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ABSTRACT 
The Army’s push towards developing highly flexible military 
teams that combine manned and unmanned units requires 
significant advances in the intelligence of the unmanned units and 
in the tools used to provide logistical support.  BBN Technologies 
has recently completed a simulation-based project for the Army 
Research Lab in which we applied an evolutionary computation 
approach for determining the tactical responses of an unmanned 
ground vehicle, moderated by explicit rules of engagement.  BBN 
is also currently developing a logistic analysis prototype that uses 
agent-based technology and evolutionary computation to enable 
rapid logistics planning and replanning for supporting an Army 
organization encountering a diversity of planned and unplanned 
situations.   

Categories and Subject Descriptors 
I.2.9 [Artificial Intelligence]: Robotics - Autonomous vehicles; 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search - Plan execution, formation, and generation; J.7 
[Computers in Other Systems]: Military. 

General Terms 
Algorithms, Design. 

Keywords 
Tactical behaviors, unmanned ground vehicles, logistics planning 

1. INTRODUCTION 
In [1], we presented our Advocates and Critics for Tactical 
Behaviors (ACTB) technique for unmanned ground vehicle 
(UGV) navigation and our efforts in developing a support tool for 
supporting a Future Combat Systems (FCS) Unit of Action (UA).  
We have extended both avenues of research significantly in the 
past year.  We conducted a project for the Army Research Lab 
(ARL) in which we applied our ACTB technique to an ARL UGV 
simulator in which we faced mobile threats.  Our technique was 
extended in several ways to enable real-time planning and 
response, as well as to allow explicit bias of the evolutionary 
search under different tactical situations.  We are currently 
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conducting a project in which we are developing a tool that 
extends our previous work on FCS supportability by making it 
more robust, providing the support for a wider variety of items 
and support relationships, and performing two-tier scheduling 
using evolutionary computation.  We briefly recap each technique, 
present the key changes made, and discuss both the motivations 
for those changes and the benefits that have resulted. 

2. TACTICAL UGV NAVIGATION 
The ACTB approach, as presented in [1,2], was based upon the 
use of an evolutionary search algorithm in which domain-specific 
operators were applied to a variable-length representation of the 
paths of one or more vehicles.  The representation was a plan that 
identified the sequence of future waypoints to be visited by each 
vehicle.  The domain-specific operators were termed advocates, 
and made modifications to the plan that reflected certain tactical 
behaviors, such as trying to circle around a known enemy area.  
The fitness function was the weighted sum of the results of a 
number of critics.  Each critic evaluated the plan against a specific 
tactical goal, such as how quickly the plan would enable the 
vehicles to achieve the mission objectives.  In [1,2], our system 
only dealt with unmoving enemies and there was no imperative 
for real-time behavior 

In the project for ARL, we were presented with a new simulation 
environment and new tactical objectives.  The simulator was 
developed by General Dynamics Robotics Systems (GDRS), and 
defined a simple world (see Figure 1) 640 meters by 480 meters in 
size consisting of obstacles (in black) and clear areas (in white).  
Within the world, there were three flag locations, all randomly 
located within 100 meters of each other.  Our goal was to control 
a single simulated UGV and to compete against one or two other 
simulated UGVs.  The competition consisted of maximizing the 
number of flags visited, and to either survive for a fixed period of 
time or kill the opponent(s) within that time.  The simulated UGV 
had a simulated gun turret and a simulated camera, and could be 
controlled via five 
basic commands.  
The vehicle could 
move to a given 
geographical 
location, stop 
movement, look 
in a given 
direction by 
rotating the 
camera, aim the 
gun in a given 
direction, and fire 

 
Figure 1: Sample simulated terrain 



the gun.  The simulator performed in real time, typically with half 
a second delay between issuance of a command and execution of 
that command.  Information (e.g., from looks) was also provided 
in a similar time frame. 

We adopted a genetic representation that specified a sequence of 
waypoints to visit and (zero or more) look actions to perform at 
each of those waypoints.  Gun control and firing commands were 
determined by an independent, opportunistic control system (i.e., 
automatically target and fire at nearby enemies).  As in [1,2], 
advocates and critics for specific tactical behaviors were created.  
For example, we developed advocates that would encourage the 
UGV to stay close to walls, or look around when approaching a 
corner; we developed critics that would evaluate how much risk of 
being seen a plan put the vehicle in, or how aware of its 
surroundings a vehicle would be based on its planned looks.  We 
also biased the advocates to operate on portions of the plan that 
were sooner in time, and portions of the plan that had been 
identified as very poor by one or more critics.  These changes to 
the advocates and critics led to rapid planning of realistic tactical 
behaviors under many circumstances.  However, we discovered 
that the system often performed poor real-time planning when the 
tactical situation changed significantly.  For example, if an enemy 
was discovered, our system spent a lot of time thrashing as it tried 
to replan. 

To address this, we adapted the ACTB architecture to incorporate 
high-level strategic ”rules of engagement” that influenced the 
manner in which planning was performed.  In particular, the 
strategy rules determined the current attitude of the system.  An 
attitude was a consistent set of advocates and critics, each with 
certain probabilities of selection and weights, respectively.  When 

the system’s attitude changed, the advocates and critics used by 
the planning process were immediately changed to reflect those 
specified in the new attitude.  Thus, instead of trying to solve one 
difficult optimization problem, the revised ACTB approach used 
attitudes to solve several simpler ones to improve the quality and 
timeliness of its response.  This reflects, for example, the fact that 
during a mission it may be appropriate under different conditions 
for a UGV to become more cautious (e.g., it doesn’t know where 
the enemy is so try to stay out of sight) or more aggressive (e.g., 
the enemy is in the way of reaching a flag, so close and attack).  
Figure 2 illustrates the rules of engagement used to determine 
when to transition from one attitude to another. 

Through the use of advocates, critics and attitudes, ACTB 
naturally admits the diversity of goals and constraints that are 
important for the tactical behavior navigation problem, but in a 
manner that makes those aspects easy to understand.  In 
September 2004, our system was tested head-to-head, in over one 
hundred trials, against two other state-of-the-art tactical behavior 
systems (developed by two competing organizations) and 
performed very well.  

3. LOGISTICS ANALYSIS  
In [1], we presented a scalable, agent-based modeling system 
using Cougaar agent technology [3] to represent the logistics 
activities of the Army’s Future Combat Systems’ (FCS) Unit of 
Action (UA) and to generate refueling requests, and using BBN’s 
Vishnu [4] genetic algorithm software to assign refueling requests 
to the refueling trucks. In particular, the system examined the 
problem of distributing fuel to the combat vehicles within the UA 
over a 72 hour period, where all fuel for resupply was stored on 
the refueling trucks that moved within the UA (i.e., no fixed 
supply depots).  The GA optimized against multiple goals, 
including minimizing the travel performed by the refueling trucks, 
minimizing the number of refueling trucks needed and 
maximizing the number of requests that are satisfied (on time and 
with required quantities). 

We have extended our work to incorporate scheduling the supply 
of both ammunition and fuel.  The ammunition and fuel supply 
problems are solved simultaneously and independently.  
Ammunition scheduling is like fuel scheduling except that there 
are multiple types of ammunition versus just one type of fuel, and 
each request for a specific type of ammunition must be drawn 
from a container with that particular type in it.  Further, while fuel 
scheduling has a flexible delivery amount based on the time 
delivered (e.g., the scheduler can satisfy a request by delivering 
less fuel earlier, or more fuel later, rather than the exact amount at 
the exact time requested), ammunition scheduling is different – 
there is no time dependency on the amount delivered.  For 
example, for a customer that uses 1 gallon/hour, if the request is 
for 100 gallons at 12:00, the scheduler may deliver 97 gallons at 
09:00. In contrast, the only time a partial ammunition response 
will be given (e.g., asking for 10 rounds but getting 7) is when 
there is an insufficient amount available on the supply trucks. 

This system has been extended to model evolving military 
logistics doctrine. In the FCS UA, the primary combat units now 
have their own organic support units with whom they operate in 
close coordination. These support units resupply the combat 
vehicles during specified time periods of low combat intensity, 
and are themselves resupplied from the dynamically located Figure 2: Rules of engagement for attitude transitions 
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Forward Supply Battalion (FSB) at different times. To model this 
doctrinal change, the extended system performs two-tier supply 
and dynamic inventory optimization.  

The tool schedules the delivery of supplies to the end customer 
(e.g., FCS combat unit) for a certain period of time, and then 
schedules the re-supply of the supply vehicles themselves from 
the FSB to replace the amount expected to be delivered.  This 
two-tier supply is performed using dependent evolutionary 
searches (using Vishnu), and repeats in a cycle as new supply 
demands are received.  Between cycles, the number of supply 
trucks that are in use may be adapted dynamically based on 
expected load. Figure 3 shows the process of the two-tier supply 
and the combined effect of re-supply and dynamic inventory 
optimization. The support unit receives fuel from the FSB (bars 
increase) and optimally distributes it to its customers (bars 
decrease). Figure 4 illustrates the effect of a reduction in the 
number of fuel trucks assigned to the FSB from 46 to 11, in an 
effort to minimize the logistics footprint, while maintaining an 
adequate supply over 72 hours. The bars indicate the total fuel 
remaining in all the trucks at the FSB in the two cases as time 
passes. 

4. CONCLUSIONS 
Real-time tactical behavior planning using evolutionary 
computation was achieved through the incorporation of multiple 
independent search biases (or attitudes) and high-level rules for 
changing the current bias under specific tactical situations.  
Effective planning and replanning of multiple types of logistic 
support items with two tiers of supply vehicles was achieved 
using evolutionary computation. 
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Figure 3. Two-tier scheduling with dynamic inventory 
optimization 

(b) Dynamic inventory optimization at Support Unit. 

(a) Dynamic inventory optimization at FSB. 

(b) 11 fuel trucks at FSB 
Figure 4: Optimization of number of fuel trucks at 
FSB required for support.  (a) 46 fuel trucks case 

showing over 100,000 excess gallons of fuel after 72 
hour support period, (b) 11 fuel trucks case showing 

3200 excess gallons. 

(a) 46 fuel trucks at FSB 


