE BASIC METHODOLOGY
The basic methodology is to search for “fit” classifiers that

identify those year N attributes, and/or attribute values,
that are most predictive of individuals in the top 0.5% for
next-year (N + 1) costs. These classifiers then serve as the
“raw material” by which, using an assignment rule from
classifiers to individuals, individuals are scored and ranked

1Diabetes is an expensive, progressive disease in which
prospective identification and case management can be very
useful.
2We also add to the attribute values ∗, which denotes any at-
tribute value. For instance, 1∗6 would signify that attribute
1 has value 1, attribute 2 has any value and attribute 3 has
value 6.
3All costs were normalized to year 2000 dollars.

according to their probability of being in the top 0.5% of
next-year costs.

For data corresponding to an individual, k, in a given
year, N , the HCCs, cost and other data form an attribute
array with components XN

ijk. The fundamental objects of

interest are P (top 0.5%|XN ) - the conditional probabilities
to be in the top 0.5% cost category in year N + 1 given a
certain attribute set XN with components XN

ij , the prob-
abilities having been summed over the individuals k that
correspond to i and j. For example, for three binary at-
tributes P (top 0.5%|XN = 1 ∗ 0) represents the probability
to be in the top 0.5% when attributes 1 and 3 take value 1
and 0, while attributes 2 can be either 0 or 1.4

In the search for fit classifiers three approaches are com-
pared and contrasted: i) statistical measures familiar from
datamining to identify the key single drivers of high costs;
and ii) a GA to identify fit attribute sets/classifiers; and iii)
a Naive Bayesian analysis. For i) a score, Sd, that depends
on the most important cost drivers was used to rank individ-
uals and determine those most likely to be in the top 0.5%.
In contrast, for ii) the fittest 100 classifiers over a single run,
or set of runs, were filtered out. This filtered list was then
sorted according to a score function, S1. Finally, a score, S2,
was assigned to an individual by an assignment algorithm
between the classifiers and the individual, a classifier only
being a candidate for contributing to S2 for an individual
if the individual matches or “activates” the classifier XN .
For instance, using the three attribute example above: an
individual with attribute values 100 activates the classifier
1 ∗ ∗ but not ∗1∗. The highest scoring top 0.5% according
to S2 for year N is then the prediction for year N + 1.

4. KEY SINGLE-VARIABLE DRIVERS
To identify the most important drivers of high next-year

costs the data was first analyzed using some basic “signal-
to-noise” ratios. One of these is ǫ(Xij), which measures the
utility of a given feature value Xij for classifying data into
a class Y . Explicitly,

ǫ = NXij
(P (Y |Xij)−P (Y ))/(NXij

P (Y )(1−P (Y )))1/2 (1)

where NXij
is the number of individuals in the data with

value j for attribute i.
Another useful measure, that concentrates on the rele-

vance of features, rather than feature values, is ǫ′ defined
as

ǫ′ = (< Xi >Y − < Xi >Ȳ )/

„

σ2
Y

NY
+

σ2
Ȳ

NȲ

«

1

2

(2)

where 〈Xi〉Y is the mean of the feature Xi for class Y and
〈Xi〉Ȳ is the mean for another class, Ȳ , such as the comple-
ment of Y . σ2

Y and σ2
Ȳ are the corresponding variances, and

NY and NȲ the number of observations in Y and Ȳ .
To identify key drivers of next year’s costs the average

value of an attribute in three different classes of year N + 1
costs was examined: top 0.5%, next top 0.5% and next
4%, and compared to an overall population average. The
drivers were selected according to how well they discrimi-
nated among the different cost classes and the overall av-
erage using ǫ′. All year N costs, including overall costs,

4This probability is just a marginal of the underlying prob-
ability distribution.



inpatient and outpatient, as well as their quarterly com-
ponents, gave good discrimination. Also of interest was a
strong “seasonal” trend, apparent in the quarterly figures,
with approximately equal costs in Q1 and Q2, a strong de-
crease and a strong increase of 40% in Q4. High cost weight
HCCs are more discriminating than low cost weight ones.

To enhance performance relative to Benchmark 2, features
which best discriminated between false positives in the top
0.5% and false negatives from the next top 0.5% of Bench-
mark 2 were sought. Year N cost was useful in this regard,
the implication being that some of those cases from the top
0.5% of Benchmark 2, but with low year N cost, should be
replaced by cases from the next top 0.5% of Benchmark 2
that have much higher year N costs. Among the annual
cost variables, inpatient costs showed relatively poor dis-
crimination while greater outpatient costs were found to be
most prevalent in true positives and false negatives, with
increases of 95% for true positives over false positives and
150% for false negatives over true negatives. Hence, this
feature is very relevant. It was also noted that Q4 total
costs gave ample discrimination. High Q4 costs, above and
beyond the previously identified seasonal trend, indicate a
deterioration, as opposed to an improvement, in health.

With these important drivers in hand a score function,
Sd, was created that depended on them. Individuals were
then ranked with respect to Sd. In Table 1 below, the per-
formance comparison between Benchmark 1, Benchmark 2
and the Score function is shown. $ figures are in millions of
dollars. The two benchmarks have comparable performance
for both performance measures. Sd was constructed using
1997 data only, leaving the larger 1998 and 2000 datasets
for out-of-sample validation. The improvement in classifica-
tion accuracy over the average from the benchmarks is 33%
in 1997 (in sample) and 28% on average in the out of sam-
ple dataset. This demonstrates the existence of significant
predictors of next year costs other than DCGs (HCCs) and
year N total costs.

N Benchmark Benchmark Score
2 1 function Sd

1997 # correct 29 31 40
% correct 20 21.3 27.6

$ 11.7 11.4 13.2
1998 # correct 35 34 40

% correct 18 17.5 20.6
$ 14.4 12.7 14.1

2000 # correct 82 93 116
% correct 18.2 20.7 25.8

$ 35.6 35.3 41.4

5. GENETIC SEARCH IN THE SPACE OF
CLASSIFIERS

Although interesting and useful classifiers may be con-
structed by the analysis of section 4, the curse of dimension-
ality demands an intelligent search mechanism if one wishes
to move beyond single-variable classifiers. For example, for
the medically based HCC attributes alone, there are 2186 po-
tential attribute combinations! In this study a GA was used
to search the space of attribute combinations/classifiers, a
classifier being coded as an L-bit schema. The initial popu-
lation was determined at random, but using a high probabil-
ity, usually 0.98, for putting an ∗ at any given bit position,

as higher order schemata correspond to so few cases in the
data they would be statistically unreliable or non-existent.

Experiments were carried out to establish the performance
of the GA as a function of: number of generations, popula-
tion size, mutation rate and crossover rate. Simple one-point
crossover and proportional selection were used throughout.
Elitism with memory was also used, in which a list of fixed
size, usually 100, of the best classifiers found over a partic-
ular run or set of runs was kept. After a fixed number of
generations, in the case of a single run, or a fixed number of
runs in the case of multi-runs, a final, filtered, ranked list of
classifiers was used to determine the individuals in the top
0.5% class.

Two fitness functions were considered: f1 - the value of
P (Y = top 0.5%|XN ) for a given classifier XN ; and f2, given
by ǫ in equation (1) above, once again with Y = top 0.5%.
Both have advantages and disadvantages. f1 has the disad-
vantage that it does not take into account statistical reliabil-
ity, as the maximum fitness value, f1 = 1, may be associated
with a very small sample. For example, one may find that
there are only two individuals with a certain set of attribute
values and that both are high cost individuals. f2, on the
other hand, is a better measure of signal to noise. However,
given that the objective is to optimize precision, not statis-
tical reliability, this fitness function may overemphasize less
predictive features associated with large sample sizes.

A potential defect of a classifier-based approach, as out-
lined thus far, is the mutual dependence among classifiers.
This can most simply be illustrated in the language of condi-
tioning information as schemata. Imagine three binary fea-
tures - X1, X2 and X3. There are 33 associated schemata,
e.g. 111, 10∗, ∗∗0 etc. Consider the schemata: 111, 11∗ and
10∗, with fitnesses f111, f11∗, and f10∗ respectively, where
f111 > f11∗ > f10∗, i.e. the classifiers are ranked in order:
111, 11∗, 10∗. The first two schemata are clearly not lin-
early independent. However, 111 and 11 ∗ −111, where −
means set difference, are independent. If f(11∗−111) < f10∗

then the ranking 111, 11∗, 10∗ is erroneous in the sense
that f11∗ > f10∗ only because of the fit individuals inher-
ited from 111. However, these have already been counted.
Removing this redundancy and forming the classifiers: 111,
11 ∗−111(= 110) and 10∗; as f110 < f10∗ the new classifiers
should be reranked to order: 111, 10∗, 110.

Having determined a fixed number of fit classifiers, using
fitness as a filter, one then ranks this filtered set using a
score function, S1 (which may be just the already assigned
fitness) and specifies a rule that assigns to an individual a
score, S2, measuring the probability that this individual is in
the top 0.5% cost category for year N + 1 and derived from
the classifiers associated to this individual. Several ranking
and scoring algorithms were considered:

(i) Winner: S1 is one of the fitness functions, f1 or f2.
S2 for an individual is given by the value of S1 asso-
ciated with the highest ranked classifier from the final
list activated by that individual. If there is a tie be-
tween individuals, priority is given to the individual
that activated the most classifiers.

(ii) Winner-rerank: The same as i) except that the fi-
nal list of classifiers is reranked before individuals are
assigned. Thus, if fitness function f1 was used in the
GA the final list of classifiers is reranked using f2 and
vice versa. Ties are resolved as in i). The point of this



reranking is to try and ameliorate the fitness function
defects discussed above.

(iii) Average: S1 is as in i), however, S2 is calculated by
considering all the classifiers from the final list acti-
vated by the individual and taking the average of their
S1 values. Ties are resolved as in i).

(iv) Match: S1 is as in i). S2 for an individual however,
is given by the number of classifiers activated by that
individual. Ties are resolved by giving priority to the
individual that activated the classifier of highest fit-
ness.

(v) Winner-reevaluation: S1 is obtained by iteratively
removing redundancy using the algorithm discussed
above. Thus: the first classifier is fixed. Individu-
als associated with this classifier are removed from the
other classifiers in the list, fitness recalculated and the
list reranked. The second classifier in the new list is
now fixed, the first classifier being already fixed, and
any individuals associated with this classifier are re-
moved from the rest, fitness is recalculated and the list
reranked. This procedure is iterated until one reaches
the final classifier in the list. Individuals are now as-
signed as in i) but using the new final classifier list.

(vi) Winner-rerank-reevaluation: This works identi-
cally to v) except after the last reranking a further
reranking is done according to ii) above. In other
words this assignment and ranking algorithm both re-
moves the redundancy problem and ameliorates the
defects of the fitness functions. Individuals are now
assigned as in i) but using the new final classifier list.

6. RESULTS
The most useful parameters for the GA were determined

first. For population size: P = 10, 50, 100, 500, 1000 were
tested; for number of generations: G = 5, 10, 50, 100, 500;
for mutation rate: µ = 0.001, 0.01, 0.05, 0.1, 0.2, 0.3; and
for crossover rate pc = 0, 0.5, 1. Each parameter was eval-
uated by considering single runs over all values of the other
parameters and taking the average performance in terms
of percentage of correctly identified individuals in the top
0.5% class for next year costs. Hence, 900 runs were per-
formed in total. Averages were also taken over all 6 scoring
algorithms of section (5). The parameter values P = 100,
G = 50, µ = 0.1 and pc = 1 were found to be the most
appropriate.

The performance of the prediction classifiers found by ge-
netic search was compared against Benchmarks 1 and 2, the
Score function, Sd, of section 4 and the results of a Naive
Bayesian analysis. The reported results are averages over
10 independent runs. Both performance measures - num-
ber/percentage of correctly identified individuals in the top
0.5% of year N +1 costs and the dollar amount of costs asso-
ciated with the predicted group - were considered. Results
for the different ranking and assignment functions from sec-
tion 5 are also given, where in the tables A SCORE = Aver-
age, M SCORE = Match, W SCORE = Winner, R SCORE
= Winner-rerank, WR SCORE = Winner-reevaluation and
RR SCORE = Winner-rerank-reevaluation.

Figure 1 shows the results associated with taking as train-
ing set classifiers for predicting 1998 data from 1997 data,
with “1997 training data” representing the performance on

Figure 1: Performance table for training data from

N = 1997

this training data, while “1998 test data” shows the perfor-
mance of these classifers on test data consisting of predic-
tions for 1999 data from 1998 data. Similarly, “2000 test
data” shows the results of the 1997 trained classifiers on
test data consisting of predictions for 2001 given 2000 data.
Analogous results were obtained using as training set classi-
fiers found by predicting 1999 data from 1998 data and 2001
data from 2000 data respectively.

The performances of the different assignment and ranking
functions are compared first. Most notable is the poor per-
formance of the Average method. Naive intuition might lead
one to think that such a “consensus”-type function should
lead to a robust performance. One can envision different
explanations as to why this does not occur here. Primary
among them is that averaging includes classifiers that are
relatively unfit compared to their more predictive counter-
parts. Certainly the performance of the Winner algorithm is
superior. However, note that the performance of the Match
algorithm, which is also based on consensus, is better than
Average and comparable with Winner. A possible expla-
nation for this is the following: Average suffers from the
phenomenon of classifier redundancy. Hence, classifiers are
weighted incorrectly in the averaging procedure. For in-
stance, if five agents are effectively detecting the same ill-
ness from slightly different viewpoints, this cost component
would be overestimated relative to an equally severe illness
that only activates a single classifier. The effect of removing
redundancy seems to be significant and worthy of further
study.

Considering performance relative to the Benchmarks -
apart from the Average algorithm, which showed relatively
small improvements over the benchmarks in the main - all
assignment and ranking functions showed large improve-
ments over both Benchmarks and with respect to both per-
formance measures. In the case of the most predictive as-
signment algorithm - Winner-rerank-reevaluation - the av-
erage out-of-sample performance increases for predictive ac-
curacy for individuals in the top 0.5% of next-year costs
over Benchmarks 1 and 2 were 47% and 59% respectively.
Comparing with the performance of Sd, an average out-of-
sample improvement of 25% is seen, thus proving the value
of an intelligent genetic search as opposed to a “hand made”
approach. It is also interesting to note that there is very lit-
tle decline in performance when passing from training data
to test data, thus showing that the system is generalizing
well and not suffering from significant overfitting.



We have seen that genetic search was capable of discov-
ering predictive classifiers that led to superior performance
when compared to a pair of industry benchmarks and some
simple data mining models. However, there are a large num-
ber of other potential competitor techniques that could have
been used. Obviously, one cannot compare with them all.
Here we compare with a well known technique that has been
found to be better, or at least competitive, on large classes
of different problems - Naive Bayesian classifiers [10] that
yield posterior class probabilities of the form P (Y |X) =
Q

i P (Xi|Y )P (Y )/P (X). In the Table below we see the out
of sample results for 2000-2001 for Naive Bayesian classifiers
formed from likelihood functions P (X|Y ) determined on the
(in sample) 1997 data. In order to further investigate the
relative predictability of the HCCs and the cost based vari-
ables Naive Bayesian classifiers were calculated separately
for all variables, just the HCCs and just the non-HCC vari-
ables.

N ALL No HCC HCC only
2000 # correct 102 106 68

% correct 22.7 23.6 15.1
$ 39.5 41.1 31.3

Comparing with the results for Benchmarks 1 and 2 and
the score function Sd the Naive classification leads to an
improvement with respect to the two industry benchmarks
for both all variables and only non-HCC variables. Thus
we see that cost based variables are much more predictive
than HCCs in the context of a Naive Bayesian analysis,
both in terms of predicting high cost individuals as well
as $ spent. Noticably, however, even the best Naive predic-
tions are slightly inferior, ≈ 10%, to the score function Sd

and, comparing with Figure 1, up to 25% worse than the
best GA based results. One of the most likely reasons for
the superior performance of the GA-discovered classifiers is
that there are substantial correlations associated with cer-
tain attribute sets that the Naive classifiers neglect.

7. CONCLUSIONS
In this paper an important problem in the healthcare in-

dustry has been addressed - prediction of those individuals -
the top 0.5% - most likely to lead to high medical costs and
who, for example, may benefit from medical intervention.
Using both cost and medical data, for the first time in this
problem area, a classifier-based approach was used. Predic-
tive classifiers were determined using: i) statistical measures
familiar from datamining; and ii) a GA. With the former,
only “single-variable” classifiers that correspond to key cost
drivers were determined, thus precluding any accounting of
non-linear interactions between variables.

Predictive performance was compared to that of two stan-
dard industry benchmarks. It was shown that a classifier-
based approach led to significant performance gains relative
to these benchmarks. However, the efficacy of the genetic
search was significantly better than that of the more tra-
ditional data mining approach or of a more sophisticated
Naive Bayesian analysis. Average out-of-sample improve-
ment for correctly classifying the top 0.5% most costly in-
dividuals was 28% when using the “standard” datamining
approach and 53% when using the genetic search. These
results show the utility of a classifier-based approach in gen-
eral, as it allows for a more democratic analysis (both cost

and medical data together) than either of the benchmarks,
and, more particularly, the advantage of using an intelligent
genetic search in the very high-dimensional space of poten-
tial classifers, where non-linear interactions between differ-
ent attributes may be accounted for. Several subtle issues
that can greatly impact the predictive capacity of the clas-
sifiers found in such a search were also highlighted. Among
these were the type of fitness function used, the ranking
algorithm for comparing classifiers, the mutual statistical
dependency of related classifiers and the score assignment
algorithm between individuals and classifers.
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