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ABSTRACT
Optimal constellation design is important in military digi-
tal communications for Quadrature Amplitude Modulation
(QAM). Optimization realizes a reduced probability of bit
error (Pb) while keeping the same bandwidth and power for
transmitting the signal. Constellation shapes currently used
in QAM include rectangle, triangle, hexagonal, and concen-
tric circles. In this study, two dimensional (4, 8,..., and
256)-ary constellations at specific normalized signal to noise
ratios

(
Eb
No

)
having lower Pb are sought. Various models

are designed to provide a Multi-objective Evolutionary Al-
gorithm (MOEA) with a near exact model to utilize as a
fitness function. MOEA found solutions are tested for merit
using a Monte Carlo simulator. Comparisons of Eb

No
vs Pb

between the rectangular constellation and new designs are
illustrated. New designs are shown to be different and com-
parable to the standard constellations used today
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1. INTRODUCTION
Bandwidth efficient modulation techniques using bounded

bandwidth is sought in digital communications. Symbol set
design is the minimizing of the probability of bit error (Pb) at
a specific normalized signal-to-noise ratio

(
Eb
No

)
[5]. Optimal

constellations with lower Pb at specified Eb
No

have numerous
applications in digital communications. Lowering the inter-
symbol interference reduces Pb, but normally this comes at
cost of increased signal power or decreased noise interjec-
tion. Unfortunately, typical links have distortion elements
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in channel filters and amplifier nonlinearities that cannot be
eliminated or, in some cases, reduced. Military communi-
cations face all types of noise interjection when an enemy
attempts to reduce allied information exchange. Therefore,
optimizing symbol set constellations is absolutely necessary
for lowering this inter-symbol interference.

Investigated1 is the ability of a Multiobjective Evolution-
ary Algorithm (MOEA), more specifically, the multiobjec-
tive fast messy GA (MOMGA-IIa) to optimize two dimen-
sional (4, 8,..., and 256)-ary symbol set design for a de-
creased Pb at certain

(
Eb
No

)
. The combinatorics of this prob-

lem call for a stochastic search algorithm that can be used
in optimizing both single- and multi-objective problems be-
cause the models generated to capture this symbol set design
problem are constructed as both single and multi-criteria
problems.

Military Importance: A well designed symbol separation
ensures that a system will have a consistent performance
and operating range without demanding excessive transmit-
ter power. Symbol set design having these qualities are
highly desirable for military operations especially in deploy-
ment situations when transmission power may be limited
and channel noise distribution is variable2.

2. MULTIOBJECTIVE ALGORITHM
The MOMGA-IIa is a multiobjective version of the fmGA

that has the ability to achieve a semi-partitioned search in
both the genotype and phenotype domains during execution.
It is an algorithm that exploits good building blocks (BBs)
in solving optimization problems. These explicit BBs repre-
sent good information in the form of partial strings that can
be combined to obtain better solutions. The MOMGA-IIa
algorithm executes in three phases: Initialization, Building
Block Filtering, and Juxtapositional.

Beginning with the Probabilistically Complete Initializa-
tion (PCI) Phase, the algorithm randomly generates a user
specified number of population members. These population
members are constructed to a specified chromosome length
and each is evaluated to determine its respective fitness val-
ues. Our implementation utilizes a binary scheme in which
each bit is represented with either a 0 or 1.

The Building Block Filtering (BBF) Phase follows by ran-

1The views expressed in this article are those of the authors
and do not reflect the official policy of the United States Air
Force, Department of Defense, or the U.S. Government.
2This research should evolve into a dynamic symbol set sys-
tem - adapting to changing channel noise distribution (usu-
ally caused by enemy signal jamming equipment) on the fly.



domly deleting loci and their corresponding allele values in
each of the population member’s chromosomes. This pro-
cess completes once the length of the population member’s
chromosomes have been reduced to a predetermined BB size.
These reduced chromosomes are referred to as underspeci-
fied3 population members. In order to evaluate population
members that have become underspecified, competitive tem-
plates (CTs) are utilized to fill in the missing allele values.
Evaluation consists of the partial string being overlayed onto
a CT just prior to evaluation. CTs are fully specified chro-
mosomes that evolve as the algorithm executes. CT replace-
ment is done after each BB generation. In the MOMGA-IIa,
competent CTs that partition both the phenotype and geno-
type are selected for advancement. This innovative balance
is achieved through two mechanisms: Orthogonal CT gen-
eration and Target Vector (TV) guidance. Orthogonal CT
generation is used to partition the genotype space, while TV
guidance is used, when MOMGA-IIa is running in multiob-
jective mode, to partition the phenotype space. TVs are
normalized fitness markers that capture one solution per
vector for future CT replacement. In the MOMGA-IIa, tar-
get vectors are used in a manner to divide the normalized
fitness space of pareto-front members and select a distribu-
tion of CTs that fall nearest to each TV. Also, an orthogonal
bank of chromosomes is used to filter a randomly selected
CT through for creation of a set of orthogonal CTs.

The BBF process is alternated with a selection mechanism
to keep only the best BBs found, or those with the best num-
ber of fitness values. In the case of a tie, where two strings
each have an equal number of better fitness values (i.e. each
have m

2
best fitness values), the string is randomly selected

between the two. It should be noted that the MOMGA-IIa
has a more complex selection mechanism than MOMGA-II
because it maintains more fitness values per solution. In
the MOMGA-II each string has m fitness values, while in
MOMGA-IIa each string has f = (c ∗m + i + o) ∗m fitness
values associated with it – corresponding to the m objec-
tive functions to optimize, c competitive templates, i inverse
templates (equal to c ∗m), and o orthogonal templates.

Finally, the juxtapositional phase uses the BBs found in
the BBF phase and recombination operators to create chro-
mosomes that are fully specified. The MOMGA-IIa has
an outer and inner loop that must be completely iterated
through using each BB size and epoch before terminating.
Next, the problem domain is described in detail.

3. FITNESS FUNCTION
Previous researchers either use different coding methods

or symbol positioning to get better Pb at particular Eb
No

[1,

3, 5]. In our models we allow the MOMGA-IIa to optimize
both of these at the same time by assigning each symbol
its bit-wise representation while assigning it a location in
space. However, the challenge was found not to be what to
optimize or how to represent the problem, but what model
(fitness function) best represented the Monte Carlo simula-
tion. Normally, new constellations would be tested using a
Monte Carlo simulator where a random stream of symbols
are encoded into a signal, s, using the amplitude and phase
of symbols identified in a designed constellation. Next, noise
is added to the generated signal, (s + n), to simulate the

3An underspecified chromosome is chromosome where some,
but not all locus positions have an associated allele value.

transmission process. The amount of noise added to the
signal is related to the Eb

No
under test. Then, the signal

is decoded and a reconstructed symbol stream is generated
from the noisy signal. Finally, the number of bit errors are
calculated by comparing the reconstructed symbol stream
to the originally transmitted symbol stream. This test is re-
run until enough data is collected to assign a Pb rate to that
particular constellation at the Eb

No
under test. Four differ-

ent analytical models are designed in search of the optimal
balance between computational time and model correctness.
Five models are tested. The first four designs are analytical
approximates for this digital system and the fifth design is
the Monte Carlo simulation.

Each model uses symbols placed inside a unit circle for
amplitude and phase characteristics for each symbol [2].
Each symbol bit pattern is defined to be in one and only
one place within the genome. Placement is in binary or-
der, {00, 01, 10, 11}, and each symbol has d = 2 degrees of
freedom to define its location in the space.

The analytical models are simple and fast compared to the
simulation model for they are designed for minimal number
of calculations while having a close approximation to the real
model. These fitness functions have many pre-calculated
measures to help speed compute time. For all of these mod-
els, each symbol is defined in binary fashion and placed into
a bit-matrix. Furthermore, each symbol’s hamming code
distance from one another is calculated and placed into a
separate d× d matrix called H. The hamming code distance
matrix keeps track of the amount of bit errors made when
reconstructing the noisy signal and an incorrect symbol is
selected. A complete constellation fitness computation for
each and every fitness function begins with a polar to carte-
sian coordinates conversion on the entire symbol set. Then,
a distance calculation on each symbol, i, to each other sym-
bol, j follows. Symbol distance calculations are stored in a
distance matrix Di,j . Once the calculations listed here are
finished, each model’s remaining calculations differ slightly.

Brute force model: The first model is called the brute
force model. It takes into account intuition about how to
represent this problem using a high level understanding of
the problem domain. A maximization constellation fitness
function is sought; thus, a negative exponential decay of the
distance is used to emphasize a larger space between sym-
bols is better. The exponential decay is modified using a
constant K value to increase or decrease the rate of decay
depending on the number of symbols in the constellation.
Finally, to account for the bit error increasing when encoun-
tering a high hamming code distance between symbols, the
exponential decaying distance is multiplied by the hamming
code distance, found in the H matrix, of the two symbols.

This model worked well for finding solutions that com-
peted with the standard rectangular constellations. How-
ever, we thought accounting for symbol energy would be
an improvement over this fitness function. The new fitness
function describes the same fitness calculation as before, but
the symbol set energy is used as a damping (dividing) factor
– where energy is the sum of the squared radii for each sym-
bol. Results of the modified brute force model were not as
good as expected, resulting in development of the Volumes
and False Alarm Rate models.

Volumes model: The volumes model is based on the
principle that the Pb landscape changes with respect to each
symbol. Therefore, an m-objective model is designed to ac-



count for each new landscape that occurs when inspecting
the transmission and reconstruction of each symbol with
respect to every other symbol. A hamming code distance
scaled Gaussian distribution is placed on each symbol (i.e.
the higher the hamming code distance, the larger the gaus-
sian) to represent each symbol’s error footprint. Next, a
grid is placed on the unit circle and at each grid position
the maximum value found with respect to all Gaussian dis-
tributions are summed for a fitness value. Unfortunately,
this model also did not prove to be a good representation
of the Monte Carlo simulation. Moreover, hundreds of solu-
tions were found along the pareto front so determination of
good solutions still required a simulation evaluation.

False Alarm Rate model: The false alarm rate model
is designed with the premise that each symbol has the same
probability of selection, but the error associated with selec-
tion changes. Furthermore, the error found using a mini-
mum selection formula should be used as the fitness of a
constellation. This model is similar to the volumes problem
in that it is an m-objective problem, unscaled Gaussian dis-
tributions are placed on each symbol, a grid is placed on the
unit circle and the probability of error when symbol m is
transmitted and symbol k is reconstructed at grid position
(i, j) is calculated for fitness.

Minimize probability of error: This model is designed
to include the Pb, overall constellation energy (Es) and the
Eb
No

parameter into the same fitness function. Much like the
Volume model, we are calculating the error associated with
selecting the wrong symbol and we are assuming that the
noise added to the incoming signal has a Gaussian distribu-
tion. To sum the error associated with selecting the wrong
symbol, it is advantageous to find the distance of the point
where the two distributions (one on each symbol location)
intersect. If the two symbols have the same distribution, the
same scale for the distribution, and the same standard de-
viation, the intersecting point is the mid point between the
location of the two symbols. However, if the distributions
are scaled differently, but still maintain the same standard
deviation and type of distribution, there is a adjustment
that can be made to find the new intersecting point.

Lastly, given that we have the same distributions and the
same standard deviations , the probability of false alarm can
be calculated by summing up the tail of the Gaussian away
from this intersection point. This model can also be a mul-
tiobjective model - objectives are in the form of the param-
eter Eb

No
requiring optimization (i.e. for a 2 bit constellation

Eb
No

= {0, 1, · · · , 8}, making for a 9 objectives). The rela-

tionship of Eb
No

to the standard deviation, σ. Thus, for each
objective, the Gaussian distributions changes shape as the
Eb
No

changes - making the Pb different for each different Eb
No

even when the constellation remains the same. Finally, the
power calculation is added. Unfortunately, this model also
demonstrated to not be as good as the brute force model.

Simulation model: The simulation model acts as a
correlation receiver described in the Detection of Signals in
Gaussian Noise section of [4]. The number of symbols in
a constellation is 2Sbits . The simulation generates (10000 ∗
log2(symbols)) bits randomly. These random bits are con-
verted to 10000 symbols. The 10000 symbols are then con-
verted to their respective coordinates in the constellation.
These coordinates are then multiplied by the basis functions
and the results are transmitted. Next a specific amount of

Gaussian noise is added to match the required Eb
No

for a par-
ticular evaluation. The noise and signal is then correlated
with the basis functions. Based on the output of the cor-
relators, symbols are estimated according to their distances
from each symbol in the constellation. Although this par-
ticular model showed to be more accurate, it is much more
computationally prohibitive.

4. RESULTS, ANALYSIS & FUTURE WORK
MOMGA-IIa constellations having 2, 3, 4, and 5 bits all

compete well with the x-rectangular constellation theoreti-
cal best. Unfortunately, comparisons with only rectangular
constellations having 4, 16, 64, and 256 symbols can be made
due to the limitation of the theoretical best equation. 2, 3,
6, 7, and 8 bit constellation comparisons are not illustrated
here, but the only MOMGA-IIa found constellation that did
not come within 1 dB of the rectangular constellation theo-
retical best is the 8 bit or 256ary constellation.

The MOMGA-IIa has found good constellations using the
brute force model. Although MOMGA-IIa solutions did not
beat the x-rectangular constellation theoretical best, they
did compete rather well. This is validated using standard
Amplitude Modulation techniques in use today. Theoreti-
cally, there exists a constellation that have lower Pb than the
x-rectangular constellations at certain Eb

No
s; however, those

constellations evade researchers in the field today and the
MOMGA-IIa so far.

Since, this is a new angle on an old problem. Many dif-
ferent techniques can be used to increase the effectiveness
of the MOMGA-IIa in solving this problem. Right now, the
model needs to be modified to yield maximum fitness value
at the same constellation that the Monte Carlo simulation
validates to be the lowest Pb. So far, a better model escapes
us. Our current models show little correlation to the current
simulation model. Once a model is found for finding good
constellations for use on signals subject to additive White
Gaussian Noise, a new model can be derived to find constel-
lations for noisy signals having other types of noise. In fact,
the ultimate goal would be to have a channel noise probe
identify the noise over a channel and back propagates this
information to an EA that searches for an optimal symbol
set for that channel. Once the symbol set was defined for the
unknown noise in the channel, communicators would have
the best symbol set for that digital system.
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