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ABSTRACT
Estimation of Distribution Algorithms (EDA) have been
proposed as an extension of genetic algorithms. In this pa-
per the major design issues of EDA’s are discussed within a
general interdisciplinary framework, the maximum entropy
approximation. Our EDA algorithm FDA assumes that the
function to be optimized is additively decomposed (ADF).
The interaction graph GADF is used to create exact or ap-
proximate factorizations of the Boltzmann distribution. The
relation between FDA factorizations and the MaxEnt solu-
tion is shown. We introduce a second algorithm, derived
from the Bethe-Kikuchi approach developed in statistical
physics. It tries to minimize the Kullback-Leibler diver-
gence KLD(q|pβ) to the Boltzmann distribution pβ by solv-
ing a difficult constrained optimization problem. We present
in detail the concave-convex minimization algorithm CCCP

to solve the optimization problem. The two algorithms
are compared using popular benchmark problems (2-d grid
problems, 2-d Ising spin glasses, Kaufman’s n−k function.)
We use instances up to 900 variables.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: [Estimation of Distribution Algorithm]

General Terms
Theory, Algorithms

Keywords
Estimation of distributions, Boltzmann distribution, factor-
ization of distributions, maximum entropy principle, mini-
mum relative entropy, minimum log-likelihood ratio, Bayesian
information criterion, Bethe-Kikuchi approximation.
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1. INTRODUCTION
The Estimation of Distribution (EDA) family of popula-

tion based search algorithms was introduced in [20] as an an
extension of genetic algorithms.1 The following observations
lead to this proposal. First, genetic algorithm have difficul-
ties to optimize deceptive and non-separable functions, and
second, the search distributions implicitly generated by re-
combination and crossover can be extended to include the
correlation of the variables in samples of high fitness values.

EDA uses probability distributions derived from the func-
tion to be optimized to generate search points instead of
crossover and mutation as done by genetic algorithms. The
other parts of the algorithms are identical. In both cases
a population of points is used and points with good fitness
are selected either to estimate a search distribution or to be
used for crossover and mutation.

In [20] the distribution has been estimated by computa-
tionally intensive Monte Carlo methods. The distribution
was restricted to tree-like structures. It has been shown by
[19] that simpler and more effective methods exist which use
a general factorization of the distribution.

The family of EDA algorithms can be understood and
further developed without the background of genetic algo-
rithms. The problem to estimate empirical distributions has
been investigated independently in several scientific disci-
plines. In this paper we will show how results in statistics,
belief networks and statistical physics can be used to under-
stand and further develop EDA. In fact, an interdisciplinary
research effort is well under way which cross-fertilizes the
different disciplines.

Unfortunately each discipline uses a different language,
has a slightly different application, and has developed dif-
ferent algorithms. In EDA we have to sample from a dis-
tribution, in belief networks one computes a single marginal
distribution p(y|z) for new evidence z, and statistical physi-
cists want to compute the free energy of a Boltzmann dis-
tribution. Thus the algorithms developed for belief net-
works concentrate on computing a single marginal distri-
bution, whereas for EDA we want to sample p(x) in areas
of high fitness values, i.e. we are interested in a sampling
method which generates points with a high value of p(x).
All disciplines are interested in developing fast algorithms
to compute marginal distributions. The foundation of the
theory is the same for all disciplines. It is based on graphical
models and their decomposition. We hope that the readers

1In [20] they have been named conditional distribution al-
gorithms.



are interested to accompany us on our journey through the
different disciplines.

Today two major branches of EDA can be distinguished.
In the first branch the factorization of the distribution is
computed from the structure of the function to be optimized,
in the second one the structure is computed from the corre-
lations of the data generated. The second branch has been
derived from the theory of belief networks [10]. The under-
lying theory is the same for both branches. For large real life
applications often a hybrid between these two approaches is
most successful [16]. In this paper we investigate the first
branch only.

The problem of computing approximations of distribu-
tions using factorization is investigated using the framework
of maximum entropy. We distinguish exact factorizations
and approximate factorizations. We shortly summarize the
results for our well-known algorithm FDA. We present in de-
tail a new algorithm CCCP. It is derived from an approach
used in statistical physics to approximate the Boltzmann
distribution. It is called the Bethe-Kikuchi approximation.
In this approach the marginals from the unknown Boltz-
mann distribution are not computed from data, but from a
difficult constrained optimization problem. This paper ex-
tends the theory first described in [14].

The different EDA algorithms are shortly numerically com-
pared, using large benchmark problems from 2-D Ising spin
glasses, and Kaufman’s n−k function. We investigate prob-
lems with up to 900 variables, continuing the work in [16],
where graph bipartitioning problems of 1000 nodes are solved.

2. FACTORIZATION OF THE SEARCH DIS-
TRIBUTION

EDA has been derived from a search distribution point of
view. We just recapitulate the major steps published in [19,
16]. We will use in this paper the following notation. Capital
letters denote variables, lower cases instances of variables.
If the distinction between variables and instances is not nec-
essary, we will use lower case letters. Vectors are denoted
by x, a single variable by xi.
Let a function f : X → IR≥0 be given. We consider the
optimization problem

xopt = argmax f(x) (1)

A good candidate for optimization using a search distribu-
tion is the Boltzmann distribution.

Definition 1. For β ≥ 0 define the Boltzmann distribu-
tion2 of a function f(x) as

pβ(x) :=
eβf(x)

P

y
eβf(y)

=:
eβf(x)

Zf (β)
(2)

where Zf (β) is the partition function. To simplify the nota-
tion β and/or f might be omitted.

The Boltzmann distribution concentrates with increasing
β around the global optima of the function. Obviously,
the distribution converges for β → ∞ to a distribution
where only the optima have a probability greater than 0

2The Boltzmann distribution is usually defined as e−
E(x)

T /Z.
The term E(x) is called the energy and T = 1/β the tem-
perature. We use the inverse temperature β instead of the
temperature.

[17]. Therefore, if it were possible to sample efficiently from
this distribution for arbitrary β, optimization would be an
easy task. But the computation of the partition function
needs an exponential effort for a problem of n variables. We
have therefore proposed an algorithm which incrementally
computes the Boltzmann distribution from empirical data
using Boltzmann selection.

Definition 2. Given a distribution p and a selection pa-
rameter ∆β, Boltzmann selection calculates the distribution
for selecting points according to

ps(x) =
p(x)e∆βf(x)

P

y p(y)e∆βf(y)
(3)

The following theorem is easy to prove.

Theorem 3. If pβ(x) is a Boltzmann distribution, then
ps(x) is a Boltzmann distribution with inverse temperature
β(t + 1) = β(t) + ∆β(t).

Algorithm 1 describes BEDA, the Boltzmann Estimated
Distribution Algorithm.

BEDA – Boltzmann Estimated Distribution

1 t ⇐ 1. Generate N points according to the uniform
distribution p(x, 0) with β(0) = 0.

2 do {

3 With a given ∆β(t) > 0, let

ps(x, t) =
p(x, t)e∆β(t)f(x)

P

y
p(y, t)e∆β(t)f(y)

.

4 Generate N new points according to the distribu-
tion p(x, t + 1) = ps(x, t).

5 t ⇐ t + 1.

6 } until (stopping criterion reached)

BEDA is a conceptional algorithm, because the calcula-
tion of the distribution requires a sum over exponentially
many terms. In the next section we transform BEDA into
a practical numerical algorithm.

2.1 Factorization of the distribution
In this section an efficient numerical algorithm is derived

if the fitness function is additively decomposed.

Definition 4. Let s1, . . . , sm be index sets, si ⊆ {1, . . . , n}.
Let fi be functions depending only on the variables xj with
j ∈ si. Then

f(x) =

m
X

i=1

fi(xsi) (4)

is an additive decomposition of the fitness function (ADF).

Definition 5. Let an ADF be given. Then the interac-
tion graph GADF

3 is defined as follows: The vertices repre-
sent the variables of the ADF . Two vertices are connected
by an arc iff the corresponding variables are contained in a
common sub-function.

Given an ADF we want to estimate the Boltzmann distri-
bution (2) using a product of marginals of low order. The
approximation has to fulfill two conditions

3[24] call it a decomposable Markov graph.



• The approximation should use marginals of low order.

• Sampling from the approximation should be easy.

A class of distributions fulfilling these conditions are the
acyclic Bayesian network (acBN).

q(x) =

n
Y

i=1

q(xi|πi) (5)

where πi are called the parents of xi. For acyclic Bayesian
networks sampling can easily be done starting with the root
x1. Cyclic Bayesian networks need a complex sampling pro-
cedure.

Note that any distribution can be written in the form of
an acyclic Bayesian network because of

p(x) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xn|x1, . . . , xn−1)
(6)

But this factorization uses marginal distributions of size
O(n), thus sampling from the distribution is exponential
in n. Therefore we are looking for factorizations where the
size of the marginals is bounded, hopefully independent of
n.

For ADF
′s the following procedure can be used to create

factorizations. We need the following sets:

Definition 6. Given s1, . . . , sm, we define for i = 1, . . . , m
the sets di, bi and ci:

di :=
i
[

j=1

sj , bi := si \ di−1, ci := si ∩ di−1 (7)

We demand dm = {1, . . . , n} and set d0 = ∅. In the theory
of decomposable graphs, di are called histories, bi residuals
and ci separators [11].

The next definition is stated a bit informally.

Definition 7. A set of marginal distributions q̃(xbi
,xci)

is called consistent if the marginal distributions fulfill the
laws of probability, e.g.

X

xbi
,xci

q̃(xbi
,xci) = 1 (8)

X

xbi

q̃(xbi
,xci) = q̃(xci) (9)

Proposition 8. Let a consistent set of marginal distri-
butions q̃(xbi

,xci) be given. If bi 6= ∅ then

q(x) =
Ym

i=1
q̃(xbi

|xci) (10)

defines a valid distribution (
P

q(x) = 1). Furthermore

q(xbi
|xci) = q̃(xbi

|xci), i = 1, . . . m (11)

whereas in general

q(xbi
,xci) 6= q̃(xbi

,xci), i = 1, . . . m (12)

The proof follows from the definition of marginal proba-
bilities. The proof of equation (11) is somewhat technical,
but straightforward. The inequality (12) is often overlooked.
It means that sampling from the factorization does not re-
produce the given marginals.

Definition 9. Equation (10) defines an FDA factoriza-
tion for a given ADF.

Remark: Any FDA factorization can easily be transformed
into an acyclic Bayesian network. Therefore the class of
FDA factorizations is identicak to the class of acyclic Bayesian
networks.

The next theorem was proven in [19]. It shows when
q(xbi

,xci) = q̃(xbi
,xci) is true for a FDA factorization.

Theorem 10 (Factorization Theorem). Let f(x) =
Pm

i=1 fsi(x) be an additive decomposition. If

∀i = 1, . . . , m; bi 6= ∅ (13)

∀i ≥ 2 ∃j < i such that ci ⊆ sj (14)

then

pβ(x) =
Ym

i=1
pβ(xbi

|xci) =

Qm

i=1 pβ(xbi
,xci)

Qm

i=2 pβ(xci)
(15)

The Factorization Theorem shows that under certain con-
ditions the Boltzmann distribution can exactly be repre-
sented by a product of conditional marginals.

Definition 11. The constraint defined by equation (14)
is called the running intersection property (RIP). The fac-
torization is polynomially bounded (PBF) if the size of the
sets {bi, ci} is bounded by a constant independent of n.

The above theorem does not answer the question how to
compute a good or even an exact factorization. The con-
struction defined by equation 7 depends on the sequence
s1, . . . , sm. If the sequence is permutated, it might be possi-
ble that the RIP will be fulfilled, even if it was not fulfilled
before. Furthermore, we can join two or more sub-functions,
resulting in larger sets s̃i. It might be that using these larger
sets, the factorization becomes exact.

Testing all these combinations is prohibitive. Actually, it
turns out that the computation of exact factorization is done
better by investigating the corresponding interaction graph
of the ADF. A well-known algorithm algorithm computes
junction tress [9]. It obtains an exact factorization with
marginals of small size and fulfilling the RIP given an arbi-
trary graph. A short description can be found in [14]. The
largest clique of the junction tree gives the largest marginal
of the factorization.

The space complexity of factorizations has been investi-
gated in [5]. Many applications are defined on grids. This
means that the interaction graph is a grid. Unfortunately,
exact factorizations of 2-D grids are not bounded polynomi-
ally. Thus for larger problems, FDA has to use approximate
factorizations. In the next section some 2-D grid factoriza-
tions are discussed.

2.2 Factorizations of 2-D grids
Let there be a 2-D grid of variables xi,j , i, j = 1, . . . , n.

Let the fitness function be composed of the sub-functions
of pairs of neighboring variables, xi,j , xi+1,j and xi,j , xi,j+1.
The goal is to compute a factorized distribution which is a
good approximation to the true distribution.

An exact factorization can be found with a junction tree.
The difficulty of the computation lies in the triangulation of
the graphical model. One valid triangulation uses the rows
of the grid. Each variable is connected with all variables in
the same row and the neighboring rows. This adds O(n)
edges to the graph. The cliques in the junction tree consist



x1,1 x1,2 x1,3 x1,4

x2,1 x2,2 x2,3 x2,4

x3,1 x3,2 x3,3 x3,4

x4,1 x4,2 x4,3 x4,4

Figure 1: Graph model for a 2-D grid. The thick
lines give a possible spanning tree

x1 x2 x3

x4 x5 x6

x7 x8 x9

x1 x2 x3

x4 x5 x6

x7 x8 x9

Figure 2: A 3×3 grid and its factorization using (17).

of pairs of neighboring rows and have size 2n. Thus the
exact factorization is not polynomially bounded.

Therefore it is advisable to look for approximations. A
very straightforward approximation is to leave out some of
the marginals and build a spanning tree of the grid. This
could be the vertical edges in the first column and all the
horizontal edges, forming a big “E” (see thick lines in figure
1).

Given this subset of the edges and disregarding the rest,
we can define the following distribution:

q(x) = p(x1,1, x2,1)

n−1
Y

i=2

p(xi+1,1|xi,1)
n
Y

i=1

n−1
Y

j=1

p(xi,j+1|xi,j)

(16)
This is a valid probability distribution insofar as it sums
up to 1 and complies with the regarded marginals. But
obviously the choice of some marginals, while forgetting the
rest, retains the stain of arbitrariness. Another possibility
which regards all the given marginals, consists of combining
blocks of four variables (xi,j , xi+1,j , xi,j+1, xi+1,j+1). The
complete distribution can then be built up by:

q(x) = p(x1,1, x2,1, x1,2, x2,2)

n−1
Y

i=2

p(xi+1,1, xi+1,2|xi,1, xi,2)

n−1
Y

j=2

p(x1,j+1, x2,j+1|x1,j , x2,j)

n−1
Y

i=2

n−1
Y

j=2

p(xi+1,j+1|xi,j , xi+1,j , xi,j+1) (17)

However, the factorization (17) violates the running in-
tersection property (14). It reproduces the given marginals
only in the first tetra-variate row and column, but not in

the areas where the running intersection property is vio-
lated. We call the factorization (17) G4. An extension is
the factorization G5. It uses marginals up to order 5. For
the 3*3 grid it is given by

q(x) = p(x1, x2, x4, x5)p(x3, x6|x4, x5)

p(x7, x8)|x4, x5, x6)p(x9|x5, x6, x8) (18)

The optimal decomposition of a grid has already been in-
vestigated for non-serial dynamic programming by [12]. Any
decomposition fulfilling the RIP needs marginals of order
O(n). Thus the exact decomposition can be used for small
grids only.

We next describe our factorized distribution algorithm
FDA which also works with approximate factorizations.

2.3 The Factorized Distribution Algorithm
If the factorization violates the assumption of the factor-

ization theorem, then non-serial dynamic programming does
not work. But an algorithm which estimates the marginals
from samples might still find the optimum. One only has to
compute a good approximate factorization given the graph
GADF. We first describe our algorithm FDA.

FDA – Factorized Distribution Algorithm

1 Calculate bi and ci by the Sub-function Merger Al-
gorithm.

2 t ⇐ 1. Generate an initial population with N indi-
viduals from the uniform distribution.

3 do {

4 Select M ≤ N individuals using Boltzmann selec-
tiona (see definition 2).

5 Estimate the conditional probabilities p(xbi
|xci , t)

from the selected points.

6 Generate new points according to p(x, t + 1) =
Qm

i=1 p(xbi
|xci , t).

7 t ⇐ t + 1.

8 } until (stopping criterion reached)

aThe algorithm works with any selection method

We next describe the sub-function merger algorithm which
computes the FDA factorization. It is a simple heuristic,
trying to cover many edges of the interaction graph by merg-
ing of sub-functions. Let us first discuss the assumption
bi 6= ∅ of the factorization theorem. This assumption is
violated already for the loop

s1 = {1, 2}, s2 = {2, 3}, s3 = {1, 3}

All possible sequences end in b3 = ∅ because the variables of
the sub-function left are already contained in the two previ-
ous sets. One possibility to solve this problem is to choose
only a subset of the si and disregard the others; in our ex-
ample, we can use the factorization q(x) = p(x1, x2)p(x3|x2)
using s1 and s2. An exact factorization is

p(x) = p(x1, x2)p(x3|x2, x1)

This factorization will be generated if the two sub-functions
s2 and s3 are merged. This observation leads to the idea
to compute approximate factorizations by merging of sub-
functions4.
4[3] have called it fusion.



Sub-function Merger

1 S ⇐ {s1, . . . , sm}

2 j ⇐ 1

3 while d̃j 6= {1, . . . , n} do {

4 Chose an si ∈ S to be added

5 S ⇐ S \ {si}

6 Let the indices of the new variables in si be bi =
{k1, . . . , kl}

7 for λ = 1 to l do {

8 δλ ⇐ {k ∈ d̃j−1|(xk, xkλ
) ∈ GADF }

9 }

10 for λ = 1 to l do {

11 if exists λ′ 6= λ with δλ ⊆ δλ′ and kλ′ not
marked superfluous

12 δλ′ ⇐ δλ′ ∪ {kλ}

13 Mark kλ superfluous

14 }

15 for λ = 1 to l do {

16 if not kλ superfluous

17 s̃j ⇐ δλ ∪ {k1, . . . , kλ}

18 j ⇐ j + 1

19 }

20 }

A good merging heuristic tries to minimize the number of
mergers but simultaneously to use all dependencies in GADF.
Thus the heuristic generates graphs with bi 6= ∅ which keep
the number of dependencies as low as possible.

Algorithm 3 describes our heuristic. The idea of the sub-
function merger algorithm is that each new variable is in-
cluded in a set together with the previous variables on which
it depends. However, if another variable depends on a su-
perset of variables, the two sets are merged. After complet-
ing the merge phase, the algorithm calculates c̃j , b̃j and d̃j

analogous to the construction given by (7).
This sub-function merger algorithm might still compute

too large cliques. Therefore a cut parameter k is needed
which bounds the clique size. If the size of a clique becomes
larger than k our implementation will randomly leave out
arcs from GADF . For 2-D grid problems where the ADF
consists of functions of two variables only, the sub-function
merger algorithm uses marginals up to order 3. The factor-
ization covers the interaction GADF . For the 3*3 grid shown
in figure 2 the sub-function merger constructs the following
factorization:

p(x) = p(x5, x6)p(x4|x5)p(x3|x6)p(x2|x3, x5)

p(x8|x5)p(x1|x2, x4)(x9|x6, x8)(x7|x4, x8) (19)

Our presentation of the sub-function merger algorithm has
been very short. The interested reader is referred to [3]
for an in depth discussion of different fusion and folding
heuristics. In the area of Bayesian networks, the problem
has been investigated by [2].

If the conditions of the factorization theorem are fulfilled,
the convergence proof of BEDA is valid for FDA, too. Since
FDA uses finite samples of points to estimate the conditional

probabilities, convergence to the optimum will depend on
the size of the sample. For small sample sizes the conver-
gence rate is higher if a number of steps with low selection
is used instead of just one step using strong selection. Thus
this method is numerically more efficient than to use a very
large sample size and strong selection.

FDA has experimentally proven to be very successful on a
number of functions where standard genetic algorithms fail
to find the global optimum. In [15] the scaling behavior for
various test functions has been studied. For recent surveys
the reader is referred to [16, 18, 14].

We next want to put the FDA factorizations in a broader
perspective, especially the approximate factorizations.

3. THE MAXIMUM ENTROPY PRINCIPLE
In this section we investigate the problem of approximat-

ing an unknown distribution given some information in a
theoretical framework.

Let x = (x1, . . . , xn), B = {0, 1}n. Let φj : B → {0, 1}, j =
1, k be binary functions, often called features. Let a sample
S be given, p̃(x) the observed distribution. Let

Ep̃(φj) =
X

x∈B

p̃(x)φj(x) (20)

Note that φj can specify any marginal distribution, but also
more general expectations.

Problem We are looking for a distribution which fulfills
the constraints

Ep(φj) = Ep̃(φj) (21)

and is in some sense plausible.
If only a small number of features is given the problem is

under-specified. Consequently, for incomplete specifications
the missing information must be added by some automatic
completion procedure. This is achieved by the maximum
entropy principle. Let us recall

Definition 12. The entropy [4] of a distribution is de-
fined by

H(p) = −
X

x

p(x) ln(p(x)) (22)

Maximum entropy principle (MaxEnt): Let

P = {p|Ep(φj) = Ep̃(φj), j = 1, . . . , k} (23)

Then the MaxEnt solution is given by

p∗ = argmaxp∈P H(p) (24)

The maximum entropy principle formulates the principle of
indifference. If no constraints are specified, the uniform ran-
dom distribution is assumed. MaxEnt has a long history
in physics and probabilistic logic. The interested reader is
referred to [7, 8]. MaxEnt is especially attractive because
there exists a constructive way to obtain the solution.

The MaxEnt solution is obtained from the constrained
optimization problem

p∗ = argmaxp∈P H(p) (25)
X

x

p(x) = 1 (26)

X

x

p(x)φj(x) = Ep̃(φj) (27)



This is a convex optimization problem with linear con-
straints. It can be solved by introducing Lagrange multipli-
ers.

L(p, Λ, γ) = −
X

x

p(x) ln(p(x) + γ(
X

x

p(x) − 1)(28)

+
k
X

i=1

λi(Ep(φj) − Ep̃(φj)) (29)

where Λ = (λ1, . . . , λk).
The maxima of L can be obtained by setting the deriva-

tives of L to zero. We obtain

∂L

∂p(x)
= − ln p(x)) − 1 −

k
X

j=1

λjφj(x) + γ (30)

Setting the derivative to zero gives the parametric form
of the solution

p∗(x) = exp (1 − γ) exp
k
X

j=1

λjφj(x) (31)

Definition 13. Let Q be the space of distributions of the
parametric form

Q = {q|q(x) =
1

Z
exp

k
X

j=1

λjφj(x) (32)

In order to characterize the MaxEnt solution, the relative
entropy between distributions has to be introduced.

Definition 14. The relative entropy or Kullback-Leibler
divergence between two distributions p and q is defined as

KLD(p, q) =
X

x

p(x) ln
p(x)

q(x)
(33)

Note that KLD(p, q) 6= KLD(q, p), i.e. KLD is not sym-
metric! If q(x) = 0 and p(x) > 0 we have KLD(p, q) = ∞.
This means that KLD gives large weights to values near
zero. In all other aspects KLD is a distance measure. The
following lemma holds ([4]).

Lemma 15. For any two probability distributions p and q,
KLD(p, q) ≥ 0 and KLD(p, q) = 0 iff p = q.

In our application KLD fulfills the Pythagorean property.

Lemma 16 (Pythagorean Property). Let p ∈ P , q ∈
Q, and p∗ ∈ P ∩ Q, then

KLD(p, q) = KLD(p, p∗) + KLD(p∗, q) (34)

Proof. Let r, s ∈ P , q ∈ Q. Then
X

x

r(x) ln q(x) =
X

x

s(x) ln q(x)

Now let p ∈ P , qinQ, and p∗ ∈ P ∩ Q. Then

KLD(p, p∗) + KLD(p∗, q)

= KLD(p, p∗) +
X

x

p∗(x) ln p∗(x) −
X

x

p∗(x) ln q(x)

= KLD(p, p∗) +
X

x

p(x) ln p∗(x) −
X

x

p(x) ln q(x)

= KLD(p, q)

The following theorem follows easily from the lemma:

Theorem 17 (Maximum Entropy Solution). If p∗ ∈
P ∩ Q, then

p∗(x) = argmaxp∈P H(p) (35)

Furthermore, p∗ is unique.

The constrained optimization problem can be solved by
standard mathematical algorithms. But also specialized al-
gorithms have been invented, a popular one is Iterative Pro-
portional Fitting (IPF). It is used if the features define
marginals. IPF iteratively computes a distribution qτ (x)
from the given marginals pk(xk), k = 1, . . . , K, where xk is
a sub-vector of x and τ = 0, 1, 2, . . . is the iteration index.
Let n be the dimension of x and dk be the dimension of xk.
qτ=0 is the uniform distribution. The update formula is

∀x qτ+1(x) = qτ (x)
pk(xk)

P

y∈{0,1}n−dk

qτ (xk,y)
(36)

with k = ((τ − 1) mod K) + 1.
Since the distribution q, which has to be stored and up-

dated in every time step, has exponential size, this imple-
mentation takes exponential time and space.

There exist another justification of the MaxEnt solution,
it is given by the Maximum Log-Likelihood principle.

Definition 18. Let S = {X1, . . . , XN} be an empirical
sample, p̃(x) the empirical distribution. let q(x) be a distri-
bution. Then the likelihood that q generates the data is given
by

LH(q) =
N
Y

i=1

q(Xi) =
Y

x∈B

q(x)Np̃(x) (37)

The log-likelihood is defined as

LogLH(q) =
X

x∈B

Np̃(x) ln q(x) (38)

Theorem 19 (Maximum Log-Likelihood solution).
If p∗ ∈ P ∩ Q, then

p∗(x) = argmaxq∈Q LogLH(q) (39)

Furthermore, p∗ is unique.

Proof. Let p̃(x) be the observed distribution. Clearly
p̃ ∈ P . Suppose q ∈ Q and p∗ ∈ P ∩ Q. We show that
L(q) ≤ L(p∗). The Pythagorean property gives

KLD(p̃, q) = KLD(p̃, p∗) + KLD(p∗, q)

Therefore

KLD(p̃, q) ≥ KLD(p̃, p∗)

−H(p̃) − LogLH(q) ≥ −H(p̃) − LogLH(p∗)

LogLH(q) ≤ LogLH(p∗)

Thus the MaxEnt solution can be viewed under both the
maximum entropy framework as well as the maximum log-
likelihood framework. This means that p∗ will fit the data as
closely as possible while as the maximum entropy solution
will not assume facts beyond those given by the constraints.

We next investigate the relation of FDA factorizations and
the MaxEnt solution.



Definition 20. The MaxEnt problem is called complete
marginal if all marginal distributions p(xsk

) are given. The
FDA factorization is called complete, if the corresponding
graphical model contains the interaction graph.

Theorem 21. The MaxEnt solution of a complete margi-
nal MaxEnt problem is the exact distribution. The MaxEnt
solution of any complete FDA factorization is the exact dis-
tribution.

Proof. Let a complete marginal MaxEnt problem be
given. Then the features φ(xsi) are defined by Ep̃φ(xsi) =
p̃(xsi). We abbreviate the parameters in equation 32 by
λ(xsi). Now set λ(xsi)p̃(xsi) = βf(xsi). Thus the exact
distribution is in the set Q. Obviously the exact distribu-
tion fulfills the marginalization constraints. Therefore the
exact distribution is the MaxEnt solution. The proof for
complete FDA factorizations works accordingly.

This theorem is another justification of the MaxEnt prin-
ciple. If all relevant information is given, then the unique
MaxEnt solution is the exact distribution. We obtain the
following corollary.

Corollary 22. The MaxEnt solution of any complete
FDA factorization fulfilling the RIP is identical to the dis-
tribution specified by the FDA factorization.

Thus the best approximation seems to be the MaxEnt
solution. But the computation of the MaxEnt solution for
complete FDA factorizations which do not fulfill the RIP is
exponential. Furthermore, sampling from the MaxEnt so-
lution is computationally expensive. Therefore we use the
FDA factorization as the approximation. Sampling from a
FDA factorization is easy, but even for complete factoriza-
tions the generated distribution is different from the exact
distribution, if the RIP is violated.

We next turn to another approach to approximate the
Boltzmann distribution. In this case the Kullback-Leibler
divergence is minimized without computing the marginal
distributions from samples. Instead the best values are com-
puted from a constrained minimization problem.

4. APPROXIMATING THE BOLTZMANN
DISTRIBUTION

The Boltzmann distribution plays an important role in
statistical physics. Therefore a number of approximation
techniques have been tried. The idea is the compute an
approximation q using marginals of low order

q(x) =
1

Z

k
Y

i=1

q̃(xk) (40)

which minimizes some distance to the Boltzmann distribu-
tion. The approach using the Kullback-Leibler distance is
described in [14] using the terminology of physics. We give
here a short mathematical derivation.

KLD(q|pβ) =
X

x

q(x) ln q(x) −
X

x

q(x) ln pβ(x)

= −H(q) + ln Z − βEq(f)

We now assume that the function is defined by an ADF.
Then we easily obtain

Eq(f) =
m
X

i=1

q(xsi)fi(xsi) (41)

The expected average of the function can be computed us-
ing the marginals. The difficult problem is the computation
of H(q). We will restrict our discussion to FDA factoriza-
tions. In the simplest case we use

q(x) =
q̃(xsi)

q̃(xci)
(42)

For this factorization one computes

H(q) = −
m
X

i=1

q(xsi ln q̃(xsi) + q(xci) ln q̃(xci) (43)

Thus we arrive at the following constraint optimization
problem.

Definition 23 (Bethe-Kikuchi approximation).

argminqKLD(q|pβ) =

m
X

i=1

(q(xsi) ln q(xsi)

− q(xci) ln q(xci)) − β
m
X

i=1

q(xsi)fi(xsi) (44)

subject to the constraints for all sj with ci ⊂ sj

X

xsi

q(xsi) = 1 (45)

X

xsj
\xci

q(xsj ) = q(xci) (46)

Remark: Before we discuss how to solve the minimization
problem, we want to mention that the minimization problem
is not convex! There might exist many local minima. This
leads to the following important difference between the Max-
Ent solution and the Kikuchi approximation. Theorem 21
shows that the MaxEnt solution is exact if a set of marginals
is given which covers the interaction graph. In contrast, the
Bethe-Kikuchi approximation gives not the unknown distri-
bution if the RIP is not fulfilled.

The constraints make the the solution problem difficult.
As already done for the MaxEnt solution we introduce the
Lagrange function

L(p, Λ, Γ) = KLD(q|pβ) +

m
X

i=1

γi

X

xsi

(q(xsi) − 1)

+

m
X

i=1

X

xci

(λ(sj , ci)
X

xsj
\xci

(q(xsj ) − q(xci)) (47)

The minima of L are determined be setting the derivatives
of L zero. The independent variables are (q(xsi),q(xci),γi,and
λ(sj , ci). We obtain

∂L

∂q(xsi)
= ln q(xsi) + 1 − βq(xsi)f(xsi) + γi + r(Λ) (48)

Setting the derivative to zero, we obtain the parametric
form



q(xsi) = e−1−γie−r(Λ)eβf(xsi
) (49)

Note that the parametric form is again exponential. The
Lagrange factors Γ are easily computed from
P

xsi
q(xsi) = 1. The factors Λ have to be determined from

a non-linear system of equation. Before we describe an algo-
rithm for solving this equation, we describe a simple special
case, the mean-field approximation.

4.1 The mean-field approximation
In the mean-field approximation uni-variate marginals only

are determined.

q(x) =

n
Y

i=1

q(xi) (50)

Then we can compute its entropy and Eq(f).

H(q) = −
X

x

n
Y

i=1

q(xi)
n
X

j=1

ln q(xj)

= −
X

x1

q(x1) ln q(x1) −
X

x2,..xn

Y

i=2

q(xi)
X

j=2

ln q(xj)

= −
n
X

i=1

X

xi

q(xi) ln q(xi)

Eq(f) =
X

x

n
Y

i=1

q(xi)f(x)

=
m
X

i=1

n
Y

j∈si

q(xj)f(xsi)

We can now try to find a minimum by setting the deriva-
tive of KLD equal to zero, using the uni-variates as variables.
We abbreviate qi = q(xi = 1). For the mean-field approx-
imation the minimization problem is convex, therefore the
minimum exists and is unique.

Theorem 24. The mean-field approximation minimizes
the Kullback-Leibler divergence to the Boltzmann distribu-
tion. The local minima of the divergence are given by the
nonlinear equation

q∗i =
1

1 + e
∂Eq
∂qi

(51)

Proof. We compute the derivative

∂KLD

∂qi

= ln
qi

1 − qi

+
∂Eq

∂qi

= 0 (52)

The solution gives (51).

Equation 51 can be solved by an iteration scheme.

Remark: In the mean-field approximation the univariate
marginals are considered to be variables. The minimization
problem is convex, therefore a unique solution exist.

If higher-order marginals are used in the approximation,
then the minimization problem might have many local min-
ima.

5. LOOPY BELIEF MODELS AND REGION
GRAPHS

The solution of the minimization problem is difficult. We
decided not to use a general mathematical minimization al-
gorithm, but to modify a specialized algorithm, recently pro-
posed in[26]. It is based on the concept of a region graph.
A region graph is a loopy graphical model. It is strongly
related to partially ordered sets (posets) or Hasse diagrams.
Similar or identical structures have been presented in [1, 13,
23]. This section follows largely the notation of [26].

The original Kikuchi factorization is a loopy model, there-
fore different from the FDA factorization. Therefore sam-
pling from the Kikuchi factorization is difficult. This is
the reason that the FDA factorization has no loops. The
Kikuchi factorization and the concept of region graph has
also been used for an EDA algorithm by [22]. But the
marginals are not determined from minimization of the Kullback-
Leibler divergence, they are estimated from samples.

5.1 Regions
The region graph is introduced in [26] using another graph-

ical model, the factor graph. The factor graph is a more
detailed way to describe an additive decomposition. The
factor graph is not introduced here. Therefore some expres-
sions will be more clumsy.

Definition 25. Let S = {s1, . . . , sm} be the index set of
an additive decomposition for a fitness function f , such that

f(x) =
X

si∈S

fi(xsi) (53)

A region R = (sR, IR) is a set of variable indices sR ⊆
{1, . . . , n} and a set of sub-function indices IR ⊆ {1, . . . , m},
such that

∀i ∈ IR : si ⊆ sR (54)

The variables contained in the region are indexed by sR,
whereas IR contains the indices of the sub-functions which
are contained in the region. It is asserted by (54) that all
variables needed for the contained sub-functions are in sR.

We keep in mind our goal to approximate the Boltzmann
distribution with the energy E(x) = −f(x). For a region,
we can define a local energy.

Definition 26. For a region R, define the region en-

ergy

ER(xsR
) := −

X

i∈IR

fi(xsi) (55)

Region energies are defined only for those regions which
contain the variables of at least one sub-functions. Similar
to the mean-field approach, we define a local approximation
of the objective Boltzmann distribution on a region, qR. In
[26] this local distribution is called the belief on R.

5.2 Region Graph

Definition 27. A region graph is a graph G = (R, ER),
where R is a set of regions and ER is a set of directed edges.
An edge (Rp, Rc) ∈ ER is only allowed if sRc ⊂ sRp . If
(Rp, Rc) ∈ ER, we call Rp a parent of Rc and Rc child of
Rp.

Since ER imposes a partial ordering on the set of regions,
in [13] the same structure was called a partially ordered set
or poset.



Lemma 28. A region graph is directed acyclic.

Proof. This follows immediately from the requirement
that edges are only allowed from supersets to subsets.

A junction tree can be turned into a region graph by creat-
ing a region for every cluster and every separator and adding
edges from each node to each neighboring separator.

The global distribution of a junction tree is the product
of all distributions on the clusters ([14]), divided by the dis-
tributions of all the separators. We generalize this concept
too, by introducing counting numbers of the regions.

Definition 29. The counting number cR of a region R
is defined recursively as

cR = 1 −
X

R′∈A(R)

cR′ (56)

where A(R) is the set of all ancestors of R.

This is well-defined, because the region graph is cycle-
free. The maximal regions (without ancestors) have count-
ing number 1. From there, the counting numbers can be
calculated from the top to the bottom of the graph.

5.3 Region Graph and Junction Tree
If the region graph is derived from a junction tree, with the

qR being the local distributions on the clusters and separa-
tors, k(x) is a valid distribution, since its definition coincides
with the junction tree distribution.

The junction property also has an equivalent on the region
graph.

Definition 30. We call a region graph valid if it fulfills
the region graph condition, which states that

1. For all variable indices i ∈ {1, . . . , n} the set RX,i :=
{R ∈ R|i ∈ sR} of all regions R that contain Xi form
a connected subgraph with

X

R∈RX,i

cR = 1 , (57)

and

2. For all sub function indices i ∈ {1, . . . , m} the set
Rf,i := {R ∈ R|i ∈ IR} of all regions R that con-
tain fi form a connected subgraph with

X

R∈Rf,i

cR = 1 . (58)

The connectivity of the subgraph, like the junction prop-
erty, prevents that in different parts of the graph contradic-
tory beliefs evolve. The condition on the counting numbers
makes sure that every variable and every sub-function is
counted exactly once.

In a junction tree it is often the case that several separa-
tors contain the same variables. In [9] it was proposed to
replace these by a single separator that is connected to all
clusters in which it is contained. Then care must be taken
that the local distribution pS of such a separator S is counted
the appropriate number of times. This can also be done in
the region graph. The definition of counting numbers and
the Kikuchi approximation ensure that the distribution is
divided by pS the appropriate number of times.

Furthermore, [9] proposes separators not only between
clusters, but also between other separators. They call the
resulting tree an Almond tree. This is another step of gener-
alizing the junction tree towards the region graph, and it is
straightforward to do this with our region graph definition,
too.

In fact, it has been proven that cycle-free region graphs
give exact results. In the following an adaptation of the
proof for our notation is presented. For this we prove some
lemmata.

Lemma 31. In a cycle-free region graph, the counting num-
bers are

cR = 1 − |ΠR| (59)

where |ΠR| is the number of parents of the region R.

Proof. The proof exploits the fact that the sets of an-
cestors for all parents of a node R are disjunct.

cR = 1 −
X

R′∈A(R)

cR′ (60)

= 1 −
X

R′∈ΠR

0

@cR′ +
X

R′′∈A(R′)

cR′′

1

A (61)

= 1 −
X

R′∈ΠR

0

@1 −
X

R′′∈A(R′)

cR′′ +
X

R′′∈A(R′)

cR′′

1

A (62)

= 1 −
X

R′∈ΠR

1 (63)

= 1 − |ΠR| (64)

Lemma 32. Cycle-free region graphs originating from junc-
tion trees are valid.

Proof. It follows immediately from the junction prop-
erty that the subgraph RX,i of the region graph that con-
tains a variable Xi is connected. For every region R that
the subgraph contains, it contains also all its parents ΠR.
Since it is cycle-free, it is also a tree.

We only have to prove (57) (the sum of the counting num-
bers is 1). We use Lemma 31:

X

R∈RX,i

cR =
X

R∈RX,i

1 − |ΠR| (65)

= |RX,i| −
X

R∈RX,i

|ΠR| (66)

This is equal to the number of nodes in the tree RX,i minus
the number of edges in the tree, and it is an obvious property
of trees that this difference is 1.

The second part with the sub-functions can be proven
analogously.

The Kikuchi factorization is defined as follows ([22]).

Definition 33. The Kikuchi approximation of a prob-
ability distribution for a region graph is

k(x) =
Y

R∈R

qR(xsR
)cR (67)



In general, it is not normalized and therefore no probability
distribution. The normalized Kikuchi approximation

pk(x) =
k(x)

P

y
k(y)

(68)

is a probability distribution.

The computation of pk(x) is in general exponential.

Theorem 34. For a valid region graph without cycles, the
Kikuchi approximation is exact.

Proof. We prove that the Kikuchi approximation (67)
gives exact marginals on the regions:

k(xsR
) = qR(xsR

) (69)

We choose leaf regions – regions that are connected to only
one other region – and eliminate those from the graph, until
only the region R remains.

Choose a leaf region S 6= R. Since the graph is cycle-free,
such a leaf must exist. For the single connection of S, there
exist two possibilities:

• S is the child of another region. But since it has only
one parent, from Lemma 31 follows that it has count-
ing number cS = 0. So, its local belief qS(xsS

)cS has
no effect in (67), and we can remove this region.

• S is parent of another region T . Remember that sT ⊂
sS . From local consistence of the beliefs we have

X

xsS\sT

q(xsS
) = q(xsT

) (70)

From this, it follows that

q(xsT
)cT

X

xsS\sT

q(xsS
) = q(xsT

)cT +1 (71)

We see that it has no effect to eliminate the region S
and increase the counting number of T by one, since
it has then one parent less.

For cycle-free region graphs derived from a junction tree,
the Kikuchi approximation is equal to the junction tree dis-
tribution. But in general, k is not even a distribution. And
the normalized Kikuchi approximation pk cannot be com-
puted in polynomial time. What we wish for is an approx-
imative distribution which can be computed polynomially
and from which points can be sampled.

We now describe a local iteration algorithm, based on the
region graph and message passing between regions.

6. THE CONCAVE CONVEX PROCEDURE
The Concave Convex Procedure (CCCP) [27] is a variant

of Generalized Belief Propagation GBP proposed in [25]. It
is based on the observation that the Lagrangian consists of
a convex and a negative convex (concave) term. The CCCP
algorithm alternates between updates of the convex and the
concave term.

6.1 Convex and Concave Lagrangian
We now derive the CCCP update procedure, following

[27]. The algorithm is fairly complex. A detailed description
can be found in the dissertation [6].

The Lagrangian to be minimized is given by equation (47)

L =
X

R∈R

cR(
X

xsR

qR(xsR
)βE(xsR

)

+
X

xsR

qR(xsR
) log qR(xsR

))

+
X

R∈R

γR

0

@1 −
X

xsR

qR(xsR
)

1

A

+
X

(P,R)∈ER

X

xsR

λPR(xsR
)

0

@

X

xsP \sR

qP (xsP
) − qR(xsR

)

1

A

(72)

The basic idea of CCCP is now to split up L in a convex
and a concave part. The problematical part is the entropy
term: For regions with cR > 0, the entropy term is convex,
for regions with cR < 0 it is concave. The average energy
and the constraints are linear in the qR, so it does not matter
where we put them.

To avoid an awkward case separation into convex and con-
cave regions, we set

cmax = max
R

cR (73)

and use this definition to split up L into a convex part

Lvex =
X

R∈R

cmax(
X

xsR

qR(xsR
)βER(xsR

)

+
X

xsR

qR(xsR
) log qR(xsR

))

+
X

R∈R

γR

0

@1 −
X

xsR

qR(xsR
)

1

A

+
X

(P,R)∈ER

X

xsR

λPR(xsR
)

0

@

X

xsP \sR

qP (xsP
) − qR(xsR

)

1

A

(74)

and a concave part

Lave =
X

R∈R

(cR − cmax)(
X

xsR

qR(xsR
)ER(xsR

)

+
X

xsR

qR(xsR
) log qR(xsR

)) (75)

It is easy to see that L = Lvex + Lave.

6.2 Outer and Inner Loop
CCCP updates the beliefs and messages in turn. It con-

sists of an inner loop in which the messages are updated
until convergence, and an outer loop in which the current
estimates of the beliefs are updated. The inner loop uses
the iteration index τ (like GBP), and the outer loop uses
the iteration index ξ.



6.2.1 The Outer Loop
For the outer loop iteration the ansatz is

∇Lξ+1
vex + ∇Lξ

ave = 0 (76)

where ∇L denotes the vector of the partial derivatives of L
with respect to the beliefs qR(xsR

). These derivatives are

∂Lvex

∂qR(xsR
)

= cmax (βER(xsR
) + log qR(xsR

) + 1) − γR

−
X

P |(P,R)∈ER

λPR(xsR
) +

X

C|(R,C)∈ER

λRC(xsC
) (77)

and

∂Lave

∂qR(xsR
)

= (cR − cmax) (βER(xsR
) + log qR(xsR

) + 1) .

(78)
Inserting (77) and (78) into (76) yields

cmax

“

βER(xsR
) + log qξ+1

R (xsR
) + 1

”

− γR

−
X

P |(P,R)∈ER

λPR(xsR
) +

X

C|(R,C)∈ER

λRC(xsC
)

+ (cR − cmax)
“

βER(xsR
) + log qξ

R(xsR
) + 1

”

= 0 . (79)

Solving this for qξ+1
R (xsR

) gives the update equations for the
beliefs in the outer loop:

qξ+1
R (xsR

) = qξ
R(xsR

)
cmax−cR

cmax exp

»

−
cR

cmax
βER(xsR

)

–

exp

2

4

γR − cR

cmax
+

1

cmax
(

X

P |(P,R)∈ER

λPR(xsR
))

3

5

exp−
1

cmax

2

4

X

C|(R,C)∈ER

λRC(xsC
)

3

5 (80)

For the regions with cR = cmax the previous belief qξ
R(xsR

)
disappears in this equation.

We next introduce messages ([25])

mPC(xsC
) := e

1
cmax

λP C(xsC
)

(81)

and choose γR appropriately for normalization, which changes
the update equation to

qξ+1
R (xsR

) ∝ qξ
R(xsR

)
cmax−cR

cmax e
−

cR
cmax

βER(xsR
)

Q

P |(P,R)∈ER
mPR(xsR

)
Q

C|(R,C)∈ER
mRC(xsC

)
(82)

6.2.2 The Inner Loop
The inner loop update equation for the messages can be

derived by inserting (82) into the consistency equation

X

xsP \sR

qP (xsP
) = qR(xsR

) (83)

This gives

X

xsP \sR

qξ
P (xsP

)
cmax−cP

cmax e
−

cP
cmax

βEP (xsP
)

Q

Q|(Q,P )∈ER
mQP (xsP

)
Q

C|(P,C)∈ER
mPC(xsC

)

= qξ
R(xsR

)
cmax−cR

cmax e
−

cR
cmax

βER(xsR
)

Q

Q|(Q,R)∈ER
mQR(xsR

)
Q

C|(R,C)∈ER
mRC(xsC

)
(84)

The message mPR(xsR
) is independent of the summation

variables xsP \sR
, so it can be extracted from the sum. It

appears in the denominator on the left side of (84) and in
the numerator on the right side. This allows to solve the
equation for this message.

With the abbreviations

gR(xsR
) := qξ

R(xsR
)

cmax−cR
cmax e

−
cR

cmax
βER(xsR

)
(85)

hR(xsR
) :=

Q

Q|(Q,R)∈ER
mτ

QR(xsR
)

Q

C|(R,C)∈ER
mτ

RC(xsC
)

(86)

we arrive at the inner loop update equation

mτ,upd
PR (xsR

) = mτ
PR(xsR

)

s

P

xsP \sR

gP (xsP
)hP (xsP

)

gR(xsR
)hR(xsR

)
(87)

In order to make the iteration more robust, damping is
applied

• Linear damping [26, 27] calculates the messages as a
linear combination between the old and update mes-
sages:

mτ
P→R(xR) = (1−α)mτ−1

P→R(xR)+αmτ,upd
P→R(xR) (88)

In [27], linear damping with α = 0.1 was used.

6.3 FDA factorization and region graphs
The marginals proposed by Kikuchi cannot be expressed

as an FDA factorization. Therefore sampling from the Kikuchi
approximation is computationally expensive. In [22] Gibbs
sampling has been used. We decided to consider FDA fac-
torizations only.

Given an arbitrary FDA factorization, we use the specified
marginals to create a region graph. This is always possible.
Then the Kikuchi approximation is computed using this re-
gion graph. After the computation of the approximation the
FDA factorization is used for sampling.

7. NUMERICAL RESULTS
The EDA family of algorithms seems to be mature, at

least for binary problems. It is time to demonstrate the
state-of-the-art with large instances of popular benchmark
problems. In [16] large graph-bi-partitioning problems have
been solved. Large problems have been also solved in [21].
We will continue this work here. We will use Kaufman’s
n − k function and problems on 2-D grids problems. The
number of variables will be up to 900. Kaufman’s function
is an example of an ADF with random connections, the 2-D
grid problems are important problems with regular connec-
tions.



Size pro. entr. best value optimum
7(1) 0.184 2.65 34.6649 34.6649
7(2) 0.158 1.26 35.0256 35.0256
7(3) 0.249 1.60 35.4166 35.4166
10(3) 0.077 3.54 72.6994 72.6994
10(1) 0.014 5.26 65.9970 65.9970
15(β = 10) 0.000 5.81 165.4260 165.4260
15(β = 30) 0.000 1.86 165.4260 165.4260
20(1) 0.000 1.96 297.259 297.259
20(2)(β = 10) 0.000 10.88 299.697 300.94
20(2)(β = 30) 0.000 2.05 299.994 300.94
25 (β = 20) 0.000 5.59 462.743 466.87
25 (β = 30) 0.000 3.10 463.622 466.87

Table 1: Results of CCCP on Ising spin glasses (β =
10). Best value by CCCP, known optimum. β = 10.

Spin glass:

f(x) =
X

i,j

fi,j(si, sj) (89)

sj is one of the 4 neighbors of si, si ∈ {−1, 1}. The func-
tion values are randomly drawn uniformly in the interval
[−1, +1].

4-grid:

f(x) =
X

i,j,k,l

fi,j(xi, xj , xk, xl) (90)

The indices define a plaquette on the 2-D grid. The func-
tion values are randomly drawn uniformly in the interval
[−1, +1].

Kaufmann random n − 3:

f(x) =
n
X

i=1

fi(xi, xj , xk) (91)

The indices i, j, k are randomly chosen. The function values
are drawn uniformly in [0, 1].

7.1 Numerical results of the Bethe-Kikuchi Ap-
proximation

The Bethe-Kikuchi approximation is obtained by mini-
mizing the relative entropy to the Boltzmann distribution.
It leads to a convex-concave constraint minimization prob-
lem. Thus the minimization problem might have many local
minima. This can be confirmed by small instances of the
Ising problem, where an exact factorization by the junction
tree method is still possible.

The Convex-Concave algorithm CCCP is surprisingly fast.
Overall, the results are astonishingly good. For small prob-
lems (7*7) the Kikuchi approximation can be exact. This
can be seen for the problem instances (1) and (3) by look-
ing at the results produced by an exact factorization derived
from a junction tree. For 10*10 problems, the Kikuchi ap-
proximation is not exact, nevertheless the optimum is gen-
erated with a reasonable probability. From problems of size
15*15 on the optimum is generated with a probability less
than 10−4. Nevertheless the best values in a sample of size
10000 are nearby the global optimum. For the largest prob-
lems (size 25 ∗ 25 ) the results become bad.

Altogether, the CCCP algorithm is very fast. The quality

problem size alg. sample. β best value
Ising 400 FDA 30000 - 297.259
Ising 400 CCCP 10000 30 297.259
Ising 625 FDA 30000 - 466.460
Ising 625 CCCP 10000 30 463.622
4-grid 400 FDA 10000 - 207.565
4-grid 400 CCCP 10000 30 207.565
4-grid 625 FDA 30000 - 320.069
4-grid 625 CCCP 10000 30 320.132
4-grid 900 FDA 30000 - 459.274
4-grid 900 CCCP 10000 30 454.237
n − 3 400 FDA 10000 - 0.7535
n − 3 400 CCCP 10000 12000 0.7520
n − 3 625 FDA 30000 - 0.7501
n − 3 625 CCCP 10000 15000 0.7436

Table 2: Comparison of FDA and CCCP on large
problems.

of the generated solutions is good, but decreases with the
size of the problem instance.

7.2 A comparison of FDA and CCCP

In this section we make a first comparison. We consider
the 2-D grid problems Ising spin glasses, Random-4, and
Kaufman’s random n − k function. Random-4 is an ADF

with sub-functions of four variables f(x1, x2, x3, x4) defined
on contiguous plaquettes of the 2-D grid. We set k = 3 for
Kaufman’s function. The following table is just a proof of
concept.

The standard FDA algorithm with large population sizes
(N = 30000) performs very good on all instances. It should
be no surprise that the population size has to be large. The
factorization of 2-D grid problems uses marginals of size 5,
the sub-function merger algorithms creates marginals up to
size 8. It needs a large sample size to compute good esti-
mates of these marginals. We remind the reader that for the
CCCP algorithm the samples are computed only once, after
computing the marginals. Note that the values of β has to
be extremely large for the Kaufman function.

8. CONCLUSION AND OUTLOOK
The efficient estimation and sampling of distributions is a

common problem in several scientific disciplines. Unfortu-
nately each discipline uses a different language to formulate
its algorithms. We have identified two principles used for
the approximation – minimizing the Kullback-Leibler diver-
gence KLD(p||q) or KLD(q||p). p is the distribution to be
estimated and q its approximation. KLD(p||q) is used by
the maximum entropy principle and the maximum loglike-
lihood principle, KLD(q||p) is used by the Bethe-Kikuchi
approximation developed in statistical physics.

We have shown that the basic theory is the same for the
two algorithms. This theory deals with the decomposition
of graphical models and the computation of approximate
factorizations. If the unknown distribution allows an exact
factorization, then both methods lead to KLD = 0, thus
they compute the exact distribution.

We have discussed two EDA algorithms in detail. The
standard FDA algorithm computes a factorization from the
graph representing the structure. If the corresponding graph-
ical model does not fulfill the assumptions of the factoriza-



tion theorem the exact distribution is only approximated.
Factorizations which cover as much as possible from the
interaction graph GADF are obtained by merging of sub-
functions. The marginals are computed from sampling the
FDA factorization.

The Bethe-Kikuchi approach computes the marginals from
a difficult constrained minimization problem. We have pro-
posed an extension of the original approach which uses the
FDA factorization. The results show that for binary prob-
lems the EDA algorithms perform as good or even better
than other heuristics for optimization. At this stage our al-
gorithm is not yet optimized from a numerical point of view,
nevertheless is is already competitive. In our opinion too
many researchers still investigate 1-D problems. Our theory
and practice shows that these problems can be solved ex-
actly in polynomial time if the junction tree factorization is
used.

The interested reader can download our software from the
WWW site http://www.ais.fraunhofer.de/∼muehlen/.
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[6] R. Höns. Estimation of Distribution Algorithms and
Minimum Relative Entropy. PhD thesis, University of
Bonn, 2005.

[7] E. T. Jaynes. Information theory and statistical
mechanics. Phys. Rev, 6:620–643, 1957.

[8] E. T. Jaynes. Where do we stand on maximum
entropy? In R. D. Levine and M. Tribus, editors, The
Maximum Entropy Formalism. MIT Press,
Cambridge, 1978.

[9] F. V. Jensen and F. Jensen. Optimal junction trees. In
Proceedings of the 10th Conference on Uncertainty in
Artificial Intelligence, pages 360–366, Seattle, 1994.

[10] M. I. Jordan, editor. Learning in Graphical Models.
MIT Press, Cambrigde, 1999.

[11] S. L. Lauritzen. Graphical Models. Clarendon Press,
Oxford, 1996.

[12] A. Martelli and U. Montanari. Nonserial dynamic
programming: On the optimal strategy of variable
elimination for the rectangular lattice. J. Math. Anal.
Appl., 40:226–242, 1972.

[13] R. J. McEliece and M. Yildirim. Belief propagation on
partially ordered sets. In Proceedings of the 15th
Internatonal Symposium on Mathematical Theory of
Networks and Systems (MTNS 2002), 2002.

[14] H. Mühlenbein and R. Höns. The estimation of
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