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ABSTRACT 
Evolutionary computation has been often used by computer 
scientists to evolve the morphologies and control systems of 
artificial life. Artificial 'brains', behaviour strategies, methods of 
communication, distributed problem solving and many other 
topics are commonly explored by using genetic algorithms and 
other evolutionary search techniques. We think that this approach 
may provide the general guidelines to efficiently manage and 
“design” computation on large and homogeneous lattices of 
simple, asynchronously interacting processing elements. Because 
of their structural simplicity, this kind of substrates will be 
suitable architectural models for computational machines based 
on molecular scale devices. In this paper we present an 
environment named Bio-molecular Engine (BME), in which 
different substrates can be simulated and used as “artificial 
worlds” where computational entities can rise, grow and evolve. 
In particular we discuss how to use a grid to evolutionary find a 
good solution to a well defined design issue: how much 
parallelism is good for a given problem computed in our 
environment. 

Categories and Subject Descriptors 
F.1.1 [Computation by Abstract Devices]: Models of 
Computation – unbounded action device, computability theory. 

General Terms 
Algorithms, measurement, performance, design, experimentation. 

Keywords 
Simulation software, evolutionary algorithms, scalability, 
computer architectures, cellular arrays. 

1. INTRODUCTION 
The evolutionary approach draws inspiration from biology. 

Another meeting point between computation and biology is 
“parallelism”, since new computing devices could be built where 
many simple processing elements work in parallel, like cells in 
organisms. 

Motivation for this modelling choice is also given by new 
technological challenges arising from nanotechnology: it will 
mostly allow very small but simple processing elements, thus 
requiring a high level of parallelism to obtain more computational 
power (see [1]-[4]). We present here a biologically inspired 
parallel computing architecture, and a simulator for it. The 
simulator features a high level of flexibility in the definition of the 
simulated architecture, thus allowing to experiment with different 
design choices. The basic assumptions being to have many small 
connected processors, working in parallel. Anyway a high level of 
parallelism is not always exploitable, depending on the 
algorithmic properties of the computed problem. Moreover, it 
could also happen that a single parallelizable problem, at different 
levels of parallelism, provides different performances on a given 
computational architecture. Thus, a design problem arises: we 
deal with a trade-off between assigning long computations to few 
processors, and assigning simple computations to many 
communicating units. We need to map a computation onto 
parallel devices in such a way that we obtain the best performance 
under that trade-off. We tried to use evolutionary approach to this 
problem, and the resulting optimizing algorithm was computed in 
our simulated model.  

Section 2 describes the basic features of the simulator; 
Section 3 introduces the biological reference concepts for this 
architecture, while Section 4 gives more details on the resulting 
implementation; Sections 5 and 6 deal with the design problem 
we considered: the first one gives the analysis, and the second one 
presents an evolutionary approach to it; finally, Section 7 draws 
some conclusions and discusses perspectives. 

2. THE ENVIRONMENT 
The BME simulator provides a biologically inspired 

environment where execution entities rise and grow on a grid of 
homogenous virtual processing elements in order to perform 
computations. These entities are completely autonomous: during 
their life they autonomously search and exploit resources to 
achieve their tasks, there is no hierarchically superior unit to 
control them or manage system resources.  
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The execution entities define regions on a space-extended 
virtual hardware whose features can be defined by user. The 
virtual hardware is graphically represented as a lattice (see Figure 
1) with a regular 2D structure of processing elements or cells; this 
choice was only to make representation simple, but there’s no 
limit to the interconnection degree and there are no constraints to 
the network topology and to the number of elements, except for 
those imposed by the amount of resources. The users can specify a 
lattice with specific features (e.g. topology described in [16])  
simply extending general (Java) classes of the simulator. 

The execution entities are composed by cells and can be 
considered as artificial organisms with specific functions. Their 
behavior is determined by a program whose code (the organism’s 
genome) is enclosed in every cell of the organism (see section 3).  

An artificial organism rises from a single cell and expands 
itself specializing neighbor cells on the lattice: this growth is a 
sort of self-organizing process in which every cell finds its right 
place depending on genome instructions and environmental 
conditions. Cell specialization consists in copying the genome 
from a cell of the organism to a non specialized cell and marking a 
code subsection as an active gene that determines the services the 
new cell will provide the environment with.  

Every cell is composed by a central programmable unit for 
manipulation of small amount of information and by a set of one 
or more red-cells. A red-cell has to control the interactions with 
the external environment1. A red-cell receives a set of packets and 
discriminates (in function of the internal state of the central unit) 
which message has to be absorbed and what has to be routed for 
different destinations.  

A cell can detect an internal fault2 and excludes itself after 
sending a recovery signal; another (back-up) cell will provide 
services of damaged cell. Therefore, a region of lattice has a 
certain degree of fault-tolerance, provided by a set of regularly 
distributed spare cells. 

Lattice components (central units and red-cells) are 
implemented with a thread so that every high-level hardware unit 
is represented by a different execution flow: cell-threads perform 
computation and red-cell-threads perform communication by 
means of messages exchange. Every cell encloses an instance of a 
user definable interpreter which specifies cellular operations and 

                                                                 
1 “External environment” is an expression referred to a cell and 

means “everything outside that cell”. 
2 Cellular Damages are inducted by user with a mouse click on the 

desired cell picture in the lattice graphical representation 
window. 

directly executes the code; each red-cell manages a set of queues 
for local packets storage and together with other red-cells 
composes a net in which message passing is performed using the 
producer-consumer paradigm. User-definable routing rules are 
associated to red-cells in order to define their behaviour.  Every 
packet is marked with a precise destination signature, which is 
used by red-cells to perform local choices; they take routing 
decisions, after reading the destination mark, message routing 
header and values contained inside available user definable 
routing structures (i.e. local look-up tables). 

BME is a highly flexible instrument and provides a suitable 
environment where the user, after specifying virtual hardware 
features (i.e. connectivity and routing rules) and the application to 
be executed, can test different solutions for spatial distribution of 
computation.  

3. BIO-INSPIRED COMPUTATION 
3.1 Computation hierarchy 

 The lattices provide a static substrate on which it’s possible 
to create artificial organism with specific functions. An artificial 
BME organism has a hierarchic structure that recalls organization 
of biological organism (like in [13]-[15]). The basic element is the 
cell with its own specialization: the pair <cell, specialization> is 
called BME-thread or simply thread. A thread in BME is, at the 
same time, a logical entity and a physical entity, because it 
identifies a cell with a precise configuration. A set of cells with 
the same specialization constitutes a tissue. Two or more different 
tissues grouped together represent an artificial organ or process 
that is a structure providing a larger number of services. An 
organism or program is given by grouping different organs and 
performs a task that provides results for a certain computation .  

In nature every cell of a multi-cellular organism contains the 
entire genetic code that completely describes the structure of the 
organism. In BME this “universality” of the cells is considered a 
useful redundancy (because of its own positive repercussion on 
fault-tolerance aspects), but it’s maintained at the process level, 
since the programming-genetic-code for an entire system could be 
too large. In spite of its process-universality, the cell only uses the 
module that defines its activity. This module is identified with the 
expression of method or active gene and determines the set of 
operations a cell provides the environment with.  

A BME-thread is the analogue of a biological specialized 
cell: during its life, it elaborates a set of data in function of the 
code that specifies its behaviours. The result of this elaboration is 
the analogue of proteins. Like a cell with a given specialization 
produces a well defined class of proteins, so a thread elaborates its 
input in a precise way dictated by its code. The structural 
specifications of a cell and, as a consequence, programming 
paradigms exploited to define cell code, determine the complexity 
of services provided by a single cell. 

The biologically inspired hierarchy provides general 
guidelines about organization of computation in BME 
environment, but nothing is said about functional distribution of 
computation: How, can a problem be decomposed into simpler 
tasks? And, what is the most suitable nature of cellular level 
operations for it?   

BME doesn’t give any direct answer to these questions, but it 
has been created to find them through experimentation. 

When users want to create organisms on the BME lattice, 
they have to start from a data-flow graph representing the desired 

(a)  (b) 

 Figure 1.  (a) Virtual hardware lattices. (b) A growing 
computation. 



application (even obtained by means of parallelizing compiler like 
in [5],[6],[22] or in [7],[8]): first a precise specification of cellular 
operations set is needed and then it is possible to build a data-flow 
graph. Afterwards, the user owns all the instruments to write code 
and give it in input to the simulator. 

Currently the user can test different distribution degree for a 
given application by modifying code, but BME can be exploited 
to develop evolutionary approaches for a self-organizing 
computation (as we will show in section 6) creating populations 
of artificial organisms able to autonomously evolve towards better 
spatial resources usage: “evolution” applied to computation will 
have a positive impact on scalability, as spatial allocation policies 
dynamically change in function of  environment properties, first 
of all dimensions and topological constrains. 

3.2 Cellular Life-cycle  
 When there’s no loaded process, lattice appears like a field 

of not existent cell with a uniform distribution of not existent 
staminal cell; both these kinds of cells don’t have a specialization 
so they are potential resources. A cell becomes “existent” whether 
it acquires a specialization (eukaryote cell) – so a thread rises - or 
becomes an active staminal (a back-up cell ready to assume a 
specialization of damaged cell)3.  

The life of a process starts from a single cell with a particular 

specialization given by a module called “Main”. From this BME-
thread, the artificial organism begins to grow by “cellular 
division”, that is performed by two particular kinds of 
specialization packets emitted by cells: 

• run packets 
• call packets  

The thread generated by a “run” packet is concurrent to the thread 
which has emitted the specialization packet, while a thread which 
has emitted a “call” packet, waits for a return value coming from 
the new “called” thread (i.e. caller and callee interacts by 
extended rendezvous [21]). A computation acquires spatial 
resources by means of specialization packets: they specialize the 
first not existent cell found on their path, as determined by routing 
rules and conditions of the environment (i.e. previously 
specialized cells and their position). 

 Specialization packets are emitted by a cell when it executes 
special “run” and “call” primitives (see section 4) contained in its 
genome. These primitives require the name of a module as input 
in order to generate a cell which will execute it, e.g.:  

 run moduleForSum    or   call moduleForSelection 
                                                                 
3 Staminal Cells are currently not used, because fault-tolerance 

policies are currently work in progress. 

So “run” and “call” primitives trace relationships between 
two modules of the code (“caller” and “callee”). It is possible to 
draw a graph that depicts the logical structure of a process by 
representing modules as nodes and relationships as edges; figure 
4-b shows an example of a process with  a logical tree structure. 

Threads interact by means of data packets; differently from 
specialization packets, their routing is intended as a searching 
activity based on local information about disposition of resources 
(no cell completely knows the process morphology). When a 
message arrives next to the destination cell it is absorbed like 
biological cells absorb external resources through their 
membrane. Data are transformed by cells on the base of cellular 
specialization code, i.e. its active gene. In general, threads 
interactions are not constrained by modules relationships. 

A BME-thread, in the course of its life, can assume different 
internal states. It can apply operations on data (run state) or 
invoke other methods to request other services. A thread could 
wait data from other threads or could be in a pending state, 
waiting for a return value of a thread it has invoked via a “call” 
command.  

If a thread terminates correctly then it assumes end state 
otherwise, if it has detected an internal damage4 it assumes error 
state. 

  

4. IMPLEMENTATION 
4.1 Virtual devices 

Java threads are used to implement the high level hardware 
units of lattices: cells and red-cells. Red-cells enclose a certain 
(user definable) number of queues controlled by a queues 
manager that inserts incoming packets in the queues and extracts 
from them outgoing packets in FIFO mode. When a packet is 
selected by queues manager, its destination (one of neighbour red-
cells or the current cell) is chosen by applying a user-selected 
routing rule.  

Cell-threads implement a very simple machine capable of 
few actions or cellular primitives. These primitives are 
represented by some methods of class “Cell”. Associated to the 
cell there is an interpreter employed to execute operations on data 
and, since it is user-definable, a cell virtually supports any kind of 
programming language. Yet, every interpreter has to internally 
define the cellular primitives in order to provide the programmer 
with a usable cell interface and, as a consequence, with BME 
environment. 

4.2 Cellular functional code 
An interpreter for the cells has to accept a language that 

includes base primitives and defines a set of operations on data. 
Base primitives are concerning in growth, data, specialization and 
                                                                 
4 Internal damages are inducted by user with a mouse click on a 

cell. 

Figure 2. Cell life-cycle. 

Figure 3. Cell internal state. 



local memory access. Table 2 briefly describes the meaning of 
some base primitives.  

Table 2.  Cellular base primitives 

primitive area Action 

CALL growth “call” packet emission 

RUN growth “run” packet emission 

SEND data comm. “data” packet emission 

WAIT data comm. cell waits for incoming data 

GET specialization A cell get its input parameter. 

Growth primitives are used to instantiate new cells and carry 
on the growth of artificial organism. Cells use data 
communications primitives to introduce computed data into the 
net and consequently interact with the environment. When a cell 
receives its specialization (by means of “run” or “call” packets) it 
is ready to perform its own job, but sometimes it may require 
further specialization to obtain a better identification (e.g.  in the 
case of several cells with the same specialization). The cells use a 
small amount of internal memory for local temporary storage, 
therefore some primitives to read/write data are essential. 
Summing up, every time a virtual hardware functionality is 
required or some action related to bio-inspired model of 
computation has to be performed, a base primitive is used. 

 
Main 
[null] 
[null] 
BeginMethod 
$nodeID = 1 
run FX $nodeID 
$nodeID = 2 
run FX $nodeID 
wait $result_left_subtree 
wait $result_right_subtree 
$result_left_subtree + $result_right_subtree 
out $result_left_subtree 
EndMethod 
 
FX 
[IN] 
[null] 
BeginMethod 
Every FX cell acquires  node ID used to discriminate internal nodes 
from leaves: 
get $nodeID  
Every FX cell knows  tree features: 
$numInteranlNodes  = 100  
$maxInNodeID = $numInNodes 
$maxInNodeID - 1  
 
if (actual node is internal) 
begin 

current  node generates offspring, 
  $nodeID_left = $nodeID 
  $nodeID_left * 2 
  $nodeID_left + 1 
$nodeID_right = $nodeID_left  
$nodeID_right + 1 
run FX $nodeID_left 
run FX $nodeID_right 
waits results,  
wait $Xi 
wait $Xj  
performs  SUM of offspring results. 
$Xi + $Xj 

end 
 
if (actual node is a leaf) 
begin 
      current  node performs f(x).  

$Xi = f(x) 
end 
 
if ($nodeID < 3) 
begin 
      if current  node is a child of the root  then sends result to the Main, 

send Main null $Xi 
end 
 
if ($nodeID > 2) 
begin 
   else sends result to its parent. 

send FX $nodeID_parent IN $Xi 
end 
EndMethod 

(a) 

COMMENTS 

PSEUDO-CODE 

1.   2.  

3.   4.  

5.      (c) 
Figure 4. (a) BWL program that define the cellular genome for calculating finite series with a binary tree structure. (b) Binary 
tree structure of the finite series and complexity analysis. Arrows on the edges show data flow through the nodes. (c) Execution 
of the finite series program with a binary tree structure on BME using a non-deterministic routing rule. The tree grows on the 
lattice, starting from the root; every node, after performing local computation, returns its result to the environment and expires. 
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At the current stage one of the interpreters supported by 
BME accepts programs written in a language called “BME-while 
language” (BWL). It has been developed together with BME 
environment and supports all base primitives though it has a very 
simple grammar (there is only the “while-do” control flow 
statement) and it only manages with float data type. BWL defines 
a small set of arithmetic operators (+, *, /, -, div, mod) that, 
together with “while” statement, constitutes cellular operations. 

5. ANALYSIS AND EXPERIMENTS 
5.1 Complexity Analysis 

In Figure 4 a simple BWL program for calculation of the 
following expression (finite series) is shown: 

�
=

l

j
jxf

0

)(  (1) 

This text has been partially written in pseudo-code, because 
simple BWL syntax causes difficult readability.  

We use the finite series process to describe our approach to 
computational analysis. As shown in figure 4-b, finite series 
process is intended as a complete binary tree where every node 
(root, internal nodes and leaves) is implemented by a BME-
thread: internal nodes, that always have two offspring, and root 
performs a single sum, leaves perform a given f(xj). For such kind 
of binary tree, if the number of internal nodes is i, the number of 
leaves (i.e. the number of series term) is i+1. The growth (see 
figure 4-c) starts from the root (i.e. “Main” thread) and continues 
until all needed threads are instantiated. Leaves produce data and 
then expire. These data are caught by parents that produce their 
result and expire. This process goes on up to the root which prints 
the final result.  

Spatial distribution allows to exploit parallelism: supposing 
that all interactions are parallel, a sum takes a single temporal 
unit, and function f takes a constant time C(f), then complexity for 
calculation (see Figure 4-b) of a finite series is  

� � � � )(2)2)1(log()1(log 22 fCiit +−+++= λ  (2) 

where λ is the average interaction time between offspring 
and parents, i is the number of internal nodes, �log2(i+1)� is the 
height of the tree, �log2(i+1)�-2 is the time used for parallel sums 
for every tree level and 2C(f) is the time consumed for the last two 
tree levels (where f is computed). In the simpler case: 

,...12,...,12,12,12 321 −−−−= ni  
 f is computed only in the last level nodes and computation time is 

� � )())1(log)(1( 2 fCit +++= λ  (3) 

Nevertheless, in both cases, finite series BWL algorithm has 
a O(log(l)) complexity with a resources spatial occupancy of 2i+1 
cells. 

The same algorithm can be mapped on a k-ary tree structure: 
all internal nodes have to generate k offspring and perform k-1 
sum of caught results.  For a k-ary tree, if number of internal 
nodes is i, then the number of leaves is: 

1)1( +− ik  (4) 

Consequently a process for a series of l terms has a number 
of internal nodes equal to 
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and with an amount of unused resources equal to 
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Eventually, equations (2) and (3), can be easily generalized: 
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If k = l then the tree has a root with l leaves and, from (9) it easy 
to show that complexity is O(l). 

The finite series example shows that an algorithm can be 
mapped in different ways and performances change in function of 
the distribution degree. The finite series example highlights the 
issue about trade-off between distribution of computation and 
grouping operation inside nodes: keeping k small, application is 
highly distributed with simple threads; increasing k, distribution 
decreases and operations are concentrated inside the nodes. 
Anyway, the complexity analysis doesn’t comprehend a real 
investigation about interactions influence on performances. 
Communication is just represented as a single parameter (λ), but 
nothing is said about its behavior (e.g. whether it changes in 
function of mapping rule or cell interconnection degree); it is 
considered as a constant hidden by O notation.  

Generally speaking, every application has its own internal 
logic that leads mapping on the grid; at the same time, threads 
disposition on the space, lattice physical properties (i.e. 
connectivity, dimensions etc.) and routing rules affect internal 
communications of the application so deeply that they are very 
difficult to predict. With no evidence it is difficult to achieve, by 
means of a theoretical analysis, information about the right trade-
off between distribution and grouping operations inside nodes 
and it is not possible to evaluate scalability of computation. 

5.2 Experimental analysis 
BME provides a useful simulation environment for 

application testing and performances evaluation; the results 
obtained by a simulation take into consideration how distribution 
affects communication, hence they are useful to achieve 
information about right trade-off between distribution and 
grouping operations inside functional nodes. 

For our experiments we have used a 12x12 lattice in which 
every cell has four red-cells (as in Figure 1-a on the top) and a 
non deterministic routing rule that grants a uniform distribution in 
all directions (see Figure 4-c) and relatively small variation of 
value of λ against the number of allocated resources. A built-in 
monitoring tool is used to check the lattice: it periodically scans 
the status of computation and returns an estimation of time equal 
to the inverse of concurrency degree, since all concurrent 
activities would be performed simultaneously in a real system. 
The sum of all returned values is an index related to application 
execution time. We use a dynamic sampling technique which 
consists in thinning out monitor scanning activity when the 
amount of active threads decreases, and in intensifying it when 
this amount increases: 
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When concurrency degree is low, computation advances too 
quickly to obtain a precise time estimation: the fewer threads are 
running, the higher measure error is. Therefore, having a higher 
sampling frequency when concurrency is intense, the weight of 
incorrect values collected by the monitor during low concurrency 
phases is less significant. 

Equation (10) defines the sampling time at the step i+1 as a 
function of concurrency degree at step i in order to adapt sampling 
activity to computation. Parameter β is the base amplitude of 
sampling interval, parameter α settles the sampling time variation 
amplitude (higher α values imply a wider interval) and ρ  sets the 
speed of variation (higher ρ values imply a higher speed).  

The simulator allows user to set cellular operations and the 
net communication rate, but our monitoring tool returns a value in 
terms of number of samplings that is dependent just on 
concurrency degree and some parameters. The returned behavior 
of an application, loaded with different cellular and/or net 
velocity, will have a different degree of precision, because the 
monitor sampling rate cannot be increased over and over; hence 
slower communication/cellular operation rate allows a better 
precision of results, but faster rate allows testing more complex 
applications in shorter time. 

We have mapped a binary tree shaped finite series with 
different values of l in order to settle parameters of our monitor 
and achieve a good level of precision: we have obtained the 
results shown in Figure 5 by using two different settings for the 
cellular operation rate. The binary tree process is suitable for 
monitor calibration, because the amount of instantiated threads 
only changes, while cells specialization and interactions are 
constant against l. 

After monitor calibration we have executed different 
processes for calculating a finite series of a hundred elements 
using trees characterized by different values of k. Variations on 
tree offspring degree (k) makes threads more time-consuming (i.e. 
more sums have to be performed inside nodes) and have great 
impact on λ behavior, since the distance between offspring and 
parents increases against k: Our aim is to understand, by means of 
simulations, what the best values for k are. Every process has been 
executed twenty times in order to evaluate the steadiness of 
monitor responses: in Figure 6 are represented the average values 
of processes execution times and the corresponding standard 
deviation for every tested value of k using two different settings 
for cellular operation rate. 

In the first case (figure 6-a) communication time is much 
lower than cellular execution time; for low values of k, a too high 
communications overhead, caused by long distances among 
interacting elements, makes the advantages given by parallelism 
useless, while between k=7 and k=22 parallelism is well exploited. 
Increasing k more and more, functional node “inertia” negatively 
affects computation. In the second case (figure 6-b) 
communication time and cellular execution time are almost 
equal5; the optimum interval is centered on k=27, the modification 
on cellular operation rate has changed the result in an expected 
way, in fact if cells are faster, to place more operations inside 
them is profitable. Moreover, “routing distortions” have great 
influence on results: when there is a high number of unused nodes 
(see equation 7), messages paths are on average longer, and this 

                                                                 
5In general cellular message passing involve more than one hop. 

Figure 6. Average values of the execution time for finites series process (a hundred elements) based on k-ary trees and related 
standard deviation. The grey dotted line shows local minimum behavior and the dashed line shows the amount of unused nodes 
for a k-ary tree. (a) A single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼100 ms. (b) A single red-
cell interaction takes ∼∼∼∼0.05 ms and a cell executes  the entire code in ∼∼∼∼0.4 ms. 
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Figure 5. Experimental values and best fit curve for a binary tree shaped finites series of l elements confirm theoretical 
logarithmic behaviour. (a) A single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼100 ms. (b) A 
single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼0.4 ms.  
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effect is more evident when red-cell interaction latency is 
comparable to cellular operations rate. In both cases standard 
deviation is always upper-bounded and tends to decrease around 
local minimum of execution time; therefore the monitor 
estimations have a good reliability.  

Parallelism is not an easily manageable resource: in the case 
of finite series with a very low communication latency, a too high 
or too low distribution may lead to a loss of performance, but, in 
general, functions representing the trade-off between spatial 
distribution and the grouping of operations inside nodes could be 
very complex with several local minimums; such trade-off could 
depend on more than one parameter, it is affected by messages 
routing and, as we have shown, it is strongly related to the ratio 
between functional units and communication units rate. 

6. TOWARDS EVOLUTION 
BME provides an environment with precise properties and 

laws. Artificial organisms rise and grow in this environment, 
which affects their structure, but not their genome. Code of 
organisms directly influences behavior, spatial resources 
allocation and parallelism degree: a different code means a 
different application mapping. Since variation on code are 
potentially infinite, it may be useful to introduce some 
evolutionary technique [25] with the aim of creating instances of 
computational entities which evolve towards better performances 
without explicit user interventions. 

It is relatively easy to make a finite series process evolvable: 
the idea is to map a population of organisms with different 
distribution degrees on the lattice (i.e. different values of k stand 
for different application code), and employ an evolutionary 
algorithm in order to improve population, generation by 
generation. 
The implemented evolutionary algorithm operates on a randomly 
generated initial population with k comprised between 2 and 82, 
applying the principle of survival of the fittest. At each 
generation, fitness (the inverse of  execution time) is computed for 
every individuals and a new set of parents is created by roulette 
wheel method; selected individuals are bred together using 
intermediate recombination (see fig. 7) and reinserted by 
replacing a subset of parents uniformly at random.  

Figure 8 represents the average k for every generation up to the 
hundredth: smaller values stand for a greater average distribution 
degree. Every population consists of 100 individuals; for each 
step of the algorithm, 50 parents are selected and 25 offspring 
(which will randomly replace 25 parents in the next generation) 
are generated. Figure 8 shows a gradual approach to the optimal 
values found in the previous section, when we have used cellular 
operation rate much slower than red-cell communication rate (see 
Fig. 6-a); moreover standard deviation related to values of k in 
each generation decreases generation by generation. 

At the present stage a single cell is programmed to execute 
evolutionary algorithm, i.e. it collects results, evaluates fitness and 
breeds a next generation. This is a raw method used to explore the 
behavior of evolutionary approach applied to BME-organisms. 

The real aim is to enrich bio-inspired model of computation 
improving artificial organism specification (i.e. genome) by 
providing a reproductive capability. Given a pair (or a set) of 
organisms, they could be able to create a new organism for the 
same application, by using services or operations derived from 
parents. Every organism should have a finite life time according to 
its own fitness, so that every organism has a higher probability to 
reproduce itself as long as its own fitness is higher.  

A similar approach could be exploited for problem solving 
(see [23] and [24]). If this “functional merging” among 
individuals involves application logic, offspring could evolve 
towards different applications. In this case, the evolutionary trend 
should be dictated by different definition of fitness, i.e. fitness 
doesn’t have to be given as a function of execution performances, 
but according to the correctness of results. 

7. CONCLUSIONS AND FUTURE WORKS 
BME provides a good substrate to analyze different solutions 

for a highly dynamic spatial computation. By means of simulator, 
we want to propose empirical analysis and evolutionary 
techniques as an approach to evaluate performances and trade-offs 
among different choices about resources allocations, and 
communications. This kind of analysis could provide interesting 
results about new models of computation suitable for machines 
based on molecular scale devices, where the huge amount of 
resources will upset conventional architectural and computational 
paradigms (see [1]-[4]). 

Application of evolutionary processes to complex 
applications, both for performances and problem solving is not an 
easy challenge: it will require a much higher number of cells, and 
thus it will impose to exploit resources of more than one physical 
machine, furthermore it will need a more precise genome 
definition e.g. by means of “meta-genes” to distinguish functional 
classes of cellular code subsets. At the current stage we are 
developing a distributed version of BME: the basic idea is to 
exploit a computer network in which every machine executes an 
instance of the simulator. 

Artificial organisms have a dynamic structure in the sense 
that cellular allocation is subjected to computation. BME offers a 
good base to highly improve dynamism and to confer properties 
of adaptation to organisms. It could be possible to allow cells to 
keep traces of their own interactions, and move towards other 
positions to minimize packets time arrival.  This behavior would 
make artificial organisms able to analyze themselves and to 
improve their structure, taking a shape more suitable to 
environment laws (i.e. routing rules and interconnection topology) 
and conditions. 
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Fault-tolerance policies impact has not been analyzed yet. At 
the molecular scale the computational devices will be less reliable 
than actual silicon based ones (see [1],[2] and  [4]), so a native 
run-time recovery capability for local (i.e. cellular) computational 
state is very important to obtain a reliable computational machine. 
BME now provides a set of uniformly distributed spare cells (i.e. 
staminal cells), but they are not used yet and fault-tolerant policies 
for run-time computation recovery are currently a work in 
progress. 
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