
Solving the Aircraft Engine Maintenance Scheduling
Problem using a Multi-objective Evolutionary Algorithm

Mark P. Kleeman
Department of Electrical and Computer

Engineering
Graduate School of Engineering & Management

Air Force Institute of Technology
Wright-Patterson Air Force Base

Dayton, OH 45433

mark.kleeman@afit.edu

Gary B. Lamont
Department of Electrical and Computer

Engineering
Graduate School of Engineering & Management

Air Force Institute of Technology
Wright-Patterson Air Force Base

Dayton, OH 45433

gary.lamont@afit.edu

Categories and Subject Descriptors
I.2.8-Problem Solving, Control Methods, and Search; G.1.6-
Optimization; J.7-Computers in Other Systems; H.4.2-Types
of Systems

General terms
Design, algorithms

Keywords
Multi-objective Evolutionary Algorithms, scheduling, air-
craft engine scheduling, military application, flow shop, job
shop

1. INTRODUCTION
Scheduling problems are a very common research topic.

This is because, for efficiency reasons, our world relies heav-
ily on schedules and deadlines. Aircraft engine maintenance
is no exception. The United States Air Force has many
planes that it must keep up and running. But with the
downsizing that has occurred in recent years, the number of
planes that are operational has become more critical. This
means that every effort needs to be made to ensure that
not only are the engines repaired in an efficient manner, but
that their component’s scheduled maintenance cycles are in
sync so that the engine has fewer trips to the logistics main-
tenance center 1.

2. THE PROBLEM
1The views expressed in this article are those of the authors
and do not reflect the official policy of the United States Air
Force, Department of Defense, or the U.S. Government.

This paper is authored by an employee(s) of the [U.S.] Government and is
in the public domain.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

The U.S. Air Force has many aircraft in its arsenal. Its
fleet is aging and it appears that plans are for the aircraft to
be around for a while longer. But many of these engines are
beyond their design life. In fact, 97% of all F100 engines and
84% of all F110 engines will be past their design life by the
year 2010 [1]. One essential thing that the Air Force relies
upon is a dependable fleet. If the Air Force does not have
reliable aircraft, then they must procure redundant systems
in order to ensure the success of any mission with a high
degree of certainty. To achieve this type of dependability,
the old ”fix it when it breaks” mentality or the on condition
maintenance (OCM) practice had to be revamped in order
to overcome much of the uncertainty that is inherent in this
type of repair mentality. A reliability-centered maintenance
(RCM) philosophy is necessary to keep the planes flying for
longer periods of time.

Aircraft engines are brought into the shop for two rea-
sons: unscheduled maintenance and routine maintenance.
Routine maintenance occurs on predefined intervals, when
the engine component is still operational, but history shows
that the mean time to repair (MTTR) for that component
is almost up.

With routine maintenance as our focal point, our problem
is set-up in the following manner. When an engine comes
into a logistics workcenter for repair, it is logged into the
system. Aircraft engines are commonly divided into smaller
subcomponents which can be worked on individually and
then recombined. For this problem, we divided the engine
into five logical subcomponents. We assumed that the main-
tenance shop had one specific work area for each of the com-
ponents. This is an example of the job shop problem, but
with a twist. After all maintenance is completed on an en-
gine, each engine component’s mean time to repair (MTTR)
is compared with other components on the engine. If there
is a large disparity among the MTTRs then a component
swap may be initiated with another engine in an effort to
ensure the MTTRs of the components of a particular engine
are similar. This is done so that the engine can have more
time on wing (TOW) and less time in the shop.

Once the swaps are done, the engine is reassembled and
tested as a whole to ensure functionality. This represents
a small flow shop problem in that each engine has to have
maintenance done first, followed by swapping and then test-
ing. So the problem at hand is actually a hybrid of two

scheduling problems. It could be viewed as a sort of meta
scheduling problem, with a flow shop dictating the path of
the engines and a job shop dictating the multiple paths of
the sub-components.

The problem was written as a static scheduling problem,
where the program receives an initial set of inputs and it out-
puts results based on them. A dynamic scheduling problem
allows the user to add additional items to the schedule while
the program is running. For our problem, it is reasonable
to assume that the logistics center is always alerted ahead
of time as to what engines are coming and when. Since the
shop is alerted a priori of the items to be scheduled, we felt
that static scheduling was more appropriate for our problem
domain.

Our input file is made up of all the information that may
be useful for our scheduling problem: arrival times, MTTR
values, due dates, and priority levels . Some of the informa-
tion is not used currently, but it was included for complete-
ness and for future research.

The chromosome representation used can be effectively
divided into two parts: the precedence order for the en-
gines requiring repair and the component swaps. The first
portion of the chromosome uses a job-based GA represen-
tation. Each allele in the chromosome represents an engine.
The first allele listed has precedence over all other engines
for component repairs. So if it has three components that
need repair, they will be scheduled first in those respective
repair locations.

The second portion of the chromosome determines the
precedence of the component swaps, the number of swaps,
the components to be swapped, and the engines that the
components are to come from. The most difficult part of
this problem is determining how many swaps to allow. By
having a lot of swaps, you increase the problem complexity
which could decrease the algorithm efficiency. We decided
that as the number of engines is increased, the number of
swaps should increase proportionally. So our chromosome
was developed in order to accommodate the varying number
of swaps based on the number of engines that are to be
repaired. But we did not want to force the program to make
swaps when none were needed. So the number of swaps can
be zero or go as high as the total number of engines being
repaired.

Figure 1 shows a representation of a chromosome for four
engines. Note that the first four alleles are for the engine
scheduling precedence, while the last 12 alleles are for the
swaps. There are four possible swaps. Each swap is repre-
sented by three alleles, the two engines that will be swapping
components and the actual component to be swapped. Note
that for this example, there will be only three swaps because
one of the swaps has a zero for the component, signifying no
swap is to occur.

We determined that the best fitness functions to use for
this problem were the makespan and the aggregate swap
count.

The makespan, is equivalent to the completion time of the
last job to leave the system. This calculation takes into ac-
count the time it takes to comply with the scheduled main-
tenance and complete the proposed swaps based on their
precedence, and test the reassembled engine.

The second fitness function is the aggregate swap count.
The aggregate swap count is calculated after the makespan.
The program compares the MTTR for all the components

Figure 1: Example chromosome representation

of an engine. If the MTTR is outside the provided tolerance
levels for MTTR, then the aggregate swap count is increased.
This is done for each engine and the summation of the results
is the aggregate swap count.

3. GENMOP SOFTWARE DESIGN
The problem was integrated into the General Multi-objective

Parallel Genetic Algorithm (GENMOP). GENMOP was orig-
inally designed as a real-valued, parallel MOEA. This sec-
tion briefly describes MOEAs and then discusses in more
detail GENMOP operations.

GENMOP is an implicit building block MOEA that at-
tempts to find good solutions with a balance of exploration
and exploitation. It is a Pareto-based algorithm that uti-
lizes real values for crossover and mutation operators. The
MOEA is an extension of the single objective GENOCOP
algorithm [7, 6]. GENMOP has been used for bioremedi-
ation research [4, 5]and used to optimize quantum cascade
laser parameters [2, 3].

The algorithm has four crossover methods and three mu-
tation methods that are used. Each operator is chosen based
upon an adaptive probability distribution, where the oper-
ators that produce the most fit individuals have their selec-
tion probability increased.

4. RESULTS AND ANALYSIS
For these initial data results we looked at two instances:

the five engine and ten engine scheduling problem.
The analysis of the average number of swaps shows that

the number of swaps for the five engine problem is about
right. Of the five swaps allocated, 7 out of 10 instances uti-
lized more than 50% of them. But with respect to the ten
engine problem, only one of nine surpassed the threshold.
This indicates that our baseline number of swaps is ade-
quate for the 5 engine problem, but for 10 engines it may
be limiting the efficiency of our system. This means our
linear swap scaling factor of 1:1 was too much. A more ap-
propriate method would be to implement a variable scaling
factor that increases the number of swaps in a chromosome
when a certain threshold is reached, or decreases the num-
ber when a declining threshold is reached. This would make
our chromosome lengths vary while the program is running.

Looking at the average Overall Nondominated Vector Gen-
eration (ONVG), there really is no trend that one can de-
cipher between the various instances, with the exception of
the 10 engine, 1000 generation instance. It has a large mean

and standard deviation. This is because of several runs that
approached 70 members on the Pareto front. Most of these
members had the same fitness values, but had slightly dif-
ferent schedules.

As for the makespan, the trend is as one would expect,
the average makespan of the members tends decrease as the
number of generations and/or number of population mem-
bers is increased. It is also interesting to note that the stan-
dard deviation tends to creep higher as the number of gen-
erations is increased. This can be expected to happen in
a multi-objective problem. As population members spread
out along the Pareto front, the more diverse the population
becomes and therefore the standard deviation increases.

Figure 2 shows a comparison of Pareto front members at
the two ends of the spectrum. One instance was generated
using 1000 population members and 1000 generations, while
the other used just 10 population members and 10 genera-
tions. Note that there are many duplicate members on the
Pareto front for both instances. Each instance has more
than 30 nondominated points, but no instance has more
than five glyphs on the graph. This illustrates that many
different schedules have the same fitness values.

850 900 950 1000 1050
22

23

24

25

26

27

28

29

30

31

Makespan

A
gg

re
ga

te
 s

w
ap

 c
ou

nt

Known Pareto Front points (5x1000x1000) = 32
Known Pareto Front points (5x10x10) = 34

Figure 2: Comparison of the Pareto front members
for the 5 engine instance

5. CONCLUSION
The goal of our research is to decrease engine downtime.

We want our application to find a schedule that repairs en-
gines rapidly and increases the time on wing, by ensuring
similar MTTR values for the components on each engine.

Our initial research confirms that an aircraft engine main-
tenance scheduling problem can be effectively solved with
an MOEA and in particular our GENMOP algorithm. Our
chromosome representations permits the handling of swaps
effectively and thus GENMOP tends to converge toward an
acceptable Pareto Front. We also found that the standard
deviation of the makespan tends to increase as the number
of generations increases.

With a validated model and MOEA there are other av-
enues that can be investigated. The problem domain can be
integrated with other MOEA algorithms for performance
comparisons. Higher engine numbers should be addressed.

The current instances at higher population rates and gener-
ations could be studied in an effort to determine where the
efficiency of the algorithm decreases, with respect to obtain-
ing new members of the Pareto front. Moreover, changing
the chromosome representation may improve search effec-
tiveness. Currently the last 3/4 of our chromosome is for
the engine swaps. We would like to reserve five alleles for
the swaps and let each one represent a component. Then
the values could be implemented for the alleles in a linked
list. We are currently trying to determine if the whole chro-
mosome should be a linked list, or if multiple data types in
the chromosome are better. Additionally, we need to an-
alyze the utility of the four crossover and three mutation
operators. Determining which ones are effective and which
ones are not in order to improve the algorithm either by lim-
iting the operator pool to a fewer number of operators, or
modifying less effective operators in order to generate better
results. Currently, better heuristic crossover algorithms are
being developed for this type of problem.

The future work on this problem can give us further in-
sight into the algorithm domain and make this an effective
tool that the Air Force can use in its logistic centers.

6. REFERENCES
[1] T. Dues. Quality Engine Development and

Sustainment. In Proceedings of the 2001 Defense
Manufacturing Conference, Oklahoma City Air
Logistics Center, November 2001. Defense
Manufacturing Conferences.

[2] T. A. Keller. Optimization of a Quantum Cascade
Laser Operating in the Terahertz Frequency Range
Using a Multiobjective Evolutionary Algorithm.
Master’s thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, June 2004.

[3] T. A. Keller and G. B. Lamont. Optimization of a
Quantum Cascade Laser Operating in the Terahertz
Frequency Range Using a Multiobjective Evolutionary
Algorithm. In 17th International Conference on
Multiple Criteria Decision Making (MCDM 2004),
volume 1, December 2004.

[4] M. R. Knarr. Optimizing an In Situ Bioremediation
Technology to Manage Perchlorate-Contaminated
Groundwater. Master’s thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 2003.

[5] M. R. Knarr, M. N. Goltz, G. B. Lamont, and
J. Huang. In Situ Bioremediation of
Perchlorate-Contaminated Groundwater using a
Multi-Objective Parallel Evolutionary Algorithm. In
Congress on Evolutionary Computation (CEC’2003),
volume 1, pages 1604–1611, Piscataway, New Jersey,
December 2003. IEEE Service Center.

[6] Z. Michalewicz. Evolutionary computation techniques
for nonlinear programming problems. International
Transactions in Operational Research, 1(2):175, 1994.

[7] Z. Michalewicz and C. Z. Janikow. Genocop: a genetic
algorithm for numerical optimization problems with
linear constraints. Commun. ACM, 39(12es):223–240,
1996.

