
Bio Molecular Engine: A bio-inspired environment for
models of growing and evolvable computation

A. Gallini
Dept. of Computer Science, Systems and

Communication
University of Milan-Bicocca,

Milan, Italy
PHONE: +39-02-64487843

alberto.gallini@disco.unimib.it

C. Ferretti
Dept. of Computer Science, Systems and

Communication
University of Milan-Bicocca,

Milan, Italy
PHONE: +39-02-64487819
ferretti@disco.unimib.it

G. Mauri
Dept. of Computer Science, Systems and

Communication
University of Milan-Bicocca,

Milan, Italy
PHONE: +39-02-64487828
mauri@disco.unimib.it

ABSTRACT
Evolutionary computation has been often used by computer
scientists to evolve the morphologies and control systems of
artificial life. Artificial 'brains', behaviour strategies, methods of
communication, distributed problem solving and many other
topics are commonly explored by using genetic algorithms and
other evolutionary search techniques. We think that this approach
may provide the general guidelines to efficiently manage and
“design” computation on large and homogeneous lattices of
simple, asynchronously interacting processing elements. Because
of their structural simplicity, this kind of substrates will be
suitable architectural models for computational machines based
on molecular scale devices. In this paper we present an
environment named Bio-molecular Engine (BME), in which
different substrates can be simulated and used as “artificial
worlds” where computational entities can rise, grow and evolve.
In particular we discuss how to use a grid to evolutionary find a
good solution to a well defined design issue: how much
parallelism is good for a given problem computed in our
environment.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation – unbounded action device, computability theory.

General Terms
Algorithms, measurement, performance, design, experimentation.

Keywords
Simulation software, evolutionary algorithms, scalability,
computer architectures, cellular arrays.

1. INTRODUCTION
The evolutionary approach draws inspiration from biology.

Another meeting point between computation and biology is
“parallelism”, since new computing devices could be built where
many simple processing elements work in parallel, like cells in
organisms.

Motivation for this modelling choice is also given by new
technological challenges arising from nanotechnology: it will
mostly allow very small but simple processing elements, thus
requiring a high level of parallelism to obtain more computational
power (see [1]-[4]). We present here a biologically inspired
parallel computing architecture, and a simulator for it. The
simulator features a high level of flexibility in the definition of the
simulated architecture, thus allowing to experiment with different
design choices. The basic assumptions being to have many small
connected processors, working in parallel. Anyway a high level of
parallelism is not always exploitable, depending on the
algorithmic properties of the computed problem. Moreover, it
could also happen that a single parallelizable problem, at different
levels of parallelism, provides different performances on a given
computational architecture. Thus, a design problem arises: we
deal with a trade-off between assigning long computations to few
processors, and assigning simple computations to many
communicating units. We need to map a computation onto
parallel devices in such a way that we obtain the best performance
under that trade-off. We tried to use evolutionary approach to this
problem, and the resulting optimizing algorithm was computed in
our simulated model.

Section 2 describes the basic features of the simulator;
Section 3 introduces the biological reference concepts for this
architecture, while Section 4 gives more details on the resulting
implementation; Sections 5 and 6 deal with the design problem
we considered: the first one gives the analysis, and the second one
presents an evolutionary approach to it; finally, Section 7 draws
some conclusions and discusses perspectives.

2. THE ENVIRONMENT
The BME simulator provides a biologically inspired

environment where execution entities rise and grow on a grid of
homogenous virtual processing elements in order to perform
computations. These entities are completely autonomous: during
their life they autonomously search and exploit resources to
achieve their tasks, there is no hierarchically superior unit to
control them or manage system resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Genetic and Evolutionary Computation Conference (GECCO)’05,
June 25-29, 2005, Washington, DC, USA.
Copyright 2005 ACM 1-59593-097-3/05/0006…$5.00.

The execution entities define regions on a space-extended
virtual hardware whose features can be defined by user. The
virtual hardware is graphically represented as a lattice (see Figure
1) with a regular 2D structure of processing elements or cells; this
choice was only to make representation simple, but there’s no
limit to the interconnection degree and there are no constraints to
the network topology and to the number of elements, except for
those imposed by the amount of resources. The users can specify a
lattice with specific features (e.g. topology described in [16])
simply extending general (Java) classes of the simulator.

The execution entities are composed by cells and can be
considered as artificial organisms with specific functions. Their
behavior is determined by a program whose code (the organism’s
genome) is enclosed in every cell of the organism (see section 3).

An artificial organism rises from a single cell and expands
itself specializing neighbor cells on the lattice: this growth is a
sort of self-organizing process in which every cell finds its right
place depending on genome instructions and environmental
conditions. Cell specialization consists in copying the genome
from a cell of the organism to a non specialized cell and marking a
code subsection as an active gene that determines the services the
new cell will provide the environment with.

Every cell is composed by a central programmable unit for
manipulation of small amount of information and by a set of one
or more red-cells. A red-cell has to control the interactions with
the external environment1. A red-cell receives a set of packets and
discriminates (in function of the internal state of the central unit)
which message has to be absorbed and what has to be routed for
different destinations.

A cell can detect an internal fault2 and excludes itself after
sending a recovery signal; another (back-up) cell will provide
services of damaged cell. Therefore, a region of lattice has a
certain degree of fault-tolerance, provided by a set of regularly
distributed spare cells.

Lattice components (central units and red-cells) are
implemented with a thread so that every high-level hardware unit
is represented by a different execution flow: cell-threads perform
computation and red-cell-threads perform communication by
means of messages exchange. Every cell encloses an instance of a
user definable interpreter which specifies cellular operations and

1 “External environment” is an expression referred to a cell and

means “everything outside that cell”.
2 Cellular Damages are inducted by user with a mouse click on the

desired cell picture in the lattice graphical representation
window.

directly executes the code; each red-cell manages a set of queues
for local packets storage and together with other red-cells
composes a net in which message passing is performed using the
producer-consumer paradigm. User-definable routing rules are
associated to red-cells in order to define their behaviour. Every
packet is marked with a precise destination signature, which is
used by red-cells to perform local choices; they take routing
decisions, after reading the destination mark, message routing
header and values contained inside available user definable
routing structures (i.e. local look-up tables).

BME is a highly flexible instrument and provides a suitable
environment where the user, after specifying virtual hardware
features (i.e. connectivity and routing rules) and the application to
be executed, can test different solutions for spatial distribution of
computation.

3. BIO-INSPIRED COMPUTATION
3.1 Computation hierarchy

 The lattices provide a static substrate on which it’s possible
to create artificial organism with specific functions. An artificial
BME organism has a hierarchic structure that recalls organization
of biological organism (like in [13]-[15]). The basic element is the
cell with its own specialization: the pair <cell, specialization> is
called BME-thread or simply thread. A thread in BME is, at the
same time, a logical entity and a physical entity, because it
identifies a cell with a precise configuration. A set of cells with
the same specialization constitutes a tissue. Two or more different
tissues grouped together represent an artificial organ or process
that is a structure providing a larger number of services. An
organism or program is given by grouping different organs and
performs a task that provides results for a certain computation .

In nature every cell of a multi-cellular organism contains the
entire genetic code that completely describes the structure of the
organism. In BME this “universality” of the cells is considered a
useful redundancy (because of its own positive repercussion on
fault-tolerance aspects), but it’s maintained at the process level,
since the programming-genetic-code for an entire system could be
too large. In spite of its process-universality, the cell only uses the
module that defines its activity. This module is identified with the
expression of method or active gene and determines the set of
operations a cell provides the environment with.

A BME-thread is the analogue of a biological specialized
cell: during its life, it elaborates a set of data in function of the
code that specifies its behaviours. The result of this elaboration is
the analogue of proteins. Like a cell with a given specialization
produces a well defined class of proteins, so a thread elaborates its
input in a precise way dictated by its code. The structural
specifications of a cell and, as a consequence, programming
paradigms exploited to define cell code, determine the complexity
of services provided by a single cell.

The biologically inspired hierarchy provides general
guidelines about organization of computation in BME
environment, but nothing is said about functional distribution of
computation: How, can a problem be decomposed into simpler
tasks? And, what is the most suitable nature of cellular level
operations for it?

BME doesn’t give any direct answer to these questions, but it
has been created to find them through experimentation.

When users want to create organisms on the BME lattice,
they have to start from a data-flow graph representing the desired

(a) (b)

 Figure 1. (a) Virtual hardware lattices. (b) A growing
computation.

application (even obtained by means of parallelizing compiler like
in [5],[6],[22] or in [7],[8]): first a precise specification of cellular
operations set is needed and then it is possible to build a data-flow
graph. Afterwards, the user owns all the instruments to write code
and give it in input to the simulator.

Currently the user can test different distribution degree for a
given application by modifying code, but BME can be exploited
to develop evolutionary approaches for a self-organizing
computation (as we will show in section 6) creating populations
of artificial organisms able to autonomously evolve towards better
spatial resources usage: “evolution” applied to computation will
have a positive impact on scalability, as spatial allocation policies
dynamically change in function of environment properties, first
of all dimensions and topological constrains.

3.2 Cellular Life-cycle
 When there’s no loaded process, lattice appears like a field

of not existent cell with a uniform distribution of not existent
staminal cell; both these kinds of cells don’t have a specialization
so they are potential resources. A cell becomes “existent” whether
it acquires a specialization (eukaryote cell) – so a thread rises - or
becomes an active staminal (a back-up cell ready to assume a
specialization of damaged cell)3.

The life of a process starts from a single cell with a particular

specialization given by a module called “Main”. From this BME-
thread, the artificial organism begins to grow by “cellular
division”, that is performed by two particular kinds of
specialization packets emitted by cells:

• run packets
• call packets

The thread generated by a “run” packet is concurrent to the thread
which has emitted the specialization packet, while a thread which
has emitted a “call” packet, waits for a return value coming from
the new “called” thread (i.e. caller and callee interacts by
extended rendezvous [21]). A computation acquires spatial
resources by means of specialization packets: they specialize the
first not existent cell found on their path, as determined by routing
rules and conditions of the environment (i.e. previously
specialized cells and their position).

 Specialization packets are emitted by a cell when it executes
special “run” and “call” primitives (see section 4) contained in its
genome. These primitives require the name of a module as input
in order to generate a cell which will execute it, e.g.:

 run moduleForSum or call moduleForSelection

3 Staminal Cells are currently not used, because fault-tolerance

policies are currently work in progress.

So “run” and “call” primitives trace relationships between
two modules of the code (“caller” and “callee”). It is possible to
draw a graph that depicts the logical structure of a process by
representing modules as nodes and relationships as edges; figure
4-b shows an example of a process with a logical tree structure.

Threads interact by means of data packets; differently from
specialization packets, their routing is intended as a searching
activity based on local information about disposition of resources
(no cell completely knows the process morphology). When a
message arrives next to the destination cell it is absorbed like
biological cells absorb external resources through their
membrane. Data are transformed by cells on the base of cellular
specialization code, i.e. its active gene. In general, threads
interactions are not constrained by modules relationships.

A BME-thread, in the course of its life, can assume different
internal states. It can apply operations on data (run state) or
invoke other methods to request other services. A thread could
wait data from other threads or could be in a pending state,
waiting for a return value of a thread it has invoked via a “call”
command.

If a thread terminates correctly then it assumes end state
otherwise, if it has detected an internal damage4 it assumes error
state.

4. IMPLEMENTATION
4.1 Virtual devices

Java threads are used to implement the high level hardware
units of lattices: cells and red-cells. Red-cells enclose a certain
(user definable) number of queues controlled by a queues
manager that inserts incoming packets in the queues and extracts
from them outgoing packets in FIFO mode. When a packet is
selected by queues manager, its destination (one of neighbour red-
cells or the current cell) is chosen by applying a user-selected
routing rule.

Cell-threads implement a very simple machine capable of
few actions or cellular primitives. These primitives are
represented by some methods of class “Cell”. Associated to the
cell there is an interpreter employed to execute operations on data
and, since it is user-definable, a cell virtually supports any kind of
programming language. Yet, every interpreter has to internally
define the cellular primitives in order to provide the programmer
with a usable cell interface and, as a consequence, with BME
environment.

4.2 Cellular functional code
An interpreter for the cells has to accept a language that

includes base primitives and defines a set of operations on data.
Base primitives are concerning in growth, data, specialization and

4 Internal damages are inducted by user with a mouse click on a

cell.

Figure 2. Cell life-cycle.

Figure 3. Cell internal state.

local memory access. Table 2 briefly describes the meaning of
some base primitives.

Table 2. Cellular base primitives

primitive area Action

CALL growth “call” packet emission

RUN growth “run” packet emission

SEND data comm. “data” packet emission

WAIT data comm. cell waits for incoming data

GET specialization A cell get its input parameter.

Growth primitives are used to instantiate new cells and carry
on the growth of artificial organism. Cells use data
communications primitives to introduce computed data into the
net and consequently interact with the environment. When a cell
receives its specialization (by means of “run” or “call” packets) it
is ready to perform its own job, but sometimes it may require
further specialization to obtain a better identification (e.g. in the
case of several cells with the same specialization). The cells use a
small amount of internal memory for local temporary storage,
therefore some primitives to read/write data are essential.
Summing up, every time a virtual hardware functionality is
required or some action related to bio-inspired model of
computation has to be performed, a base primitive is used.

Main
[null]
[null]
BeginMethod
$nodeID = 1
run FX $nodeID
$nodeID = 2
run FX $nodeID
wait $result_left_subtree
wait $result_right_subtree
$result_left_subtree + $result_right_subtree
out $result_left_subtree
EndMethod

FX
[IN]
[null]
BeginMethod
Every FX cell acquires node ID used to discriminate internal nodes
from leaves:
get $nodeID
Every FX cell knows tree features:
$numInteranlNodes = 100
$maxInNodeID = $numInNodes
$maxInNodeID - 1

if (actual node is internal)
begin

current node generates offspring,
 $nodeID_left = $nodeID
 $nodeID_left * 2
 $nodeID_left + 1
$nodeID_right = $nodeID_left
$nodeID_right + 1
run FX $nodeID_left
run FX $nodeID_right
waits results,
wait $Xi
wait $Xj
performs SUM of offspring results.
$Xi + $Xj

end

if (actual node is a leaf)
begin
 current node performs f(x).

$Xi = f(x)
end

if ($nodeID < 3)
begin
 if current node is a child of the root then sends result to the Main,

send Main null $Xi
end

if ($nodeID > 2)
begin
 else sends result to its parent.

send FX $nodeID_parent IN $Xi
end
EndMethod

(a)

COMMENTS

PSEUDO-CODE

1. 2.

3. 4.

5. (c)
Figure 4. (a) BWL program that define the cellular genome for calculating finite series with a binary tree structure. (b) Binary
tree structure of the finite series and complexity analysis. Arrows on the edges show data flow through the nodes. (c) Execution
of the finite series program with a binary tree structure on BME using a non-deterministic routing rule. The tree grows on the
lattice, starting from the root; every node, after performing local computation, returns its result to the environment and expires.

A NODE
GENERATES
TWO OFFSPRING

MAIN
(ROOT)

(b)

Node ID: 3,4,5,6

time

� � � �)(2)3)1(log()1)1(log(22 fCiit +−++−+= λ

� � � �)(2)2)1(log()1(log 22 fCiit +−+++= λ

λ=t

1=t

+

+ + + + + +
f

+
f

 + +

+ +

+

Node ID: 0

Node ID: 1,2

Node ID: � � 12 2log −i ,…,i-1)(2 fCt += λ

0=t

f f)(fCt =

+

f f

+

f f

+

f f

+

f f

� � � �)(2)4)1(log()2)1(log(22 fCiit +−++−+=λ

� � � � � �)21(2))12(2(2 222 log1loglog iii ii −+⋅=+−−⋅ +

� � ii −−+)12(1log2

+ +

At the current stage one of the interpreters supported by
BME accepts programs written in a language called “BME-while
language” (BWL). It has been developed together with BME
environment and supports all base primitives though it has a very
simple grammar (there is only the “while-do” control flow
statement) and it only manages with float data type. BWL defines
a small set of arithmetic operators (+, *, /, -, div, mod) that,
together with “while” statement, constitutes cellular operations.

5. ANALYSIS AND EXPERIMENTS
5.1 Complexity Analysis

In Figure 4 a simple BWL program for calculation of the
following expression (finite series) is shown:

�
=

l

j
jxf

0

)((1)

This text has been partially written in pseudo-code, because
simple BWL syntax causes difficult readability.

We use the finite series process to describe our approach to
computational analysis. As shown in figure 4-b, finite series
process is intended as a complete binary tree where every node
(root, internal nodes and leaves) is implemented by a BME-
thread: internal nodes, that always have two offspring, and root
performs a single sum, leaves perform a given f(xj). For such kind
of binary tree, if the number of internal nodes is i, the number of
leaves (i.e. the number of series term) is i+1. The growth (see
figure 4-c) starts from the root (i.e. “Main” thread) and continues
until all needed threads are instantiated. Leaves produce data and
then expire. These data are caught by parents that produce their
result and expire. This process goes on up to the root which prints
the final result.

Spatial distribution allows to exploit parallelism: supposing
that all interactions are parallel, a sum takes a single temporal
unit, and function f takes a constant time C(f), then complexity for
calculation (see Figure 4-b) of a finite series is

� � � �)(2)2)1(log()1(log 22 fCiit +−+++= λ (2)

where λ is the average interaction time between offspring
and parents, i is the number of internal nodes, �log2(i+1)� is the
height of the tree, �log2(i+1)�-2 is the time used for parallel sums
for every tree level and 2C(f) is the time consumed for the last two
tree levels (where f is computed). In the simpler case:

,...12,...,12,12,12 321 −−−−= ni
 f is computed only in the last level nodes and computation time is

� �)())1(log)(1(2 fCit +++= λ (3)

Nevertheless, in both cases, finite series BWL algorithm has
a O(log(l)) complexity with a resources spatial occupancy of 2i+1
cells.

The same algorithm can be mapped on a k-ary tree structure:
all internal nodes have to generate k offspring and perform k-1
sum of caught results. For a k-ary tree, if number of internal
nodes is i, then the number of leaves is:

1)1(+− ik (4)

Consequently a process for a series of l terms has a number
of internal nodes equal to

��

�
��

�

−
−

1
1

k
l (5)

and can be mapped on a surface with a quantity of nodes equal to

1
1
1

1
1
1

)1(
1
1 +��

�
��

�

−
−=+��

�
��

�

−
−⋅−+��

�
��

�

−
−

k
l

k
k
l

k
k
l (6)

and with an amount of unused resources equal to

l
k
l

k −+��
�

��

�

−
−⋅− 1

1
1

)1(
 (7)

Eventually, equations (2) and (3), can be easily generalized:

)(221
1
1

)1(log

1
1
1

)1(log)1(

fC
k
l

k

k
l

kkt

k

k

+
�
�

	

�
�

�

−�

�

�
�
�

�
��
	

��
�

+�

�

�
�
�

�

−
−⋅−+

+�
�

�
�
�

�
��
	

��
�

+�

�

�
�
�

�

−
−⋅−−= λ (8)

)(1
1
1

)1(log)1)(1(fC
k
l

kkt k +�
�

�
�
�

�
��
	

��
�

 +��
�

��

�

−
−⋅−−+= λ (9)

If k = l then the tree has a root with l leaves and, from (9) it easy
to show that complexity is O(l).

The finite series example shows that an algorithm can be
mapped in different ways and performances change in function of
the distribution degree. The finite series example highlights the
issue about trade-off between distribution of computation and
grouping operation inside nodes: keeping k small, application is
highly distributed with simple threads; increasing k, distribution
decreases and operations are concentrated inside the nodes.
Anyway, the complexity analysis doesn’t comprehend a real
investigation about interactions influence on performances.
Communication is just represented as a single parameter (λ), but
nothing is said about its behavior (e.g. whether it changes in
function of mapping rule or cell interconnection degree); it is
considered as a constant hidden by O notation.

Generally speaking, every application has its own internal
logic that leads mapping on the grid; at the same time, threads
disposition on the space, lattice physical properties (i.e.
connectivity, dimensions etc.) and routing rules affect internal
communications of the application so deeply that they are very
difficult to predict. With no evidence it is difficult to achieve, by
means of a theoretical analysis, information about the right trade-
off between distribution and grouping operations inside nodes
and it is not possible to evaluate scalability of computation.

5.2 Experimental analysis
BME provides a useful simulation environment for

application testing and performances evaluation; the results
obtained by a simulation take into consideration how distribution
affects communication, hence they are useful to achieve
information about right trade-off between distribution and
grouping operations inside functional nodes.

For our experiments we have used a 12x12 lattice in which
every cell has four red-cells (as in Figure 1-a on the top) and a
non deterministic routing rule that grants a uniform distribution in
all directions (see Figure 4-c) and relatively small variation of
value of λ against the number of allocated resources. A built-in
monitoring tool is used to check the lattice: it periodically scans
the status of computation and returns an estimation of time equal
to the inverse of concurrency degree, since all concurrent
activities would be performed simultaneously in a real system.
The sum of all returned values is an index related to application
execution time. We use a dynamic sampling technique which
consists in thinning out monitor scanning activity when the
amount of active threads decreases, and in intensifying it when
this amount increases:

11,),
1

11
1(log1 >>

++
−+⋅−=∆ + ρα

α
β ρ

ii
i rc

t (10)

When concurrency degree is low, computation advances too
quickly to obtain a precise time estimation: the fewer threads are
running, the higher measure error is. Therefore, having a higher
sampling frequency when concurrency is intense, the weight of
incorrect values collected by the monitor during low concurrency
phases is less significant.

Equation (10) defines the sampling time at the step i+1 as a
function of concurrency degree at step i in order to adapt sampling
activity to computation. Parameter β is the base amplitude of
sampling interval, parameter α settles the sampling time variation
amplitude (higher α values imply a wider interval) and ρ sets the
speed of variation (higher ρ values imply a higher speed).

The simulator allows user to set cellular operations and the
net communication rate, but our monitoring tool returns a value in
terms of number of samplings that is dependent just on
concurrency degree and some parameters. The returned behavior
of an application, loaded with different cellular and/or net
velocity, will have a different degree of precision, because the
monitor sampling rate cannot be increased over and over; hence
slower communication/cellular operation rate allows a better
precision of results, but faster rate allows testing more complex
applications in shorter time.

We have mapped a binary tree shaped finite series with
different values of l in order to settle parameters of our monitor
and achieve a good level of precision: we have obtained the
results shown in Figure 5 by using two different settings for the
cellular operation rate. The binary tree process is suitable for
monitor calibration, because the amount of instantiated threads
only changes, while cells specialization and interactions are
constant against l.

After monitor calibration we have executed different
processes for calculating a finite series of a hundred elements
using trees characterized by different values of k. Variations on
tree offspring degree (k) makes threads more time-consuming (i.e.
more sums have to be performed inside nodes) and have great
impact on λ behavior, since the distance between offspring and
parents increases against k: Our aim is to understand, by means of
simulations, what the best values for k are. Every process has been
executed twenty times in order to evaluate the steadiness of
monitor responses: in Figure 6 are represented the average values
of processes execution times and the corresponding standard
deviation for every tested value of k using two different settings
for cellular operation rate.

In the first case (figure 6-a) communication time is much
lower than cellular execution time; for low values of k, a too high
communications overhead, caused by long distances among
interacting elements, makes the advantages given by parallelism
useless, while between k=7 and k=22 parallelism is well exploited.
Increasing k more and more, functional node “inertia” negatively
affects computation. In the second case (figure 6-b)
communication time and cellular execution time are almost
equal5; the optimum interval is centered on k=27, the modification
on cellular operation rate has changed the result in an expected
way, in fact if cells are faster, to place more operations inside
them is profitable. Moreover, “routing distortions” have great
influence on results: when there is a high number of unused nodes
(see equation 7), messages paths are on average longer, and this

5In general cellular message passing involve more than one hop.

Figure 6. Average values of the execution time for finites series process (a hundred elements) based on k-ary trees and related
standard deviation. The grey dotted line shows local minimum behavior and the dashed line shows the amount of unused nodes
for a k-ary tree. (a) A single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼100 ms. (b) A single red-
cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼0.4 ms.

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82

mean exec t ime st .dev. unused nodes

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97 102

mean exec time st.dev. unused nodes

l l

k k

(a)

(a)

(b)

(b)

monitor
time

monitor
time

Figure 5. Experimental values and best fit curve for a binary tree shaped finites series of l elements confirm theoretical
logarithmic behaviour. (a) A single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼100 ms. (b) A
single red-Cell interaction takes ∼∼∼∼0.05 ms and a cell executes the entire code in ∼∼∼∼0.4 ms.

monitor
time

monitor
time

effect is more evident when red-cell interaction latency is
comparable to cellular operations rate. In both cases standard
deviation is always upper-bounded and tends to decrease around
local minimum of execution time; therefore the monitor
estimations have a good reliability.

Parallelism is not an easily manageable resource: in the case
of finite series with a very low communication latency, a too high
or too low distribution may lead to a loss of performance, but, in
general, functions representing the trade-off between spatial
distribution and the grouping of operations inside nodes could be
very complex with several local minimums; such trade-off could
depend on more than one parameter, it is affected by messages
routing and, as we have shown, it is strongly related to the ratio
between functional units and communication units rate.

6. TOWARDS EVOLUTION
BME provides an environment with precise properties and

laws. Artificial organisms rise and grow in this environment,
which affects their structure, but not their genome. Code of
organisms directly influences behavior, spatial resources
allocation and parallelism degree: a different code means a
different application mapping. Since variation on code are
potentially infinite, it may be useful to introduce some
evolutionary technique [25] with the aim of creating instances of
computational entities which evolve towards better performances
without explicit user interventions.

It is relatively easy to make a finite series process evolvable:
the idea is to map a population of organisms with different
distribution degrees on the lattice (i.e. different values of k stand
for different application code), and employ an evolutionary
algorithm in order to improve population, generation by
generation.
The implemented evolutionary algorithm operates on a randomly
generated initial population with k comprised between 2 and 82,
applying the principle of survival of the fittest. At each
generation, fitness (the inverse of execution time) is computed for
every individuals and a new set of parents is created by roulette
wheel method; selected individuals are bred together using
intermediate recombination (see fig. 7) and reinserted by
replacing a subset of parents uniformly at random.

Figure 8 represents the average k for every generation up to the
hundredth: smaller values stand for a greater average distribution
degree. Every population consists of 100 individuals; for each
step of the algorithm, 50 parents are selected and 25 offspring
(which will randomly replace 25 parents in the next generation)
are generated. Figure 8 shows a gradual approach to the optimal
values found in the previous section, when we have used cellular
operation rate much slower than red-cell communication rate (see
Fig. 6-a); moreover standard deviation related to values of k in
each generation decreases generation by generation.

At the present stage a single cell is programmed to execute
evolutionary algorithm, i.e. it collects results, evaluates fitness and
breeds a next generation. This is a raw method used to explore the
behavior of evolutionary approach applied to BME-organisms.

The real aim is to enrich bio-inspired model of computation
improving artificial organism specification (i.e. genome) by
providing a reproductive capability. Given a pair (or a set) of
organisms, they could be able to create a new organism for the
same application, by using services or operations derived from
parents. Every organism should have a finite life time according to
its own fitness, so that every organism has a higher probability to
reproduce itself as long as its own fitness is higher.

A similar approach could be exploited for problem solving
(see [23] and [24]). If this “functional merging” among
individuals involves application logic, offspring could evolve
towards different applications. In this case, the evolutionary trend
should be dictated by different definition of fitness, i.e. fitness
doesn’t have to be given as a function of execution performances,
but according to the correctness of results.

7. CONCLUSIONS AND FUTURE WORKS
BME provides a good substrate to analyze different solutions

for a highly dynamic spatial computation. By means of simulator,
we want to propose empirical analysis and evolutionary
techniques as an approach to evaluate performances and trade-offs
among different choices about resources allocations, and
communications. This kind of analysis could provide interesting
results about new models of computation suitable for machines
based on molecular scale devices, where the huge amount of
resources will upset conventional architectural and computational
paradigms (see [1]-[4]).

Application of evolutionary processes to complex
applications, both for performances and problem solving is not an
easy challenge: it will require a much higher number of cells, and
thus it will impose to exploit resources of more than one physical
machine, furthermore it will need a more precise genome
definition e.g. by means of “meta-genes” to distinguish functional
classes of cellular code subsets. At the current stage we are
developing a distributed version of BME: the basic idea is to
exploit a computer network in which every machine executes an
instance of the simulator.

Artificial organisms have a dynamic structure in the sense
that cellular allocation is subjected to computation. BME offers a
good base to highly improve dynamism and to confer properties
of adaptation to organisms. It could be possible to allow cells to
keep traces of their own interactions, and move towards other
positions to minimize packets time arrival. This behavior would
make artificial organisms able to analyze themselves and to
improve their structure, taking a shape more suitable to
environment laws (i.e. routing rules and interconnection topology)
and conditions.

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Mean value of k of t he i- t h genearat ion st . dev.k

#generations

Figure 8. Mean values of k for every generation
produced by evolutionary algorithm applied to finite
series process and relative standard deviation.

Figure 7. Area for variable value of offspring compared
to parents in intermediate recombination.

Fault-tolerance policies impact has not been analyzed yet. At
the molecular scale the computational devices will be less reliable
than actual silicon based ones (see [1],[2] and [4]), so a native
run-time recovery capability for local (i.e. cellular) computational
state is very important to obtain a reliable computational machine.
BME now provides a set of uniformly distributed spare cells (i.e.
staminal cells), but they are not used yet and fault-tolerant policies
for run-time computation recovery are currently a work in
progress.

8. ACKNOWLEDGMENTS
This work was supported by “Silvio Tronchetti Provera”

Foundation. The authors would like to thank AST labs (ST-
Microelectronic) team for support and discussions.

9. REFERENCES
[1] Lisa J K Durbeck, Nicholas J Macias. The Cell Matrix: an

architecture for nanocomputing. Nanotechnology, no. 12, pp.
217-230, Sep. 2001.

[2] Paul Beckett, and Andrew Jennings. Towards nanocomputer
architecture. In Australian Computer Science Communications,
Proceedings of the seventh Asia-Pacific conference on Computer
systems architecture, Vol.6, Jan. 2002.

[3] Paul Beckett. VLSI in the nanometer era: Exploiting multiple
functionality for nano-scale reconfigurable systems. In
Proceedings of the 13th ACM Great Lakes symposium on VLSI,
Apr. 2003.

[4] Ferdinand Peper, Member, Jia Lee, Fukutaro Abo, Teijiro
Isokawa, Member, Nobuyuki Matsui and Shinro Mashiko. Fault-
Tolerance in Nanocomputers: A Cellular Array Approach. IEEE
Trans. on nanotechnology, vol. 3, no. 1, pp. 187-201, March
2004.

[5] Walid A. Najjar,Wim Böhm Bruce A. Draper, Jeff Hammes
Robert Rinker, J. Ross Beveridge, Monica Chawathe and Charles
Ross. High-Level Language Abstraction for Reconfigurable
Computing. IEEE Computer - Innovative Technology for
Computing professionals, pp. 63-69, Aug. 2003 .

[6] J.P.Hammes, R. E. Rinker, D. M. McClure, A. P. W. Böhm, W.
A. Najjar. The SA-C Compiler Dataflow Descritpion. ACM
Transactions on Embedded Computing Systems (TECS) Vol. 2,
Issue 4, pp. 560-589, Nov. 2003.

[7] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea and Seth
Copen Goldstein. Spatial Computation. In Eleventh International
Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2004, Boston,
Massachusetts, USA.

[8] Girish Venkataramani, Mihai Budiu, Tiberiu Chelcea and Seth
Copen Goldstein. C to Asynchronous Dataflow Circuits: An
End-to-End Toolflow. In Thirteenth International Workshop on
Logic and Synthesis, June 2004, Temecula, California, USA.

[9] Seth Copen Goldstein and Dan Rosewater. What Makes a Good
Molecular Scale Computer Device?. Technical Report CMU-CS-
02-181, September 2002.

[10] Sven Bodo Scholz. Single Assignment C -- Functional
Programming Using Imperative Style. In Functional Languages
Implementation Workshop. Paper 21.

[11] Luca Benini, Giovanni De Micheli. Network On Chip: A New
SoC Paradigm. In Design, Automation and Test in Europe
Conference and Exhibition, Paris, France, March 2002.

[12] Girish V. Varatkar, Radu Marculescu. On-Chip Traffic Modeling
and Synthesis for MPEG-2 Video Applications. IEEE Trans. on
Very Large Scale Integration systems, vol. 12, no. 1, pp. 108-
119,Jan. 2004.

[13] C. Teuscher, D. Mange, A. Stauer, and G. Tempesti. Bio-Inspired
Computing Tissues: Towards Machines that Evolve, Grow, and
Learn. In Fourth International Workshop on Information
Processing in Cells and Tissues, Inter-University Micro
Electronics Center Kapeldreef 75 3001 Heverlee (Leuven)
Belgium, Apr. 24, 2001.

[14] Gianluca Tempesti, Daniel Roggen, Eduardo Sanchez, Yann
Thoma, Richard Canham and Andy Tyrrell. Ontogenetic
Development and Fault Tolerance in the POEtic Tissue. In The
5th International Conference on Evolvable Systems: From
Biology to Hardware, March 2003.

[15] Yann Thoma, Eduardo Sanchez, Juan-Manuel Moreno Arostegui
and Gianluca Tempesti. A Dynamic Routing Algorithm for a
Bio-Inspired Reconfigurable Circuit. Field-Programmable Logic
and Applications pp. 681-690, 2003.

[16] Andrè DeHon. Compact, Multilayer Layout for Butterfly
FatTree. In Twelfth Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 206--215, July 9-12, 2000.

[17] C. S. Lent and P. D. Tougaw. A device architecture for
computing with quantum dots. Proc. IEEE, vol. 85, pp. 541–557,
1997.

[18] Craig S. Lent, P. Douglas Tougaw, Wolfgang Porod, and Gary
H. Bernstein. Quantum Cellular Automata. Nanotechnology 4, pp.
49-57 ,1993.

[19] P. Douglas Tougaw and Craig S. Lent. Dynamic behavior of
quantum cellular automata. Journal of Applied Physics, Vol. 80,
pp. 4722-4736 Oct. 15, 1996.

[20] Konrad Walus, Timothy J. Dysart, Graham A. Jullien and R.
Arief Budiman. QCA Designer: A Rapid Design and Simulation
Tool for Quantum-Dot Cellular Automata. IEEE Trans. on
nanotechnology, Vol. 3, no. 1, March 2004.

[21] C. Ghezzi, Mehdi Jazayeri, Programming Language Concepts.
Third Edition, Wiley 1998.

[22] Robert P. Wilson, Robert S. French, Christopher S. Wilson,
Saman P. Amarasinghe, Jennifer M. Anderson, Steve W. K.
Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W. Hall, Monica
S. Lam, and John L. Hennessy. SUIF: An infrastructure for
research on parallelizing and optimizing compilers. In ACM
SIGPLAN Notices, Vol. 29, pp. 31–37, Dec.1994.

[23] John R. Koza. Genetic programming: a paradigm for genetically
breeding populations of computer programs to solve problems.
Technical Report: CS-TR-90-1314, June 1990.

[24] John R. Koza and James P. Rice. Genetic Generation of Both the
Weights and Architecture for a Neural Network. In International
Joint Conference on Neural Networks, Vol. 2 pp. 307-404,
Seattle, Washington, USA, 1991.

[25] Melanie Mitchell. An introduction to genetic algorithms. MIT
Press, 1996.

[26] Peter Bentley. Aspects of Evolutionary Design by Computers. In
Proceedings of the 3rd On-line World Conference on Soft
Computing in Engineering Design and Manufacturing, 1998.

