
Evolutionary Computation Methods for Synchronization of
Effects Based Operations

Jeffrey P. Ridder
System of Systems Analytics Corporation
14900 Conference Center Drive, Suite 375

Chantilly, Virginia 20151

jridder@sosacorp.com

ABSTRACT
Effects based operations (EBO) is a concept based on the
premise that a desired strategic outcome can be achieved
through synergistic, multiplicative, and cumulative applica-
tion of the full range of military and nonmilitary capabilities.
Such synergism requires synchronizing a large set of opera-
tions in order to achieve a set of effects. The synchronizer de-
velops a set of alternative plans by solving a multi-objective
optimization problem subject to several constraints. The
EBO synchronization problem is also dynamic since plan-
ning is a continuous activity in a dynamically changing envi-
ronment. In this paper, we describe the operational concept
for EBO synchronization, the requirements for algorithms to
perform synchronization, and some algorithmic steps toward
constructing a synchronizer.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search
– Plan execution, formation, and generation

General Terms: Algorithms

Keywords: Genetic algorithms, planning

1. INTRODUCTION
US Joint Forces Command (USJFCOM) has determined

through experimentation that the synergism between units
engaged in EBO is difficult to achieve without tools that en-
able synchronization, adaptation, and coordination of efforts
across an entire force. USJFCOM’s Project Alpha, a rapid
idea analysis group, investigated synchronization, adapta-
tion, coordination, and assessment (SACA) tools through
their rapid assessment process (RAP). The SACA RAP de-
veloped a set of prototype tools, including a constrained,
multi-objective genetic algorithm suitable for static fitness
landscapes to select and schedule operations. While the
SACA RAP is now complete, other programs within the
Department of Defense recognize the requirement for syn-
chronization of effects based operations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05, June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

Figure 1: Architecture of a model predictive controller.

2. OPERATIONAL CONCEPT
The synchronizer is one component of what is, in effect,

a control system for EBO. The synchronizer uses the cur-
rent estimate of the state of the environment to select and
schedule a plan from multiple possibilities enumerated by a
hierarchical task network. The plan is issued in the form of
an effects tasking order (ETO) that results in operations to
manipulate the environment. The synchronizer must gen-
erate plans that are robust and flexible, and be capable of
adapting plans as necessary.

One approach to this problem is to implement a genetic
algorithm in a model predictive control framework such as
that shown in Figure 1. A model predictive controller uses
a model of the environment to predict the effects of control
inputs over a rolling horizon as shown in Figure 2. The ob-
jective function evaluation for time T1 includes estimates for
the effectiveness of control inputs at future times T2, T3, and
so on to the end of the horizon. These control inputs may be
determined by the genetic algorithm, a simpler algorithm,
or manual action.

In the model predictive control framework, the GA would
execute continuously in order to dynamically respond to
changes in the environment. Further, the genome would
be dynamically modified as tasks are added and removed
from the hierarchical task network.

3. GENETIC ALGORITHM
To meet the requirements of the operational concept, a

synchronizing GA must execute continuously, be capable of
responding to changes in the fitness landscape, adapt the
genome to accommodate changes in the trade space, sat-
isfy several constraints, discover multiple feasible regions if
they exist, and select and schedule tasks subject to multi-
ple objectives. Clearly, this is no small task and requires
unifying the results of disparate areas of research interest in
evolutionary computation.

Figure 2: The model predictive control rolling horizon.

Figure 3: The SACA hierarchical task network.

3.1 Representation
The synchronizer representation includes variables for se-

lection and scheduling of operations. The hierarchical task
network for USJFCOM’s SACA Tools RAP is illustrated in
Figure 3. In SACA, each operation at every tier belongs to
one or more tier sets. A set represents a complete option for
performing a parent-tier operation, such that all sets within
the same tier and with the same parent offer competing and
complementing solutions for performing the parent-tier op-
eration. The synchronizer selects one or more sets for each
operation. If a tier set is selected, then all operations within
that set are selected. The lowest tier contains only primitive
operations. The SACA synchronizer selects the sets of op-
erations that are best able to achieve higher tier operations
subject to the objective functions and constraints.

Each GA individual represents a complete plan. Consis-
tent with the task network, the representation for SACA
includes binary genes for selection of sets, and integer genes
for selection of discrete starting times of operations. Since
an “off” selection for an upper tier set may result in deac-
tivation of all subordinate sets and operations, many genes
have no impact for a particular plan. The time genes may
be specified in either absolute or relative time. We can use
known sequences of operations, as specified through time
and sequence constraints, to both reduce the search space

of some time genes and to specify that the search is relative
to another time gene, thereby ensuring that sequences and
time slack between operations are preserved whenever a sin-
gle operation’s start time is modified by the GA. Relative
time genes may form chains of genes that are grounded at
some point by either an absolute time reference or a gene
specified in absolute time.

3.2 Multi-Objective GA
Synchronization is inherently multi-objective, including

objectives such as probability of success, resource cost, risk,
and collateral damage. Robustness is another objective that
can be implemented either with an explicit objective func-
tion such as schedule risk, or by introducing random varia-
tions in evaluation of other objective functions.

Multi-objective GA’s are typically elitist, which works
well for static fitness landscapes, but not for dynamic prob-
lems. We recently described a modification to Deb’s NSGA-
II algorithm [2] which eliminates the need for elitism [7].
Deb’s NSGA-II algorithm performs a non-dominated sort of
a combined population of elites with the evaluated popula-
tion (creating a double-sized population), then discards the
worst half, keeping the remainder as both the next elite pop-
ulation and as the parent population for the next generation.
Our modification to NSGA-II, which we call the Dynamic
Non-Dominated Sorting GA (DNSGA), is to implement a
steady-state approach with 50 percent replacement. All in-
dividuals must be evaluated in each generation followed by a
non-dominated sort (there is no separate elite population).
The lowest ranking half of the population is discarded and
replaced by children produced by parents selected from the
best half.

The DNSGA algorithm removes the need for elitism in our
multi-objective GA. However, multi-objective genetic algo-
rithms also typically use diversity measures to promote ex-
ploration and coverage of the Pareto front. Diversity mea-
sures to explore the Pareto front may conflict with other
niching methods to promote diversity which may be bene-
ficial for discovering multiple feasible regions (see the next
section). In order to avoid such conflicts between the oper-
ators needed for exploring and exploiting the Pareto front,
and those needed for constraint satisfaction, we are investi-
gating the two-population GA of Kimbrough, et al [3]. In
this approach, the infeasible and feasible individuals are kept
in separate populations with migration after every genera-
tion. That is, newly minted feasible individuals in the infea-
sible population are moved to the feasible population, and
vice versa. This allows a completely different set of opera-
tors and diversity measures to operate on each population.

3.3 Constraints
The synchronizer must satisfy several constraints of vari-

ous types, including constraints on the timing and sequence
of operations, weather, resource consumption and availabil-
ity, effect-on-effect (inhibiting one operation when another
is taking place), and logical combinations of any simple
constraints. The large numbers, types, and complexity of
constraints are likely to result in multiple feasible regions,
any one of which may contribute plans to a multi-objective
Pareto front. Therefore, we require the synchronizer’s con-
straint satisfaction method to be capable of locating multiple
feasible regions in a dynamic environment.

We have performed some preliminary work investigating

Table 1: Locations of the 9 global minima for Levy #3.

Point x1 x2

1 4.97648 4.85806
2 4.97648 -1.42513
3 4.97648 -7.70831
4 -1.30671 4.85806
5 -1.30671 -1.42513
6 -1.30671 -7.70831
7 -7.58989 4.85806
8 -7.58989 -1.42513
9 -7.58989 -7.70831

constraint satisfaction methods capable of identifying multi-
ple feasible regions in a multimodal search space. Consider
the nonlinear problem known as Levy #3 [4]:

f(x) =
5

X

i=1

i cos[(i − 1)x1 + i]
5

X

j=1

j cos[(j + 1)x2 + j] (1)

where −10 ≤ xi ≤ 10, i = 1, 2. There are 760 local minima
and 9 global minima. The global minimum is -176.542 and
is located at the points listed in Table 1.

We modified Levy #3 to make it a constraint satisfaction
problem by creating a circular feasible region of radius 0.5
around each global minimum. The goal is to find those tech-
niques that result in discovering each of the global minima
in every trial. We used Deb’s constraint satisfaction method
[1] as a baseline for comparison with Kimbrough’s two pop-
ulation method. Deb’s method uses tournament selection,
where feasible solutions are always preferred over infeasible
solutions. Feasible solutions are ranked by their fitness, and
infeasible solutions are ranked by their constraint error. We
test both Deb’s and Kimbrough’s methods with and without
deterministic crowding for promoting diversity [5].

Table 2 shows the number of times, out of 100 trials, that
each global minimum was found in the last generation for
a variety of algorithms and conditions. A perfect score is
100 for each point (900 overall). For each test, we used
Michalewicz’ arithmetical crossover and nonuniform muta-
tion operators [6]. The first four tests were run for 1000
generations per trial and used a static fitness landscape.
Tests #5 and #6 were run for 1000 generations per trial
and considered a dynamic landscape where the feasible re-
gions begin in non-optimal locations and shift to the global
minima for the last 500 generations. Tests #7 and #8 are
identical to #5 and #6, except that they are run for 2000
generations, where the last 1000 generations have feasible
global minima. Test #1 used Deb’s method. Test #2 used
Kimbrough’s two-population method. Tests #3, #5, and
#7 used Deb’s method with deterministic crowding. Tests
#4, #6, and #8 used Kimbrough’s two-population method
with deterministic crowding.

The results of these tests show that constraint satisfaction
methods without niching tend to locate only one feasible re-
gion, while niching methods, such as deterministic crowding,
can lead to discovery of multiple feasible regions. Perfor-
mance degrades for dynamic environments, with some points
being discovered significantly fewer times than others. The
two-population GA performs well with niching and com-
pares well with the single population method. This opens

Table 2: Results of algorithm tests for constrained Levy #3.

Point #1 #2 #3 #4 #5 #6 #7 #8
1 2 5 99 98 36 43 20 29
2 7 11 100 100 96 96 84 83
3 15 7 100 100 77 81 79 78
4 7 11 100 99 100 100 100 99
5 8 26 100 100 100 100 100 100
6 23 21 100 100 100 100 100 100
7 3 5 99 99 72 54 54 42
8 10 8 100 98 100 100 100 100
9 25 6 99 100 95 85 89 89

Total 100 100 897 894 776 759 726 720

the door to further development use multi-objective niching
in the feasible population, and other methods like determin-
istic crowding in the infeasbile population. Further work is
needed to test these methods against problems with more
variables, and to extend the results to discrete optimization
problems.

4. CONCLUSIONS
In this paper we have described the problem of synchro-

nization of effects based operations. Preliminary investi-
gations of algorithms for this problem have already been
conducted via the US Joint Forces Command SACA Tools
RAP, and we expect to further develop the synchronizer for
application to dynamic environments in a model predictive
control framework in the near future by further exploring
and developing the ideas discussed here.

5. REFERENCES
[1] K. Deb. An efficient constraint handling method for

genetic algorithms. Computer methods in applied

mechanics and engineering, 186:311–338, 2000.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
Fast and Elitist Multi-Objective Genetic Algorithm:
NSGA-II. Technical Report 200001, Kanpur Genetic
Algorithms Laboratory, Indian Institute of Technology
Kanpur, 2001.

[3] S. O. Kimbrough, M. Lu, D. H. Wood, and D. Wu.
Exploring a two-population genetic algorithm. In
Genetic and Evolutionary Computation Conference

Proceedings, pages 1148–1159. Springer, July 2003.

[4] A. Levy, A. Montalvo, S. Gomez, and A. Galderon.
Topics in global optimization. In Numerical Analysis,

Lecture Notes in Mathematics, vol. 909, pages 18–33.
Springer-Verlag, 1981.

[5] S. W. Mahfoud. Niching Methods for Genetic

Algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Champaign, Illinois, 1995.

[6] Z. Michalewicz. Genetic Algorithms + Data Structures

= Evolution Programs. Springer, third edition, 1996.

[7] J. P. Ridder and J. C. HandUber. Mission planning for
joint suppression of enemy air defenses using a genetic
algorithm. In Genetic and Evolutionary Computation

Conference Proceedings. ACM, June 2005.

