
A Review of Adaptive Population Sizing Schemes in
Genetic Algorithms

Fernando G. Lobo
DEEI-FCT

University of Algarve
Campus de Gambelas

8000-117 Faro, Portugal

flobo@ualg.pt

Cláudio F. Lima
DEEI-FCT

University of Algarve
Campus de Gambelas

8000-117 Faro, Portugal

clima@ualg.pt

ABSTRACT
This paper reviews the topic of population sizing in genetic
algorithms. It starts by revisiting theoretical models which
rely on a facetwise decomposition of genetic algorithms, and
then moves on to various self-adjusting population sizing
schemes that have been proposed in the literature. The pa-
per ends with recommendations for those who design and
compare adaptive population sizing schemes for genetic al-
gorithms.

Categories and Subject Descriptors: I.2.8 [Artifi-
cial Intelligence]: Problem Solving, Control Methods, and
Search; I.2.6 [Artificial Intelligence]: Learning.

General Terms: Algorithms, Performance.

Keywords: Genetic Algorithms, Parameter Setting, Popu-
lation Sizing.

1. INTRODUCTION
The population size is a critical parameter in a genetic

algorithm (GA). Too small and the GA converges to poor
solutions. Too large and the GA spends unnecessary compu-
tational resources. The intuition behind population sizing in
GAs is that it is related to the problem’s size and difficulty;
the larger the problem is and the more difficult a problem
is, the larger the population should be. Problem difficulty
is very hard to estimate on real world problems, and there-
fore, many users end up either using a so-called “standard
setting” (50-100 individuals), guessing a number, or doing
some experimentation with a number of different sizes to
see which one works best. Guessing right is pure luck, and
most likely a user guesses wrong by choosing a population
size that is either too small or too large for the problem.

This paper is divided in two parts. In the first part, it re-
views existing theoretical work on population sizing. That
work is essentially based on Goldberg’s facetwise decomposi-
tion for designing competent GAs [5] and relies on the notion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’05,June 25–29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

of a building block (BB). The second part of the paper re-
views a number of techniques that have been developed to
adjust the population size during the GA run itself. The
paper ends with recommendations for those who propose
and compare adaptive population sizing schemes for genetic
algorithms.

2. POPULATION SIZING THEORY
In this section we review relevant theoretical studies that

help our understanding on the role that the population size
has in terms of GA performance and solution quality. Most
of these studies use a facetwise approach to get a better
insight in population sizing dynamics, and for that some
assumptions are made: (1) work with selectorecombinative
GAs (no use of mutation), (2) use fixed-length and binary-
coded strings, (3) use fixed-size and non-overlapping popula-
tions, and (4) solve stationary objective functions. Although
these assumptions are made for computational and analyt-
ical tractability, most of them can be relaxed with small or
no changes.

Despite these assumptions and the operational simplicity
of GAs, they are still complex systems to analyze. To have
a better understanding on how to design better GAs a de-
composition approach [5] has been taken by many. In this
way, it is assumed that the problem to be solved is addi-
tively decomposable in a number of m subfunctions. Each
subfunction maps to k decision variables and corresponds to
a building block partition. Under this definition, it is possi-
ble to have 2k BBs in a partition, one of which is superior
to the others and belongs to the global optimal solution.

We start by reviewing the work on initial supply of BBs.
Next, the issue of deciding well between competing BBs is
revisited and major results are presented under the form
of dimensionless models that relate the population size (n)
with certain problem features, such as problem size (l), BB
size (k), number of subfunctions (or BB partitions) (m), and
others. Finally, the population size requirements for correct
identification and mixing of BBs is addressed in the context
of estimation of distribution algorithms (EDAs) [12, 17].

2.1 Initial Supply of Building Blocks
When using selectorecombinative GAs (no mutation), the

only source of diversity is the supply of raw BBs in the ini-
tial generation. Once the randomly initialized population is
filled up with enough BBs, it is more likely that the GA will
be able to propagate and mix them, converging to good so-

lutions. A simple supply model considers the number of BBs
present in the initial random population (generated under
a uniform distribution), where the probability to generate a
single BB of size k is 1/2k, for binary encodings. Therefore,
the initial supply of BBs can be estimated as x0 = n/2k.
From this simple relation it is possible to notice that the
population required to supply all possible BBs grows expo-
nentially with the BB size k. This suggests that problems
with short BBs require smaller populations than the ones
with longer BBs.

2.2 Decision Making Between Competing
Building Blocks

The second aspect where population size plays an impor-
tant role is in the decision-making between competing BBs.
Holland [11] early recognized this issue as a statistical de-
cision problem. He recasted this problem as a cluster of
parallel and interconnected two-armed bandit problems. Al-
though this is an idealization of the GA behavior, his results
gave an optimistic bound on the allocation of trials in a GA.
De Jong [3] also used this analogy and presented equations
for trial allocation that removed some of the assumptions
made by Holland [11]. He also recognized the role of signal-
to-noise ratio on the population sizing question. Years later,
Goldberg and Rudnick [7] presented a method to calculate
the variance of schema fitness using Walsh transforms, and
also proposed an estimate for the population size based on
the variance of fitness. Following this work, Goldberg, Deb,
and Clark [6] proposed a decision-based model that gives a
conservative bound on the convergence quality of selectore-
combinative GAs. The model focus on the correct decision
between the best BB and its closer competitor in a given
partition. This decision process takes place in the presence
of noise that comes from the other partitions.

Let us consider a competition between two individuals
that contain the best BB and the second best BB (in the
partition of interest). The GA will probably choose the indi-
vidual with the best BB given its higher fitness contribution
to the overall fitness. However, in a single trial, the wrong
decision can also be made because the remaining m−1 parti-
tions also contribute to the fitness of the individuals in com-
petition, and act as noise in the decision making process in
the particular partition. By increasing the population size,
it is possible to make this decision error as small as possible.

Based on this observation, Goldberg et al. [6] derived a
population sizing equation which gave, for additive decom-
posable problems with uniformly scaled BBs, the required
population size (in order to correctly solve each BB with a
specified error probability α) in terms of the BB size k, the
total number of BBs m, and the fitness difference d between
the best and second best BBs.

Goldberg et al. [6] confirmed that the equation conser-
vatively estimates the convergence quality of the GA. This
somewhat pessimistic estimation is due to the fact that the
model approximates the behavior of the GA by the outcome
of the first generation. If the wrong BBs are selected in the
initial generation the model assumes that the GA will be
unable to recover from the error.

A few years later, Harik, Cantu-Paz, Goldberg, and
Miller [8] refined this model by incorporating the initial BB
supply as well as cumulative effects of decision making over
an entire GA run. Their model was based on the well-known
gambler’s ruin problem and resulted in the following popu-

lation sizing equation

n = − 2k−1 ln(α)
p

π (m− 1)
σBB

d
. (1)

with σBB is the fitness variance of the BB partition. Exper-
imental results from the original paper show that this equa-
tion is a reliable estimate for population sizing on decom-
posable problems with uniformly-scaled and near-uniformly-
scaled building blocks. Additionally, the authors also pro-
posed an expression to population sizing in the presence of
exogenous noise as well as for different selection pressures.

2.2.1 Random Genetic Drift in Building Blocks
The gambler’s ruin model is accurate for problems

with uniformly-scaled and near-uniformly-scaled BBs. If
the fitness contribution to the overall fitness function is
exponentially-scaled the model can not estimate the pop-
ulation size correctly. For that case, Thierens, Goldberg,
and Pereira [25], for BBs with unit size, and later, Lobo,
Goldberg, and Pelikan [15], for a general BB size, developed
a model based on the concepts of domino convergence and
genetic drift.

In this kind of problems, BBs converge in a sequential
manner from the most salient BBs to the least salient ones.
The least salient BBs only get the attention of the selec-
tion operator later in the run, and may be lost from the
population due to chance variation alone, a process known
as random genetic drift. It has been shown that the drift
process is the crucial aspect regarding population sizing for
this type of problems. That is, the population size has to
be large enough to prevent the low salient BBs from getting
extinct from the population during the GA run. The theo-
retical models for exponentially-scaled BBs reveal that the
population size should grow as O(m), instead of O(

√
m) for

the uniformly-scaled case.

2.3 Proper Identification and Mixing of Build-
ing Blocks

The issue of correct identification and mixing of BBs
can be related to the population size if we consider a re-
cent class of GAs known as estimation of distribution algo-
rithms (EDAs) [12, 17]. In EDAs the underlying problem
structure is learned on-the-fly for proper identification and
mixing of BBs. EDAs have very strong connections with
Data Mining algorithms. Both interpret the population as
data and use techniques to infer patterns in that data that
are associated with high fitness. Without sufficient data it’s
not possible to do accurate inference. Fortunately, within
a GA framework, having more data translates into working
with larger populations.

EDAs use probabilistic models to induce non-linearities
between variables in order to detect the proper decomposi-
tion of the problem (BB partitions). In order to be able to
do that the EDA requires a minimal population size to de-
tect the correlations. Pelikan, Goldberg, and Cantu-Paz [16]
were the first to approach this issue, reporting that the min-
imum population size required for BOA to correctly detect
the problem structure in the first generation grows linearly
with the number of BBs. Recently, that study has been
extended [20], and in order to effectively capture the prob-
lem structure, the population size of BOA should be greater
than O(l1.05) and smaller than O(l2.1), where l is the prob-
lem size. The upper bound has to be respected in order to

avoid that the probabilistic models discover dependencies
between independent variables. Typically, the population
size requirements for initial supply and decision-making are
bounded by the requirements for correct model building.

Before finishing this part of the paper, we would like to
stress that although not trivial to put in practice, the theo-
retical models on population sizing are very important and
crucial for understanding the role of the population in a GA.
Among other things, an important lesson of those models is
that setting the population size to a fixed value regardless
of the problem’s size and difficulty, is certainly a mistake.

3. ADAPTIVE POPULATION SIZING
SCHEMES

This section reviews a number of techniques that have
been developed to adjust the population size during the GA
run itself. The motivation for developing these schemes are
essentially threefold: (1) the recognition that the popula-
tion sizing requirement is problem dependent and is hard to
estimate, (2) the observation that a GA with an adaptive
population sizing scheme may yield a better solution quality
and better performance than a GA with a fixed (and poorly
set) population size, and (3) to make life easier for users by
eliminating the population sizing parameter. The exposition
follows in chronological order.

3.1 Population sizing through estimates of
schema variances (1993)

Based on Goldberg et al.’s. [6] theoretical work, Smith
and Smuda [23, 24] suggested an algorithm to autonomously
adjust the population size as the search progresses. They ar-
gued that the parameters of the GA are hard to relate to
the user’s need. That is, the user typically doesn’t know
how the population size affects the solution quality of the
problem. The authors suggested that the parameters should
have more meaning from the user’s point of view, and pro-
posed an algorithm that only required the user to specify
a desired accuracy for the overall search, something equiv-
alent to the building block’s signal from Goldberg et al.’s
equation. In order to do that, Smith and Smuda defined the
expected selection loss between two competing schemata as
the probability that the GA makes a selection error (selec-
tion chooses the lower fit schema) weighted by their fitness
difference. Then, they suggested an algorithm that does
online estimates of schema fitness variances, and sizes the
population so that the expected selection loss approximates
the user’s specified target accuracy.

3.2 Population sizing in GAVaPS (1994)
Arabas, Michalewicz, and Mulawka [1] proposed the Ge-

netic Algorithm with Varying Population Size (GAVaPS). As
opposed to Smith and Smuda’s work, this method does not
rely on the population sizing theory [6]. Instead, it relies
on the concept of age and lifetime of an individual. When
an individual is created, either during the initial generation
or through a variation operator, it has age zero. This step
corresponds to the birth of the individual. Then, for each
generation that the individual stays alive its age is incre-
mented by 1.

At birth, every individual is assigned a lifetime which cor-
responds to the number of generations that the individual
stays alive in the population. When the age exceeds the indi-

vidual’s lifetime, the individual dies and is eliminated from
the population. At every generation, a fraction ρ (called
the reproduction ratio) of the current population is allowed
to reproduce. Every individual of the population has an
equal probability of being chosen for reproduction. Thus,
GAVaPS does not have an explicit selection operator as tra-
ditional GAs do. Instead, selection is achieved indirectly
through the lifetime that is assigned to individuals. Those
with above-average fitness have higher lifetimes than those
with below-average fitness. The idea is that the better an in-
dividual is, the more time it should be allowed to stay in the
population, and therefore increase the chance to propagate
its traits to future individuals.

Arabas et al. said that different lifetime strategies could
be implemented based on the idea of reinforcing individuals
with high fitness and restricting individuals with low fit-
ness, and suggested three different strategies: proportional,
linear, and bi-linear allocation. All those strategies relied
on two parameters, MinLT and MaxLT, which correspond
to the minimum and maximum lifetime value allowable for
an individual. The authors argued that this approach seems
natural because the aging process is well-known in all natu-
ral environments.

The authors tested GAVaPS on four test functions, com-
pared its performance with that of a simple GA using a
fixed population size, and observed that GAVaPS seemed
to incorporate a self-tuning process of the population size.
GAVaPS requires the user to specify the initial population
size, but the authors refer in their work that GAVaPS is
robust with respect to that, i.e., the initial population size
seemed to have no influence on the performance on the test
functions chosen. The same thing did not hold with the re-
production ratio ρ. Different values of ρ yielded different
performance of the algorithm. For the MinLT and MaxLT
parameters, Arabas et al. used 1 and 7 respectively. How-
ever, they didn’t give recommendations on how those pa-
rameters should be set.

3.3 Strategy adaptation by competing sub-
populations (1994, 1996)

Schlierkamp-Voosen and Mühlenbein [21] proposed an
adaptive scheme which simulates the population changes of
species which compete for the same resource (e.g. food).
Well adapted species increase and poorly adapted species
decrease.

In their scheme, there are a number of S competing pop-
ulations, each one running a different search strategy (or al-
gorithm). The search algorithms run independently in each
population, and at regular intervals the populations com-
pete with each other. The idea is to increase the size of
the best performing population, and decrease the size of the
others.

In order to do so, the authors define a quality criterion
which scores the performance of a population, as well as
a gain criterion which gives the amount of increase or de-
crease in the size of the competing populations. In their
scheme, the sum of the sizes of all populations remains con-
stant through time. After each competition, in addition to
adapting the population sizes, the best performing individ-
ual migrates to the other populations, giving them a chance
to perform better for future competitions.

Later on, the authors [22] extended the model by allowing
a consumption factor γ to be assigned to each population.

The idea was motivated by the recognition that different
search strategies seem to require different population sizes
to perform efficiently. For example, mutation is more effi-
cient with small populations and recombination works best
with large populations. As opposed to the basic competing
model, the extended one allowed the total population size to
change during the whole simulation. According to the au-
thors, the extended competition scheme is useful for location
good regions of attraction with a breadth search algorithm,
and to do a fine adaptation by using a more directed search
method.

The scheme suggested by Schlierkamp-Voosen and
Mühlenbein is, in some sense, an hybrid algorithm con-
sisting of multiple search strategies, each utilizing different
resources (different population sizes and potentially differ-
ent variation operator). The overall scheme reinforces those
strategies that appear to work well, and penalizes those that
appear to work poorly.

3.4 Population sizing in SAGA (1996)
Hinterding, Michalewicz, and Peachey [10] proposed the

Self-Adaptive Genetic Algorithm (SAGA) which included an
adaptive population sizing scheme. The basic idea is to run
three independent GAs, each with its own population size
(call them P1, P2, P3 with P1 < P2 < P3) which are
initially set to 50, 100, and 200, and have rules that adjust
the population sizes in order to “optimize” the performance
of the mid-sized population P2.

Hinterding et al. allowed the populations to range be-
tween 10 and 1000 individuals, and made sure that there
should always be a difference of at least 20 individuals in
their sizes in order to avoid population sizes which are too
similar.

At regular intervals (an epoch in the authors’ terminol-
ogy), the best fitness found in each GA is used as a cri-
teria to adjust the population sizes. The adjusting mecha-
nisms are based on a number of rules. Specifically, there is a
“move-apart” rule that states that two populations should
be moved apart when the fitness of their best individuals
are within a threshold ε = 10−9. In such cases, moving
the populations apart means halving the size of the smallest
population, and doubling the size of the largest population.
This situation also holds for the case that all three popu-
lations are within the ε fitness threshold. In such case, the
mid-size population is left untouched, while the others grow
and shrink.

In case the fitness values of the best individuals of the
three populations are different (i.e., not within ε distance),
the following rules apply (below, f stands for the fitness of
the best individual):

• if f(P1) < f(P2) < f(P3): move right

• if f(P3) < f(P2) < f(P1): move left

• if f(P1) < f(P3) < f(P2)
or f(P2) < f(P1) < f(P3): compress left

• if f(P2) < f(P3) < f(P1)
or f(P3) < f(P1) < f(P2): compress right

where ’move right’ and ’move left’ means doubling and halv-
ing the size of each population respectively, ’compress left’

means adjusting the size of P1 to be the average of its cur-
rent size with that of P2, and ’compress right’ means ad-
justing the size of P3 to be the average of its current size
with that of P2.

The reasoning behind these rules is to increase (or de-
crease) all the population sizes if the “ideal” population size
appears to be out of the range of the current population
sizes. On the other hand, if the “ideal” population size ap-
pears to be within the current population sizes, then the
rules should adjust the size of the worst performing popula-
tion so that its size becomes closer to the size of the other
two populations.

The time span of an epoch was chosen by Hinterding et
al. as 1000 fitness function evaluations for each GA. The
authors also described different strategies that either allowed
the populations to mix or to continue running separately
after each epoch.

3.5 Population sizing in the parameter-less
GA (1999)

The parameter-less GA introduced by Harik and Lobo [9]
was developed having in mind the assumption that solution
quality grows monotonously with the population size. Based
on that observation, the authors suggested a scheme that
continuously increases the population size as time goes by.
Harik and Lobo made the assumption that given two iden-
tical GAs whose only difference is in their population sizes,
call them GA-bigPop and GA-smallPop, then the following
statement holds,

• if GA-smallPop is allowed to spend more fitness func-
tion evaluations than GA-bigPop, and if the average
fitness obtained by GA-bigPop is greater than the av-
erage fitness of GA-smallPop, then there’s a strong ev-
idence that GA-smallPop is using an undersized pop-
ulation.

The above observation is the crucial aspect of the parameter-
less GA and allows it to eliminate undersized populations.
Figure 1 illustrates an example.

The paremeter-less GA establishes a competition among
multiple populations, each with a size twice as large as the
previous one, and starting with a very small sized popula-
tion. Smaller populations are given an advantage because
the algorithm allows them to spend more fitness function
evaluations than larger populations. As time goes by, the
smaller populations are eliminated and larger populations
are created. The deletion of populations is controlled by
inspecting the average fitness of the populations and elimi-
nating the undersized ones as suggested in Figure 1. In the
absence of mutation, the parameter-less GA also eliminates
populations that converge since its not possible to generate
new individuals thereafter.

The time allocation that is given to each population is or-
chestrated in such a way that a population gets the chance
to execute m times more generations than the next imme-
diately larger population. Harik and Lobo [9] suggested a
value of m = 4 which allowed a given population to run 4
times more generations (2 times more function evaluations)
than the next larger population. When to stop this growing
process is left up to the user. He decides when to stop as
soon as he realizes that it is not worth to wait more for an
improvement in solution quality.

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����
�����
�����

���
���
���
���
���

	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

���
���
���

���
���
���

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

�����
�����
�����

���
���
���

���

!�!
!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"
"�"

#�#
#�#
$�$
$�$

PopSize = 1000

PopSize = 2000
1 2 5 6 7 8 9 113 4

Generation number

10 12

avg. fit = 12.4

avg. fit = 12.7

Figure 1: The GA with the population size 1000 is
in its 12th generation while the GA with population
size 2000 is in its 5th generation. Overall, the GA
with the smaller population spent more fitness func-
tion evaluations that the other GA (12000 versus
10000). However, its average fitness is lower than
the average fitness of the GA with the larger popu-
lation. According to Harik and Lobo, that’s a strong
indication that 1000 individuals is not a sufficiently
large population size.

Pelikan and Lobo [19] did a theoretical analysis for the
worst-case performance of the parameter-less GA as com-
pared to a GA that starts with an optimal population size.
The worst-case scenario occurs when populations are never
eliminated (either never converge, or are never overtaken by
a larger population). That work revealed that a value of
m = 2 is the better one in terms of the time complexity
of the worst-case performance, yielding an increase in the
number of fitness function evaluations of only a logarith-
mic factor when compared with a GA that uses an optimal
population size.

This population sizing technique has been used not only
with traditional GAs but also with EDAs [14, 18]. Lima and
Lobo [13] also suggested a way to integrate local search with
the parameter-less GA. They recognized that local search
makes small variations on solutions and thus is not likely
to benefit from very large populations. On the contrary
algorithms that rely essentially on recombination require
large population sizes in order to mix the bits and pieces
of the different solutions. The approach suggested by the
authors was run both search strategies independently and in
some sense goes back to the same remarks made previously
by Schlierkamp-Voosen and Mühlenbein [22] that different
search algorithms require different type of resources.

3.6 Population sizing in APGA (2000)
The Genetic Algorithm with Adaptive Population Size

(APGA) proposed by Bäck, Eiben, and Van der Vaart [2]
is a slight variation of the GAVaPS algorithm. The differ-
ence between the two is that APGA is a steady-state GA
and the best individual in the population does not get older.
As opposed to Arabas et al., the authors of APGA set the
values of MinLT and MaxLT to 1 and 11, because accord-
ing to them, initial runs with different values indicated that
MaxLT=11 delivers good performance.

APGA needs the specification of an initial population size
(Bäck et al. used 60 individuals in their experiments). At
every iteration of the steady-state GA, all individuals (ex-
cept the best one) grow older by 1 unit. Thus, it’s quite
likely that after MaxLT iterations, most of the individuals
will have died and the only ones that remain in the popula-
tion are either (1) the individuals generated during the last
MaxLT iterations, or (2) top-fit individuals found previously
(recall that the best individual doesn’t get older). In other

words, after MaxLT iterations the population size will be of
order O(MaxLT).

By not decreasing the remaining lifetime of the best in-
dividual, APGA ends up using a strong kind of elitism. In
their paper, the authors don’t show the evolution of the pop-
ulation sizes through time, but in all their experiments, the
average population size at the end of the runs were in the
range between 7.8 and 14.1, which confirms our reasoning
that the population size in APGA tends to be of the same
order of MaxLT.

3.7 Population sizing in PRoFIGA (2004)
Eiben, Marchiori, and Valkó [4] and Valkó [26] pro-

posed the Population Resizing on Fitness Improvement GA
(PRoFIGA) and did a comparison of it with other adap-
tive population sizing schemes, including APGA and the
parameter-less GA.

PRoFIGA is similar to a traditional GA but at the end of
the typical selection, reproduction, and mutation steps, the
population size can grow or shrink based on an improvement
of the best fitness contained in the population. The popula-
tion grows either when (1) there is an improvement in best
fitness, or (2) there is no improvement in the best fitness for
a “long time”. If neither of the above occurs, the popula-
tion size shrinks by a small percentage (1-5%). According
to the authors, the motivation behind PRoFIGA is to use
large population sizes for exploration and small population
sizes for exploitation. In their work, the growth rate X for
a population is given by,

X = increaseFactor × (maxEvalNum− currEvalNum)

× maxFitnessnew −maxFitnessold

initMaxFitness

where increaseFactor is a parameter in the interval (0,1),
maxEvalNum is the maximum number of fitness evalua-
tions allowed for the whole run (or a very large number
if one does not know it ahead of time), currEvalNum
is the current evaluation number, and maxFitnessnew,
maxFitnessold, and initMaxFitness, are the best fitness
values in the current, previous, and initial generation.

A user of PRoFIGA also has to specify an initial popula-
tion size, as well as a minimum and maximum population
sizes in which the algorithm must operate. Thus, although
PRoFIGA eliminates the traditional fixed population siz-
ing parameter, it introduces 6 new parameters: (1) initial
population size, (2) increaseFactor, (3) the so-called “long
time without improvement” (V), (4) decreaseFactor, (5)
minPopSize, and (6) maxPopSize.

In their comparative experiments, the authors used
initialPopSize = 100, increaseFactor = 0.1, V = 500,
decreaseFactor = 0.4, minPopSize = 15, maxPopSize =
1000.

4. SUMMARY AND CONCLUSIONS
This paper has made a review of population sizing in ge-

netic algorithms. We have addressed both theoretical mod-
els which rely on a facetwise decomposition of GAs, as well
as automated population sizing schemes that have been pro-
posed by various researchers in the field.

Some adaptive population sizing schemes that have been
proposed were developed having in mind the population siz-
ing theory for genetic algorithms as a foundation to engi-

neer the adaptive algorithms, other methods were primarily
inspired by what happens in Nature, and included the con-
cepts of age, lifetime, and competition among species for
limited resources.

Several authors have argued that it is beneficial to have a
varying population size through a GA run because it seems
that the population sizing requirements differ depending on
the stage of the search. Typically, these authors argue that
the GA needs a larger population size early on in order to
do a breadth search to find good regions of the search space,
and then the GA needs less population size at the end of the
run in order to fine-tune the solution.

We agree with the argument above. However, the critical
aspect is to discover a population size which is large enough
to find those good regions of attraction. At this point, we
would like to stand back and give some recommendations
for authors that propose and compare adaptive population
sizing schemes.

• Do not enforce a bound for the maximum pop-
ulation size. Several adaptive population sizing algo-
rithms have substituted the fixed population size by an
interval MinPopsize and MaxPopsize where the adap-
tive algorithm is supposed to work. We believe that
the upper bound for population sizing should not be
present.

Sizing a population in a GA to solve a particular prob-
lem is a difficult task and that’s why many users end up
choosing it in an ad hoc way. Some choose a value in
the range 50-100, others simply guess a number. The
end result of those practices is poor GA performance.
Both theoretical and empirical work have shown that
the population sizing requirement for GAs grow with
respect to the problem’s size and difficulty. Thus, it
is not rational to impose an upper bound on the size
of the population. In other words, a MaxPopsize pa-
rameter should be eliminated from adaptive popula-
tion sizing schemes. If that doesn’t happen, then the
user ends up having to guess a value for MaxPopsize
(more or less in the same way that he has to guess a
value for the population size of a traditional GA). In
our opinion, there are only two reasons for setting an
upper bound on the size of the population:

1. when the maximum number of fitness function
evaluations allowed for the whole simulation, T , is
known in advance. In such case, the upper bound
for the size of the population could be set to a
value which is a function of T (and obviously less
than T). As an extreme case, one generation of a
population of size T would terminate the GA run,
and that would correspond to random search.

2. when there are memory constraints that don’t al-
low our computers to run populations larger than
a certain amount.

• Test on problems with known population siz-
ing requirements. The different adaptive algorithms
that we have reviewed were tested by their authors
on different sets of problems. It is our strong belief
that the test suit should include problem instances of
varying size and difficulty and whose optimal popu-
lation sizing requirements are well known. Moreover,

the problems should have different population sizing
requirements, some requiring small and others requir-
ing large population sizes. A good self-adjusting pop-
ulation sizing algorithm should be able to detect both
cases. We suggest that, among other problems, the
class of additive decomposable problems, either with
uniform and exponentially scaled building blocks, as
well as problems with external sources of noise, should
be included in the test suite.

• Do fair comparisons. There are several ways to
make comparative studies on the performance of algo-
rithms. Two of the most used methods are (1) given a
fixed computational time T measure the solution qual-
ity Q, and (2) given a solution quality Q, measure the
time T that the algorithm needs to reach that quality.
Both components should be addressed on comparative
studies. Otherwise, comparisons may be unfair.

• Do scalability analysis. It’s important to make time
and space complexity analyses for the proposed algo-
rithms, even if they can only be done on a particu-
lar class of problems. The analysis should be comple-
mented by computer experiments that verify how the
algorithm scales up with problems of different size.

• Make life easier for users. All the adaptive popu-
lation sizing algorithms that we have reviewed in this
paper eliminate the need to specify a fixed population
size for the GA run. Unfortunately, eliminating one
parameter and introducing several other parameters
is certainly not making life any easier from a user’s
perspective. If new parameters are introduced, either
there should be recommendations on how to set them,
or the adaptive algorithm has to be robust enough so
that the performance is not much affected by these
new parameters.

Acknowledgments
This work was sponsored by the Portuguese Foundation
for Science and Technology (FCT/MCES), under grants
POSI/SRI/42065/2001 and SFRH/BD/16890/2004.

5. REFERENCES
[1] J. Arabas, Z. Michalewicz, and J. Mulawka. GAVaPS

– a genetic algorithm with varying population size. In
Proc. of the First IEEE Conf. on Evolutionary
Computation, pages 73–78. IEEE Press, 1994.

[2] T. Bäck, A. E. Eiben, and N. A. L. van der Vaart. An
empirical study on GAs “without parameters“. In
Parallel Problem Solving from Nature, PPSN VI,
volume 1917 of Lecture Notes in Computer Science,
pages 315–324. Springer, 2000.

[3] K. A. De Jong. An analysis of the behavior of a class
of genetic adaptive systems. PhD thesis, University of
Michigan, Ann Arbor, 1975.

[4] A. E. Eiben, E. Marchiori, and V. A. Valkó.
Evolutionary algorithms with on-the-fly population
size adjustment. In Parallel Problem Solving from
Nature, PPSN VIII, volume 3242 of Lecture Notes in
Computer Science, pages 41–50. Springer, 2004.

[5] D. E. Goldberg. The Design of Innovation - Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, Norwell, MA, 2002.

[6] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992.

[7] D. E. Goldberg and M. Rudnick. Genetic algorithms
and the variance of fitness. Complex Systems,
5(3):265–278, 1991.

[8] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999.

[9] G. R. Harik and F. G. Lobo. A parameter-less genetic
algorithm. In GECCO-99: Proceedings of the Genetic
and Evolutionary Computation Conference, pages
258–267. Morgan Kaufmann, 1999.

[10] R. Hinterding, Z. Michalewicz, and T. C. Peachey.
Self-adaptive genetic algorithm for numeric functions.
In Parallel Problem Solving from Nature, PPSN IV,
pages 420–429. Springer-Verlag, 1996.

[11] J. H. Holland. Genetic algorithms and the optimal
allocation of trials. SIAM Journal on Computing,
2(2):88–105, 1973.

[12] P. Larrañaga and J. A. Lozano, editors. Estimation of
distribution algorithms: a new tool for Evolutionary
Computation. Kluwer Academic Publishers, Boston,
MA, 2002.

[13] C. F. Lima and F. G. Lobo. Parameter-less
optimization with the extended compact genetic
algorithm and iterated local search. In GECCO-2004:
Proceedings of the Genetic and Evolutionary
Computation Conference, Part I, volume 3102 of
Lecture Notes in Computer Science, pages 1328–1339.
Springer, 2004.

[14] F. G. Lobo. The parameter-less genetic algorithm:
Rational and automated parameter selection for
simplified genetic algorithm operation. Doctoral
dissertation, Universidade Nova de Lisboa, Lisboa,
2000.

[15] F. G. Lobo, D. E. Goldberg, and M. Pelikan. Time
complexity of genetic algorithms on exponentially
scaled problems. In GECCO-2000: Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 151–158. Morgan Kaufmann, 2000.

[16] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz.
Bayesian optimization algorithm, population sizing,
and time to convergence. In GECCO-2000:
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 275–282. Morgan
Kaufmann, 2000.

[17] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational Optimization and
Applications, 21(1):5–20, 2002.

[18] M. Pelikan and T.-K. Lin. Parameter-less hierarchical
BOA. In GECCO-2004: Proceedings of the Genetic
and Evolutionary Computation Conference, Part II,
volume 3103 of Lecture Notes in Computer Science,
pages 24–35. Springer, 2004.

[19] M. Pelikan and F. G. Lobo. Parameter-less genetic
algorithm: a worst-case time and space complexity

analysis. IlliGAL Report No. 99014, University of
Illinois at Urbana-Champaign, Illinois Genetic
Algorithms Laboratory, Urbana, 1999.

[20] M. Pelikan, K. Sastry, and D. E. Goldberg. Scalability
of the bayesian optimization algorithm. International
Journal of Approximate Reasoning, 31(3):221–258,
2003.

[21] D. Schlierkamp-Voosen and H. Mühlenbein. Strategy
adaption by competing subpopulations. In Parallel
Problem Solving from Nature, PPSN III, pages
199–208. Springer-Verlag, 1994.

[22] D. Schlierkamp-Voosen and H. Mühlenbein.
Adaptation of population sizes by competing
subpopulations. In Proceedings of 1996 IEEE
International Conference on Evolutionary
Computation, pages 330–335, 1996.

[23] R. E. Smith. Adaptively resizing populations: An
algorithm and analysis. Technical Report No. 93001,
The University of Alabama, Tuscaloosa, AL, 1993.

[24] R. E. Smith and E. Smuda. Adaptively resizing
populations: Algorithm, analysis, and first results.
Complex Systems, 9:47–72, 1995.

[25] D. Thierens, D. E. Goldberg, and A. Pereira. Domino
convergence, drift, and the temporal-salience structure
of problems. In Proceedings of 1998 IEEE
International Conference on Evolutionary
Computation, pages 535–540. IEEE, 1998.

[26] V. A. Valkó. Self-calibrating Evolutionary Algorithms:
Adaptive Population Size. Master’s thesis, Free
University Amsterdam, 2003.

