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ABSTRACT

The need to build modular, scalable, and complex technol-
ogy capable of adaptation, self-assembly, and self-repair has
fuelled renewed interest in using approaches inspired by de-
velopmental biology. To meet this need, a new field, called
Computational Development (CD), has emerged. Its focus is
on adapting processes and mechanisms from developmental
biology so as to help us build scalable, complex technology.
Due to the embryonic nature of the field, however, research
investigating the potential of such approaches for different
problem domains is crucial to its success. In this paper, the
plausibility of applying a developmental biology-inspired ap-
proach to the demanding problem domain of reactive robot
control is explored. Using developmental genetics as a source
of inspiration, a model of genetic regulatory networks is used
in conjunction with a spatially distributed evolutionary al-
gorithm to evolve real-time robot controllers for tasks such
as general purpose obstacle avoidance.

Categories and Subject Descriptors

F.1.1 [Computation by Abstract Devices]: [Models of
Computation]; 1.2.8 [Artificial Intelligence]: [Problem
Solving, Control Methods, and Search]; 1.2.9 [Artificial In-
telligence]: [Robotics]

General Terms

Algorithms, Experimentation, Performance

Keywords

Development, Genetic Regulatory Networks, Reactive Robots,

Control

1. INTRODUCTION

The need to build modular, scalable, and complex technol-
ogy capable of, for example, adaptation, self-assembly, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO' 05, June 25-29, 2005, Washington, DC, USA.

Copyright 2005 ACM 1-59593-097-3/05/0006 ...$5.00.

self-repair, has, over recent years, fuelled renewed interest in
using approaches inspired by developmental biology [11, 7, 3,
5, 9]. For example, in the field of robotics, aspects of devel-
opmental biology have been modeled with much success for
distributed robot control [15, 6], while the problem domain
seeing the most success with the application of the devel-
opmental metaphor is evolutionary design. In Evolutionary
Robotics (ER), however, robot control using developmental
biology inspired approaches has typically been achieved indi-
rectly, for example, through the development of a controller
such as a neural network. Several researchers have investi-
gated such an approach [3, 5]. The focus of these investi-
gations, however, were on evolving a developmental process
which specifies how the topology of a neural network (NN)
is to be grown using concepts from developmental biology
in which, for example, cells are able to divide, differenti-
ate and form connections with other cells. After a period of
growth, the resulting network of cells is interpreted as a neu-
ral network used to control robot behaviour and navigation.
Common to all such works is that once the neural network
is constructed the genome is discarded [12]. This does not
occur in biology, where developmental processes and mecha-
nisms continue to operate long after embryonic development
has ceased in order to maintain the highly dynamic state of
organisms.

In biology, the ability to react fast to changing situations
and circumstances is crucial to the success of an organism,
for example, fleeing a predator. As Marcus [10] points out,
neurons react on a faster time-scale than genes, typically
on the order of milliseconds, whereas genes are relatively
slower. However, this should not detract from the fact that
the genome is an immensely complex, real-time control sys-
tem that builds bodies, brains, and immune systems capable
of remarkable abilities.

As computer scientists and engineers we are not constrained
by the same issues as biology; consequently, Genetic Regula-
tory Networks (GRNs) would operate at the same time-scale
as Neural Networks (NNs). Furthermore, in using GRNs as
the control system for generating reactive robot behaviours,
in which current sensor readings are mapped into actions,
future research can begin to explore how one might har-
ness their powerful regenerative abilities to construct robust,
fault-tolerant robotic behaviours.

Work by Kumar [8] has shown GRNSs to be a viable control
architecture for reactive robot control for the problem do-
main of evolutionary robotics, along with other works such
as [1, 12, 16]. Alternative, and related, approaches to robot



control and behaviour generation that have seen much suc-
cess are rule systems [14]. Still, problems with rule systems
exist: although they can be made to have state, traditionally
state was lacking. This work explores the ability of GRNs
to specify reactive robot behaviours through the evolution
of a general purpose obstacle avoidance GRN controller.

The paper is structured as follows: first a brief introduc-
tion to the field of developmental genetics is given, followed
by a description of the genetic regulatory network (GRN)
model used in this work. This is follwed by a section de-
tailing the spatially distributed evolutionary algorithm em-
ployed in this work [13], while the following section intro-
duces the robot environment used. The three sets of ex-
periments performed to evolve real-time robot controllers
are then described. The first set of experiments shows con-
trollers that are able to memorise routes through the envi-
ronment using no sensors. The second set shows controllers
that are able to interact with the environment through sen-
sors for both navigation and behaviour generation. However,
analysis revealed that these controllers, although appearing
to display obstacle avoidance behaviour, memorised routes
through the environment. In order to address this, a third
set of experiments is detailed that evolves GRN controllers
to perform general purpose obstacle avoidance while being
subjected to small amounts of sensory noise.

2. DEVELOPMENTAL GENETICS

Developmental genetics is the field of study that looks at
how DNA specifies and controls genetic and cellular mecha-
nisms that govern cell behaviour and permit a sophisticated
program of development to emerge [17]. Central to genetics
is the concept of regulation, in which the products of genes
feedback into the system controlling the synthesis or decay
of other gene products, which in turn regulate the expres-
sion of other genes and consequently other gene products,
etc. The frequency with which regulation occurs and, more
importantly, the number of stages centred around gene ex-
pression and development that afford the opportunity for
regulation serves to underscore its importance.

This complex web of regulation in both space and time
constitutes genetic regulatory networks. The power of these
networks is made more apparent when the bigger multicel-
lular picture is taken into account. Each cell in a multicellu-
lar organism contains a copy of the genome and thus of the
GRNs. Additional complexity, is afforded by cell apparatus
and STNs, Signal Transduction Networks.

STNs are essentially cascades of chemical reactions that
occur when proteins bind to cell receptors (a rather crude
analogy to the receptor-protein binding is that of a robot
using its sensors). Typically, a chemical reaction occurs out-
side the cell at the receptor sites when and where a protein
is detected. The receptor and incoming protein form what
is known as a protein-receptor complex which acts as a sig-
nal. The signal conveyed by the protein-receptor complex
is then transduced across the cell membrane and is allowed
to enter the cell. At this point specific reactions occur in a
cascade like manner. After completion of the cascade, a re-
sulting signal in the form of mRNA or a protein is produced
that is then permitted to target a particular gene or subset
of genes within the cell’s nucleus. Alternatively, the result-
ing mRNA or protein complex may not target any genes at
all, but rather is decayed away. STNs therefore are able to
provide a mechanism by which signal amplification or at-

Table 1: List of Proteins and their Purposes

Protein ID Purpose Experiment
0 Move Forwards
1 Move Backwards
2 Rotate Counter-Clockwise
3 Rotate Clockwise
4 No Purpose
5 Rear Left Sensor
6 Left Sensor
7 Front-Left Sensor 1
8 Front-Left Sensor 2
9 Front-Right Sensor 2
10 Front-Right Sensor 1
11 Right Sensor
12 Rear-Right Sensor

tenutation can be achieved. Here, again, we encounter the
notion of regulation, which is not only prevalent in this syn-
opsis of signal transduction, but pervades development, cell
biology, and genetics.

Since both GRNs and STNs are housed within cells, this
work, which focuses on genetic regulatory networks and not
STNs or the cell, uses a highly abstracted and limited view
of the cell as it pertains to GRNs. To this end, the bio-
logical cell offers a useful analogy for work in autonomous,
distributed systems research. A cell may be viewed as an
autonomous agent that has inputs and outputs as well as so-
phisticated processing abilities. This view of the cell trans-
lates to an agent with sensors (e.g. sonar) and effectors (e.g.
a gripping arm). The analogy is attractive for many reasons,
one of which is that cells can have many different types of
sensors for sampling the environment, just as an agent can
have different sensors.

3. THEGENETICREGULATORY NETWORK

MODEL

The model of genetic regulatory networks used in this
work is a modified version of the GRN model used in the
EDS (the Evolutionary Developmental System) [9] and is
based on the connectionist framework proposed by Mjolsness
(1996).

Gene 1l Gene 2 Gene 3 Gene 4
1 47 4 2 61 7 1 4 4 1 372 1
Cls-sites Cls-sites Cis-sites Cls-sites
cigteg cig-teg cis-teg cigteg
regiof region region region

Transctiption direction ———————————

Figure 1: Cis-Trans Genome Architecture

Figure 1 illustrates the cis-trans architecture of the ge-
netic regulatory network contained within the cell. GRNs
are comprised of N genes connected by virtue of the proteins
they encode. Each gene has two sections: a cis regulatory
region (preconditions) and a coding region (adjacent to the
cis-region shown in fig 1) which specifies a protein to be



emitted if the gene is expressed. Just as in biology, the
genes in the EDS may be thought of as rules with precondi-
tions to be satisfied before a rule can fire and actions to be
performed upon firing. Each gene has an associated evolved
activation threshold beyond which the gene will activate and
emit the protein specified in the coding region. Since genes
are essentially rules, gene expression and rule firing are one
and the same thing. Gene expression is achieved by assess-
ing the level of occupation of the cis-site region of a gene
by other proteins (or transcription factors). In the context
of rule firing, this translates to assessing the contribution of
proteins in satisfying the precondition requirements of the
gene (rule) encoded in the form of protein cis-sites [2], see
fig 1.

The number of proteins were varied for each experiment.
However, in the case of the third experiment - which had
the most proteins - a total of thirteen proteins were used
in the model, the purpose of each protein is shown in ta-
ble 1. Speed, s, and rotation angle, 0, are specified by the
concentration of the corresponding protein (which may take
up values in the interval 0..1) and scaled appropriately. For
example, if only protein 0 is present at a concentration of,
say, 0.5 then this value is multiplied by a constant which
defines a ceiling for the robot’s velocity, which in this case
was set, arbitrarily, to 400. Protein 1 functioned in the same
manner as protein 0, however, it specified the velocity of the
robot but in reverse. Proteins 2 and 3 operated in a similar
manner to specify the direction and degree of rotation with
a ceiling set at 90.

3.1 Noise

The GRNs used in this work employed noise at two dif-
ferent levels:

e gene activation (rule firing) and
e sensory input (in the third experiment)

At the gene activation level, the firing of genes (rules) was
performed probabilistically, thus introducing noise at the
level of rule firing making the task of evolving robot con-
trollers more difficult. The incorporation of noise at this
level is justified on the basis that it enables the system to
evolve robust rule sets. Noise at the level of sensory input
(only employed in experiment 3) was provided by adding a
small degree of Gaussian noise (see tables 2 and 3 for o) to
the sonar values before being input to the GRN controller.

4. EVOLUTION: THE DISTRIBUTED GE-
NETIC ALGORITHM

In this work, a spatially Distributed Genetic Algorithm
(DGA) was employed. The DGA used a single population
distributed over a 2-D toroidal grid. A single generation in
the DGA involved iterating over each individual in the pop-
ulation. Parents were selected by sampling from the Moore
neighbourhood centred around the current individual.

After selecting a neighbourhood, the two best individuals
from the neighbourhood are selected and the two worst indi-
viduals of the neighbourhood are replaced by the resulting
two offspring. Offspring are generated through the appli-
cation of the genetic operators: 2-point crossover (always
applied) and mutation. In particular, all floating point pa-
rameters underwent Gaussian mutation, while the cis-trans
architecture (i.e. the portion of the genome that specifies

which proteins comprise which genes) underwent mutation
at a rate of 1/L, where L is the length of the cis-trans ar-
chitecture. Since protein synthesis, decay, gene interaction,
and affinity values are continuous, all parameters were en-
coded as floating-point numbers on a haploid genome. For
fuller details of the representation used in this work see [9].

4.1 Fitness Functions

Three sets of experiments were performed; all experiments
involved using Euclidean distance as part of the fitness func-
tion. For the first set of experiments, the task set for the
robots was to maximise Euclidean distance — to move as far
as possible — within a set period of time, approximately 12
seconds with no sensory information. In the second experi-
ment, the robot was allowed to use sensors. See equation 1
for the fitness function used.

EuclideanDistance = \/(z1 — x2)2 + (11 — y2)? (1)

The third set of experiments used equation 1 as one of the
terms, the full fitness function is shown in equation 2. This
equation is an adapted version of the obstacle avoidance fit-
ness function used by Floreano, et al. (1996), it defines an
equation to be maximised. It is, however, lacking an ad-
ditional term, which Floreano included: a term to measure
whether or not the robot is moving in a straight line. This
was included in Floreano’s work to prevent evolution award-
ing high fitness values to controllers that cause the robot to
traverse a circle as fast as it can. In place of this term, the
FEuclidean distance was used.

Avoidance = X(e + s + SonarValueyax) (2)

Where e is the Euclidean distance provided by eqn 1, s is
the speed of the robot and SonarValuey ax is the reading
from the sonar with the most activity.

5. ROBOTS

This work employed two different robots — a Pioneer 2DX
(see fig. 2 (a)), and an Amigobot (see fig. 2 (b)) — in sim-
ulation using the University of Southern California’s robot
simulator, player-stage [4]. This simulator was selected for
many reasons of which the most salient was the wide range
of robots supported, and the inherent noise in the system.
This element of stochasticity aides the transition of the con-
troller over, what has now become known as, the ’reality
gap’ from simulation to real hardware [5].

(a) (b)

Figure 2: The Pioneer 2DX (a) and Active Media’s
Amigobot (b)



Table 2: List of Evolutionary and Developmental
Parameters for Expt 1

Evolution Development
PopSize 100 LifeTime 12 sec
Generations 100 Cis-Sites 2
Num Genes 10 Num Proteins 4

Crossover 100%
Gaussian Mutation 0.75

6. EXPERIMENTS

This section details the experiments and results. In the
first and second set of experiments, both robots were per-
mitted to rotate either left or right and move forwards, but
were prevented from moving backwards so as to encourage
clear paths to emerge while avoiding obstacles. In the third
set of experiments, however, the robots were allowed to re-
verse.

6.1 Objectives and Parameter settings

This work had two main objectives:

e Show that GRNs are a plausible technology for real-
time reactive robot control and

e Generate reactive behaviours such as traversing an ob-
stacle ladend world

However, during the course of the experiments, analysis of
evolved solutions generated an additional objective:

e to evolve general purpose obstacle avoidance irrespec-
tive of the robot’s position in the environment.

Due to the inherent noise in the GRN’s gene activation
mechanism and the addition of Gaussian noise to the sensory
inputs, reactive robot control would be achieved in the face
of noise at both levels. The number of proteins was changed
between the experiments due to problem requirements such
as the use of sonar proteins, for example.

6.2 Experiment 1: Memorising a Path

The first experiment requires the memorisation of a path
through an environment with obstacles using no sensors or
start seeds (i.e. no maternal factors - solutions are evolved
completely from scratch). Although this experiment does
not class as 'reactive’ robot control, a solution to this prob-
lem does require internal state, thus the experiment was
deemed necessary in order to ascertain the level of state em-
bodied within GRNs. The GRN could only use the first four
proteins shown in table 1. Note, this experiment was only
performed with the Pioneer 2DX in simulation. This task
implicitly requires internal state in order to solve the prob-
lem. This set of experiment used 4 proteins, a population
size of 100 evolving for 100 generations, additional evolu-
tionary and developmental parameter settings are shown in
table 2.

6.3 Experiment 1: Results

As can be seen from figure 3, the EDS evolved genetic
regulatory network controllers that were successfully able to
memorise a path through the environment without any sen-
sors. The figures illustrate two different paths discovered by
two different controllers evolved from scratch. Figure 3 (a)

provides an example of the robot traversing a circular trajec-
tory with minor deviations. To encourage a more intricate
path to be found, the wall in the upper left corner of fig 3
(a) was brought down, thus blocking the robots path in the
upper left direction, see fig 3 (b). With the wall now block-
ing the robot’s path figure 3 (b) shows a different evolved
GRN resulting in a more intricate path with no environment
interaction. In this example, the robot is able to navigate,
quickly, through the environment negotiating left and right
turns past obstacles. This example reflects internal state in
GRNS.

Using no sensors, a population size of 100 individuals and
100 generations, good solutions capable of discovering clear
paths through the environment emerged at around the 54th
generation.

i “‘@ 5 B “‘@
P o
i -
il 0 e
A L A

b)

—
o

Na

—

Figure 3: Best Pioneer 2DX GRN controllers using
no sensors, run 1 (a) and run 2 (b)

6.4 Experiment 2: System-Environment In-
teraction

While memorising paths through an environment using
no sensory feedback may seem to be of limited use, it does
demonstrate that GRNs are capable of encoding such paths,
and that these kinds of solutions are evolvable. In the second
experiment, both the Pioneer 2DX and the Amigobot were
used, again in simulation, but with different types of sen-
sors. In the case of the Pioneer, SICK LMS 200 laser-range
finder sensors were employed, while the Amigobot used its
eight sonar sensors. The laser values were compiled into
two values: one, which corresponded to a left side sensor
and the other, which corresponded to a right side sensor.
The amigobot has sonar emitters and receivers distributed
around the robot with six arranged around the sides and
front, while two are located at the rear of the robot. Since
the robot was not permitted to reverse, the two sonars at
the rear of the robot were not used (only in experiments 1
and 2); consequently, the remaining six sonars were split in
two and provided left and right sonar sensing. The settings
used were: 7 proteins with a population size of only 25 (5*5)
individuals evolving for 50 generations (see table 3).

6.5 Experiment 2: Results

Figures 4 and 5 show that despite noisy gene transcription
(noisy rule firing) GRNs are evolved that are able to control
both a Pioneer 2DX robot equipped with SICK LMS lasers,
and an Amigobot equipped with sonars through the same
environment more convincingly. Additionally, coupling sys-
tem and environment through sensors enables faster evo-
lution of successful solutions, for example, all experiments
using sensors resulted in good solutions, able to cope with
noisy gene transcription, emerging within just four genera-



Table 3: List of Evolutionary and Developmental
Parameters for expt 2

Evolution Development
PopSize 25 LifeTime 12 sec
Generations 50 Cis-Sites 6

Num Genes 15
Crossover 100
Gaussian Mutation 0.75

Num Proteins 7
Sensor Noise o 0.00

tions using 25 individuals. Compare this to the performance
of GRNs evolved with no sensors in experiment 1.
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Figure 4: Best Pioneer 2DX GRN controller with
laser sensors, run 1 (a) and run 2 (b)
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Figure 5: Best Amigobot GRN controller with 8
sonar sensors, run 1

6.6 Experiment 3: General Purpose Obstacle
Avoidance (GPOA)

Analysis of the results in experiment two revealed that
evolution had managed to cheat: the controllers had learned
routes through the world just as in the first experiment;
except this time, solutions were found much sooner since
evolution was able to exploit sensory information from the
laser and sonars. With this in mind a third objective was
set: to evolve a general purpose obstacle avoidance GRN
controller.

In this experiment, in order to ensure the controllers were
using sensory information and not simply using additional
proteins to memorise the route, only sensor information — in
the form of protein concentrations — was used in the GRN.
In other words, the GRNs could only use sensor proteins —
proteins 5 through 12, see table 1 — to trigger gene expres-
sion. This was achieved by forcing cis-site inputs to genes
to be sonar proteins. The total number of cis-sites per gene
was increased for this experiment to six. Thus, of a total of
eight sonar proteins only six were used per gene, note the
particlar sonar proteins used were set by evolution. A total
of thirteen proteins were used for this set of experiments:

Table 4: List of Evolutionary and Developmental
Parameters for GPOA

Evolution Development
PopSize 25 LifeTime 12 sec
Generations 25 Cis-Sites 6

Num Proteins 13
Sonar Noise o 0.02

Num Genes 7
Crossover 100
Guassian Mutation 0.75

four proteins for movement, eight for sonar readings, and
one protein with no purpose (evolution can use this protein
as it sees fit).

Noise was added at the level of gene activation in the form
of probabilistic gene activation. In addition, Gaussian noise
was added to all sonar values with a small standard devia-
tion (o) of 0.02, arbitrarily selected. A single fitness eval-
uation consisted of controlling the robot for twelve seconds
using the currently evolved GRN. The parameter settings
for this experiment are shown in table 4. As figure 6 shows,
a new world was created with corridors, open spaces, and
obstacles in the form of walls.

Figure 6:
world

General Purpose Obstacle Avoidance

6.7 Experiment 3: Results

A solution displaying general purpose obstacle avoidance
behavior was found in generation five and gradually opti-
mised over the subsequent twenty generations. As the robot
moved around the world it tended to display a general anti-
clockwise turning motion while avoiding obstacles. This par-
ticular solution’s approach to negotiating obstacles was as
follows: on approaching an obstacle head-on, and fast, the
controller caused the robot to reverse. On a slower approach
the robot got within a certain distance of the object and ei-
ther reversed or very slowly bumped into the object, upon
which reverse is triggered immediately. An obstacle sensed
behind the robot, however, always resulted in immediate
forward movement away from the object.

It is worthwhile noting that despite being evolved in a
static environment where each fitness assessment consisted
of a single trial, the Amigobot can be moved to different
areas of the environment and still maintain general purpose
obstacle avoidance behaviour. Additionally, informal exper-
iments have shown that evolved GRN controllers are quite
robust with respect to the level of noise added, for example,
this GPOA controller evolved using sonar noise with a std
dev. o of 0.02 (very small), yet as the noise is increased the
controller manages to cope with no adverse effects.



7. CONCLUSIONS

This work has explored the application of the developmen-
tal metaphor to the field of evolutionary robotics by inves-
tigating the ability of genetic regulatory networks (GRNs)
to specify reactive robot behaviours. Through the success-
ful evolution of GRN robot controllers that provide general
purpose obstacle avoidance, we have shown:

e that the developmental biology metaphor can be pro-
ductively applied to the problem domain of evolution-
ary robotics;

e GRNs to be a plausible technology for real-time reac-
tive robot control;

e GRNs have internal state and are capable of generat-
ing reactive behaviours such as traversing an obstacle
ladend world; and

e evolved GRN controllers for general purpose obstacle
avoidance that are able to cope with varying amounts
of noise at two important levels: rule firing (or gene
expression) and sensor noise.

In order to ensure GRNs remain a viable option for the
field of robotics, as well as evolutionary robotics, further re-
search is required into the ability of GRNs to specify, multi-
ple low-level reactive robot behaviours in a modular manner.
The ability of GRNs to construct modular networks while
being robust to damage makes GRNs very well suited to the
task of generating robust, reactive robot behaviours. The
preliminary results shown here offer encouraging potential
for future research into GRN-based controllers, and indeed
developmental biology inspired approaches to evolutionary
robotics and robotics in general.
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