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1. INTRODUCTION
This paper introduces the ellipsoid as a geometric struc-

ture for detecting network intrusions. Section 2 describes
and analyzes the design of the ellipsoid generation algo-
rithm. Experimental design is set forth in Section 3. In
Section 4 we analyze experimental results. Section 5 sum-
marizes the paper and provides direction for continued re-
search.

2. DESIGN
This section describes a mathematical ellipsoid model and

an algorithm that evolves a set of ellipsoids to cover network
intrusion space.

2.1 Ellipsoid Model
An n-d ellipsoid is defined as follows:

(x− ω)T A(x− ω) = 1 (1)

where A is a real symmetric positive-definite n × n matrix
and ω, an n × 1 matrix, is the center of the ellipsoid. Any
vector x that satisfies Equation 1 is on the surface of the
ellipse.
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Volume of Ellipsoid
The volume of an ellipsoid is

V = Ωnℓ1ℓ2 · · · ℓn (2)

where Ωn is the volume of an n-d hyper-sphere and
ℓ1, ℓ2, . . . , ℓn are the lengths of the n semiaxes of the ellip-
soid. A can be rewritten so that the equation for an ellipsoid
is

(x − ω)T VΛVT (x− ω) = 1 (3)

The diagonal entries in Λ are the inverses of the squares
of the lengths of the semiaxes of the ellipsoid defined by
Equation 1.

Membership of a Point in an Ellipsoid
Kelly et. al. [2] report that the Mahalanobis distance (left
side of Equation 4) can be used to determine whether or not
p lies inside of e. p is inside of e if and only if the inequality
in Equation 4 holds.

(p − ω)T A(p − ω) < 1 (4)

2.2 Evolving a Set of Ellipsoids
Producing a set of ellipsoids that maximizes coverage of

intrusion space while minimizing coverage of self space is not
a trivial problem. For this reason, we use an evolutionary
algorithm (EA) to “evolve” good sets of ellipsoids. This
section addresses the mapping of the ellipsoid model into
representation, crossover, mutation, and objective function
in the evolutionary algorithm domain.

Representation
The objective is to obtain an optimal set of ellipsoids. This
implies that each individual should be a set of ellipsoids.
However, to avoid computational complexity, we let each
individual be one ellipsoid and evolve one set of ellipsoids.

Crossover With Ellipsoids
Crossover is not used because of our choice for representa-
tion. Since an individual is not an entire solution, there is
no justification for trading “building blocks.”

Mutating an Ellipsoid
Conceptually, there are three independent ways to mutate
an ellipsoid: semiaxis orientations (V), center (ω), and semi-
axis lengths (Λ).



The EA accomplishes orientation mutation by rotating
the ellipsoid in a 2d plane. To accomplish this rotation,
a small angle θ is chosen from a Gaussian distribution with
mean µ = 0 and standard deviation σ = π

2
radians. The vec-

tors that represent the randomly chosen semiaxes to produce
new semiaxes.

The EA center mutation operator mutates each of the n
components of ω individually. The center mutation operator
chooses each new center component from a Gaussian distri-
bution with mean µ = ωi. The standard deviation for the
Gaussian distribution is a parameter that can be changed.

The third type of mutation, semiaxis length, results when
Λ is manipulated. The EA semiaxis length mutation opera-
tor mutates each of the n semiaxis lengths individually. The
semiaxis length mutation operator chooses the new length
from a Gaussian distribution whose mean is the old length.
The standard deviation is a parameter value that can be set
to reflect the desired variability of the mutation.

2.3 Objective Function
The objective function is divided into a reward function

and a penalty function. The reward function uses a structure
called a 2n-way tree [3, p.336-7] to approximate the area
covered an ellipsoid and not covered by a larger ellipsoid in
the population.

The penalty function discourages ellipsoids from covering
self points. If an ellipsoid e covers β self points, its penalty
function is

PENALTY (e) = 1.00 − (REWARD(E,e)/(2β + 1)) (5)

Evaluation of Equation 5 requires β, the number of self
points that e covers. β is obtained by traversing the same
2n-way tree used in the reward function (see [4].

The objective function is the result of the penalty function
subtracted from the reward function.

3. EXPERIMENTAL DESIGN
We test our algorithm against pedagogical problems to

validate the model. Then, the MIT DARPA ID data is used
for real world testing.

3.1 Pedagogical Data Sets
Our pedagogical data sets provide a proof of concept by

validating that an algorithm produces expected results on
problems with known characteristics. Such pedagogical prob-
lems also afford an opportunity for visualization techniques
because they can be smaller and lower dimension.

Three artificial data sets are referred to as Val1, Val2 and
Val3. Figures 1 and 3 present Val1 and Val3, two self data
sets for which the optimal solution is two ellipsoids. Val3
tests whether the algorithm can find an optimal solution
when overlapping ellipsoids are required. Val2, presented
in Figure 2, is an inverse problem. It tests how well the
algorithm can find a set of ellipsoids to fill in a space that
is not elliptically shaped. Although the optimal solution is
not known for Val2, a visual inspection of the results and
analysis of test data provide a good approximation as to
how well the algorithm performs.

Test data are generated in the inverse of the self area for
Val1-Val3. Part (b) of Figures 1 - 3 shows the test data.

3.2 Network Data

We also test against data from the 1999 DARPA IDS Eval-
uation Data Set [1]. For training, we use the week one data,
which contains only normal traffic. For testing, we use week
two data, which consists of normal traffic mixed with at-
tacks. The data has three features: number of bytes per
second, number of packets per second, and number of In-
ternet Control Management Protocol (ICMP) packets per
second.

4. RESULTS AND ANALYSIS
Subfigure (c) in Figures 1-3 shows the results of running

the ellipsoid algorithm against the corresponding self data
sets. From a visual perspective, the algorithm is successful.
It finds the known solutions, covers non-elliptically shaped
nonself space well, and even finds the optimal solution when
it requires overlapping. When tested against the nonself test
data shown in subfigure (b) of Figures 1-3, the algorithm
also performs successfully. The ellipsoid algorithm covers
all of the nonself test points in Figure 1 and about 95% of
the nonself test points in Figures 2 and 3. These results are
impressive, especially in Figure 2, since the ellipsoids must
cover and area in the shape of inverted ellipsoids.

Our algorithm also performs well against the MIT intru-
sion detection data, achieving ∼91% true positive with ∼ 0%
false alarm (see Table 1). Although this proves nothing
about performance against other intrusion detection data,
it provides good reason to continue research in the current
direction.

5. CONCLUSION
Our current testing shows that our algorithm can success-

fully model spaces around a set of training points. Testing
against the MIT intrusion detection data results in success,
although further testing is necessary for more concrete vali-
dation.
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Training Data Alorithm
Detection Rate False Alarm Rate

Detectors
Mean SD Mean SD

Pedagogical 1 Spheres 94.27 0.03 0 0 34
Ellipses 94.05 0.03 0 0 2

Pedagogical 2 Spheres 95.56 0.01 0 0 20
Ellipses 95.48 0.01 0 0 12

Pedagogical 3 Spheres 96.52 0.01 0 0 22
Ellipses 96.82 0.02 0 0 12

MIT Data Spheres 91.52 0.00 0.00 0.00 10
Ellipses 91.64 0.00 0.00 0.00 10

Table 1: Comparison of spherical and elliptical detectors.
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Figure 1: Data set Val1. (a) is a data set with with two elliptical holes. The ellipses are oriented differently
and are different sizes. (b) is its associated test data set. (c) is the ellipsoids found by the ellipsoid algorithm.
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Figure 2: Data set Val2. (a) has points inside of two ellipses. (b) is its associated test data set. (c) is the
ellipsoids found by the ellipsoid algorithm.
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Figure 3: Data set Val3. In (a), the optimal solution is obviously two ellipses in a cross formation. (b) is its
associated test data set. (c) is the ellipsoids found by the ellipsoid algorithm.


