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ABSTRACT
In his thesis Toussaint calls for a “general project to develop
theories on adaptation processes that account for the adap-
tation of representations”. The theory developed in this pa-
per is a contribution to this project. We first define the sim-
ple concept of a genotypic theme and define what it means
for mutation operators to be theme preserving and theme
altering. We use the idea of theme preservation to develop
the concept of subrepresentation. Then we develop a the-
ory that illuminates the behavior of a mutation-only fitness
proportional evolutionary algorithm in which mutation pre-
serves genotypic themes with high probability. Our theory
shows that such evolutionary algorithms implicitly imple-
ment what we call subrepresentation evolving multithreaded
evolution, i.e. such EAs conduct second-order search over a
predetermined set of representations and exploit promising
representations for first order evolutionary search. We illu-
minate subrepresentaiton evolving multithreaded evolution
by comparing and contrasting it with the behavior of island
model EAs. Our theory is immediately useful in understand-
ing the significance of the low probability with which theme
altering type 2 mutations are applied to genotypes of the
evolutionary systems in Toussaint’s thesis.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristics; F.2 [Analysis Of Algorithms and
Problem Complexity]: Miscellaneous

General Terms
Algorithms, Theory

Keywords
Evolutionary algorithms, theme preservation, evolution of
representation
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In [8] Toussaint discusses the difference between adap-
tation mechanisms in the evolution of biological organisms
and the adaptation mechanisms that are commonly em-
ployed in neural network research. In a section entitled
“Complex adaptation mechanisms on arbitrary representa-
tions — or simple adaptation mechanisms on suitable rep-
resentations” he argues that when compared to highly so-
phisticated adaptation techniques such as backprop, Rprop,
conjugate gradient descent etc., the trial-and-error strategy
- at the level of genes - that nature seems to use is quite
elementary. He observes that despite the simplicity of the
adaptation mechanism that it uses, nature is remarkably
successful in generating complex functional changes at the
phenotypic level.

For an example of a complex functional change con-
sider the experiment in [2] (also cited in [8]) in which Halder
et al. induced the misexpression of a single gene in a
Drosophilia Melanogaster called “eyeless” and obtained flies
with eyes on their wings, legs and antennae. In [10] Wag-
ner and Altenberg make the following remarks about this
experiment.

“The out-of-place eyes contain the entire eye
structures, including cornea, bristles, pigment
and photoreceptors, and are electrically respon-
sive to light, prompting Halder et al. to suggest
that eyeless is a “master control” for the complex
formation of the insect eye.

Why is “eyeless” so remarkable? Because it is
a single signal that induces the whole complex
process of eye construction, and because this
process is carried out almost flawlessly despite it
occurring in the wrong tissues of the fly’s body.
All of the functionally relevant structures stay
together in their novel locations.”

An eye is a very complex organ made up of many
functionally coupled parts. The absence of any of these
parts greatly compromises its usefulness. The experiment of
Halder et. al. shows that the the genome of the Drosophilia
Melanogaster is organized to reflect this fact, i.e. the fly is
genetically represented in such a way that there exist genes,
such as “eyeless” whose mutants preserve “the relationships
between the functionally interdependent parts of the eye,
while changing only the eye’s relationship to the rest of the
fly’s body” [10].

How is it that in nature non-complex changes at the
genotypic level, produce complex functional changes at the



phenotypic level (such as the change to the fly phenotype
wrought by the misexpression of eyeless)? Echoing the views
expressed in [10], Toussaint deduces that in order for this to
be so, nature must have found a suitable way of represent-
ing phenotypes. He further remarks that “Nature devel-
oped these [suitable] representations in the course of adap-
tive processes and it thus should be a general project to de-
velop theories on adaptation processes that account for the
adaptation of representations.” (emphasis added).

This paper is a contribution to the “general project”
that Toussaint calls for. We formally analyze mutation-
only fitness proportional evolutionary algorithms in which
some aspect of the genome is mutated with much higher
probability and show that such evolutionary algorithms im-
plicitly implement what we call subrepresentation evolving
multithreaded evolution, i.e. such EAs conduct second-order
search over a predetermined set of representations and ex-
ploit promising representations for first order evolutionary
search. Our theory is immediately useful in understand-
ing the significance of the low probability with which theme
altering type 2 mutations are applied to genotypes of the
evolutionary systems in [8].

2. MATHEMATICAL PRELIMINARIES
All sequences in this paper are zero based (the index

of the first element is zero) and infinite. Let X be some
set. Then we denote some sequence of elements in X by
{pn}n≥0. For any i ∈ N, we denote the element with index
i in {pn}n≥0 by pi. For some sets X, Y , and some function
γ : X → Y , we use the notation 〈y〉γ to denote the set
{x ∈ X | γ(x) = y}. We will drop the subscript γ from this
notation when it is clear from the context.

As in [8], for any set X we use the notation ΛX to
denote the set of all probability distributions over X, i.e.
ΛX denotes set {f : X → [0, 1] |

P
x∈X f(x) = 1}.

We extend this notation to denote the set of all 1-
parent transmission functions (see [1]) over some set as fol-
lows: for any set X, the set of all 1-parent transmission func-
tions {f : X × X → [0, 1] | ∀x′ ∈ X,

P
x∈X f(x, x′) = 1} is

denoted by ΛX
1 . Employing the notation used in [8], we use

conditional probability notation to denote a 1-parent trans-
mission function (henceforth transmission function). Thus
a transmission function f(x, x′) is denoted f(x|x′). Trans-
mission functions will be used to modelling the effect of a
mutation operator. For some mutation operator M over
some genotype set G we can define a transmission function
M ∈ ΛG

1 such that for any g, g′ ∈ G, M(g|g′) is the prob-
ability that M will yield the genotype g when applied to
g′.

3. THEMES
Let G be some set of genotypes and let K be some set

of objects that codify “properties” that are possessed by el-
ements of G. If the properties are such that every genotype
in G possess one and only one property in K (the properties
are mutually exclusive), then we say that K is a theme set of
G. We call the properties in K themes, and for any k ∈ K
we call the subset of genotypes that map to k the theme
class of k. While we could have expressed these ideas in the
terminology of mathematical functions, we believe that the
terminology just introduced is better suited to our exposi-
tion. The correspondence between function terminology and

our terminology is made clear in the following definition.

Definition 3.1. (Theme Map, Theme, Theme Set,
Theme Class) Let X, Y be sets and let β : X → Y be
a function. We call β a theme map, call the co-domain Y of
β a β-theme set, call an element of Y a β-theme, and call
the preimage 〈y〉 of some y ∈ Y , the β-theme class of y.

Remark 1. Given the objects defined above, it is easily
seen that the set of all β-theme classes form a partition of
X

The idea of a theme class is mathematically identical
to the idea of a forma discussed in [4] - each of these objects
is simply an equivalence class which belongs to the partition
that is induced by some function. However the application of
this mathematical idea in this paper differs in spirit from its
application in [4]. There a forma describes some equivalence
class of phenotypes, whereas in this paper a theme class is
an equivalence class of genotypes.

The idea of a theme class is also similar to the idea
of a schema [3], however there are differences between the
two. Firstly, schemata are defined on a case by case ba-
sis for different genotypic data-structures. Theme classes
on the other hand have been defined here in an abstract
data-structure-independent way. Secondly, a genotype may
belong to many schemata whereas for a given theme map, a
genotype will only belong to one and only one theme class.

3.1 Theme Preservation and Alteration
Let G, K be sets such that G is countable and let

β : G → K be some function. For some mutation operator
that operates on elements of G, we say that this operator is
β-preserving if it leaves the β-themes of of its argument un-
changed, i.e. the child produced by the mutation operator
will always have the same β-theme as its parent. We say that
the mutation operator is β-altering if it always changes the
β-theme of its argument. Examples of theme-preserving mu-
tation operators for three different kinds of genotype data-
structures — bitstrings, S-expressions and L-Systems are
given below. The genotype set and theme set of each opera-
tor is described in the first two columns of table 1. The 3rd

and 4th columns of the table schematically show the effect
of the three mutation operators on three sample genotypes,
and the last column schematically shows the theme that is
preserved in each case. We leave it to the reader to think of
the theme map, and a theme altering mutation operator in
each case.

1. A mutation operator which operates on bitstrings of
length ten and only modifies the last six bits of its
argument.

2. A mutation operator which takes a S-expression for a
polynomial as an argument and changes the tree struc-
ture of the S-expression in some way while leaving the
values of the nodes unchanged.

3. A mutation operator which takes a seeded L-system1

over the alphabet {a, b, c, d} as its argument and sub-
stitutes a symbol for another symbol in the seed string

1In this paper we call a tuple consisting of 1) an L-system
over some alphabet Σ and 2) a string in Σ∗, a seeded L-
System. The genotypes in the evolutionary algorithms in
[8] are seeded L-Systems



Genotype Set G Theme set K Sample Parent Sample Child Theme Preserved

Bitstrings in {0, 1}10 Strings in {0, 1}4?????? 1011010111 1011100011 1011??????

S-expressions with
binary tree structures
that express single vari-
able polynomials, i.e.
binary trees with leafs
x and internal nodes
drawn from {+,×}

Any k ∈ K is a mul-
tiset of elements from
{x, +,×} s.t. there ex-
ists a binary tree struc-
ture which uses all the
elements in k

+
bb""

+

ee%%
x x

×
ee%%

x x

×
QQ��

+
cc##

+

ee%%
x x

x

x
The multiset
{×, +, +, x, x, x, x}

Seeded L-Systems
with terminals drawn
from the alphabet
Σ = {a, b, c, d}

The set of all seeded L-
System “skeletons”

[〈abbcbd〉
(a → b)
(b → bcab)
(c → ac)]

[〈acbdbd〉
(a → a)
(b → ccab)
(c → bc)]

[〈??????〉
(a →?)
(b →????)
(c →??)]

Table 1: Three different theme-preserving mutation operators

and the right hand sides of the rewrite rules - it does
not add or delete rewrite rules, does not change the
number of symbols in a seed string or rewrite rule,
and does not change the left hand side of the rewrite
rules.

Theme preserving and altering mutation can be mod-
elled by placing constraints on transmission functions.

Definition 3.2. (Preserving and Altering Trans-
mission Functions) Let X, Y be some sets, let β : X → Y
be a function, let M ∈ ΛX

1 be a transmission function. We
say that M is β-preserving if

∀x, x′ ∈ X, β(x) 6= β(x′) ⇒ M(x|x′) = 0

and say that M is β-altering if

∀x, x′ ∈ X, β(x) = β(x′) ⇒ M(x|x′) = 0

The following proposition gives us a useful property of
a preserving transmission function.

Proposition 3.1. Let X, Y be some sets, let β : X → Y
be a function, let M ∈ ΛX

1 be a β-theme-preserving trans-
mission function. Then,

∀y ∈ Y,∀x′ ∈ 〈y〉
X

x∈〈y〉

M(x|x′) = 1

Proof. By definition of a transmission function we have
that ∀x′ ∈ X,

P
x∈X M(x|x′) = 1. But by (def 3.2 ),

∀y ∈ Y , ∀x′ ∈ 〈y〉 and ∀x 6∈ y , M(x|x′) = 0. HenceP
x∈〈y〉 M(x|x′) = 1

4. TRANSMAPS
In this paper we will focus our attention on EAs in

which mutation is the only form of variation and selection is
fitness proportional. We will call such EAs basic fitness pro-
portional EAs or bfpEAs for short. The representation used
by some bfpEA to search some set of objects is determined
by 1) an alternate set of software objects called genotypes,
2) a function that maps genotypes to objects in the search
space, and 3) the mutation operator that stochastically pro-
duces some child genotype given some parent genotype. A
transmap, defined below, is our model for a representation.

Definition 4.1. (Transmap) A transmap is a 4-tuple
(G, P, φ, M) such that G is a countable set called the geno-
type set, P is some set called the phenotype set, φ : G → P
is called the growth map, and M ∈ ΛG

1 is a 1-parent trans-
mission function.

Let P be some set of objects (e.g. sorting networks,
polynomial functions, plant morphologies, etc.) Then, given
some representation for P we can construct a transmap D
that models this representation as follows: 1) the search
space P of the representation is the phenotype set of D, 2)
the alternate set of software objects is the genotype set of
D, 3) the function that maps the software objects to objects
in the search space is the growth map of D, 4) the effect of
the mutation operator of the representation is modelled by
the transmission function of D.

4.1 Subtransmaps
In this section we show how, a transmap D with

a β-preserving transmission function, determines a set of
transmaps such that each transmap in this set is in one-to-
one correspondence with some β-theme. The transmaps in
this set are called subtransmaps of D.

For some function f : X → Y , and some A ⊂ X, the
restriction of f to A is denoted f |A. We extend the notion of
restriction to functions whose domain is the cross-product
of the same set as follows: for a function g : X × X → Y ,
the restriction of g to A, denoted g|A is a function of type
A × A → Y such that for any a1, a2 ∈ A, g|A(a1, a2) =
g(a1, a2).

Proposition 4.1. Let G, K be sets, let β : G → K be
some function and let M ∈ ΛG

1 be a β-preserving transmis-
sion function. Then, for any k ∈ K, M |〈k〉 ∈ Λ〈k〉

Proof. For any k in K, and any g′ ∈ 〈k〉 ,P
g∈G M(g|g′) = 1. But by (def 3.2), ∀g 6∈ 〈k〉 ,

M(g|g′) = 0. So,
P

g∈〈k〉 M(g|g′) = 1, which implies thatP
g∈〈k〉 M |〈k〉 (g|g′) = 1

Definition 4.2. ((β, k)-Subtransmap) Let D =
(G, P, φ, M) be a transmap s.t. for some set K, β : G → K
is a function and M is β-preserving. We define the
(β, k)-subtransmap of D, denoted D|〈k〉, to be the transmap
(〈k〉 , P, φ|〈k〉 , M |〈k〉 ).



To see that (〈k〉, P, φ|〈k〉, M |〈k〉) is indeed a transmap

note that M |〈k〉 ∈ Λ
〈k〉
1 by proposition 4.1 and φ|〈k〉 is of

type 〈k〉 → P by definition of restriction.
For some β : G → K, suppose R is a representation

with a mutation operator that preserves β, suppose B is a
bfpEA which uses R and for some theme k, suppose all the
genotypes in the initial population of B have the same theme
k ∈ K. Then, as the mutation operator of B is β-preserving,
all genotypes in all the generations of an evolutionary run of
B will have theme k. Therefore, we can define a new repre-
sentation Rk which is isomorphic to R over 〈k〉 by “pulling”
the theme k out of the genotypes in 〈k〉 and “pushing” it
into the mutation operator and growth function of Rk s.t.
when B uses R and starts with a k-themed initial popula-
tion, its search behavior is the same as if it used Rk and
started with an isomorphic initial population in the geno-
type set of Rk. Let us call Rk a subrepresentation of R.
Then a subtransmap, as defined above, is a model of a sub-
representation.

4.2 (β, ω)-Preserving Transmaps

Definition 4.3. (Rate Operator) Let M1, M2 ∈ ΛG
1

be transmission functions. For any ω ∈ [0, 1] we define the
Rate Operator Rω : ΛG

1 × ΛG
1 → ΛG

1 as follows:

∀g, g′ ∈ G, Rω(M1, M2)(g, g′) = ωM1(g|g′)+(1−ω)M2(g|g′)

To see that for any set G and ω ∈ [0, 1], the range of Rω is
indeed ΛG

1 , observe that ∀M1, M2 ∈ ΛG
1 ,∀g′ ∈ G,

X
g∈G

Rω(M1, M2)(g|g′) = ω

 X
g∈G

M1(g|g′)

!
+

(1− ω)

 X
g∈G

M2(g|g′)

!
= ω + (1− ω) = 1 (1)

Definition 4.4. ((β, ω)-preserving Transmap) Let
D = (G, P, φ, M) be a transmap, for some set K, let
β : G → K be a function and let ω ∈ [0, 1]. D is said to be
(β, ω)-preserving if there exists M1, M2 ∈ ΛG

1 such that M1

is β-preserving, M2 is β-altering and M = Rω(M1, M2).

Remark 2. Note that for any (β, ω)-preserving transmap
(G, P, φ, M), the preserving and altering components of M
(M1 and M2 in the definition above) are unique. We denote
them as MP and MA respectively.

Suppose mutation in some representation is β-
preserving with some probability ω and β-altering muta-
tion with probability (1− ω), then it is easy to see how we
could model such a representation using a (β, ω)-preserving
transmap.

5. EVOLUTION MACHINES

Definition 5.1. (Evolution Machine). An evolution
machine – which we also call an EM – is a 3-tuple (D, f, s)
such that D = (G, P, φ, M) is a transmap, f : P → R+ is
called the fitness function and s ∈ ΛG is called the initial
genotype distribution.

An evolution machine is a collection of all the formal
objects needed to model an evolutionary run of a bfpEA.
A bfpEA, which was introduced in section 4, is similar to
a Simple Genetic Algorithm as defined in [9] in all respects
except that 1) it performs fitness proportional selection (an
SGA may use other selection methods), 2) its genotypes
may be instances of arbitrary datatypes (SGAs use only
bitstrings), and 3) mutation is its only variational operator
(SGAs also use a recombination operator).

Populations in a bfpEA are modelled as distributions
of an EM. In order to define how these distributions change
from generation to generation we recall, and in the process
extend, the following operators from [9] and [8].

Definition 5.2. (Selection Operator) Let X be some
set and let f : X → R+ be some function. We define the
Selection Operator Sf : ΛX → ΛX as follows:

(Sfp)(x) =
f(x)p(x)P

x′∈X

f(x′)p(x′)

The selection operator is parameterized by a fitness
function. It takes a distribution pX over some set X as its
argument and redistributes the probability mass of the dis-
tribution over the elements of X in proportion to the fitness
of the elements and their probability mass in pX . In typical
usage of S in the literature, the set X is the genotype set.
In this paper S will also be used to express meta-selection
applied to a distribution over a theme set. The precise sense
in which we use the phrase meta-selection will become clear
later on.

Definition 5.3. (Expected Fitness Operator) Let
X be some set, and f : X → R+ be some function. We
define the expected fitness operator Ef : ΛX → R+ as fol-
lows:

Ef (p) =
X
x∈X

f(x)p(x)

The expected fitness operator will be useful in defining
the theme fitness function later on. It can also be used to
express the selection operator more compactly as follows.

Remark 3. The selection operator can be expressed in
terms of the Expected Fitness Operator as follows:

(Sfp)(x) =
f(x)p(x)

Ef (p)

Definition 5.4. (Transmission Operator2) Let X be
a set, and let M ∈ ΛX

1 be a transmission function over X.

We define the transmission operator TM : ΛX → ΛX as
follows:

(TMp)(x) =
X

x′∈X

M(x|x′)p(x′)

The transmission operator will be used to model the
effect of mutation on the genotypes that are selected as par-
ents in each generation of a bfpEA

2also called the Mixing Operator in [9] and [8]



Definition 5.5. (Evolution Epoch Operator) Let
D = (G, P, φ, T ) be a transmap, and let f : P → R+

be some function. We define the evolution epoch operator
G(D,f) : ΛG → ΛG as follows:

G(D,f)(p) = TM ◦ Sf◦φp

Given some bfpEA, an evolution epoch operator that
is parameterized by the bfpEA’s representation and fitness
function models the advancement by one generation of a
population of genotypes in the bfpEA. In section 6 we will
see that when the mutation operator of a bfpEA is theme
preserving, this operator can be used to express the advance-
ment of a sub-population of genotypes that share the same
theme.

The following definition associates a sequence of geno-
typic distributions with an EM using the operators we de-
fined above. This sequence is a model of the generations of
genotypic populations that are generated by a bfpEA.

Definition 5.6. (Genotype Distribution Sequence
of an EM). Let E = (D, f, s) be some evolution machine.
The genotype distribution sequence of E is a sequence {pt}t

of elements in ΛG s.t. p0 = s and for any t ∈ N:

pt+1 = G(D,f)p
t

5.1 (β, ω)-preserving EMs
For some β and some ω, if the transmap of an EM E

is (β, ω)-preserving then we say that E is (β, ω)-preserving.
Consider a bfpEA B, such that mutation of any genotype
in B is β-preserving with probability ω and β-altering with
probability (1−ω). Clearly, B can be modelled by a (β, ω)-
preserving EM. Hence we call B a (β, ω)-preserving bfpEA.

6. ANALYSIS OF A (β, ω)-PRESERVING EM
The following definition recalls the projection operator

described in [9] and [8]. A projection operator projects a
distribution over the domain of some function to the range
of that function. The projection function is typically used to
project distributions over the genotype set to the phenotype
set. Here we will also use it to project genotype distributions
onto theme sets.

Definition 6.1. (Projection Operator) Let X, Y be
some sets and let γ : X → Y be a function. We define the
projection operator, Ξγ : ΛX → ΛY as follows:

(Ξγp )(y) =
X

x∈〈y〉

p(x)

We call Ξγp the γ-projection of p. To see that the
range of Ξγ is indeed ΛY , i.e. that a projected distribution
is also a distribution, note that for any p ∈ ΛX ,X

y∈Y

X
x∈〈y〉

p(x) =
X
x∈X

p(x) = 1 (2)

Given a countable set X, some set Y , a distribution
pX over X and some function-map γ : X → Y , then for any
element y ∈ Y such that (Ξγp)(y) > 0 we can define a new
distribution over 〈y〉 by normalizing the probability mass of
elements in 〈y〉 by the sum of their probability masses. We
call this new distribution the γ-conditional distribution of p
given k. Formally,

Definition 6.2. (Projection Conditional Distribu-
tion) Let X, Y be sets and let γ : X → Y be a function.
Let p ∈ ΛX be some distribution. For any y ∈ Y such that
(Ξγp)(y) > 0, we define the γ-conditional distribution of p

given y, to be a distribution q ∈ Λ〈y〉 s.t.

q(x) =
p(x)

(Ξγp)(y)

Definition 6.3. (Theme Fitness Function) Let G, K
be sets, let β : G → K be a function, let E be an evolu-
tion machine with genotype set G, and let {pt

G}t≥0 be the
genotype distribution sequence of E. For any t ∈ Z+

0 , let
pt

K be the β-projection of pt
G, and for all k ∈ K such that

pt
K(k) > 0, let pt

〈k〉 be the projection conditional distribution

of pt
G given k. Then the β-theme fitness function of E at

step t, βFt
E : K → R+ is as follows:

βFt
E(k) =

�
Ef◦φ|〈k〉(

ωpt
〈k〉) if ωpt

K(k) > 0

0 otherwise

We now analyze a (β, ω)-preserving EM. For some
ω ∈ [0, 1], let Dω = (G, P, φ, M) be a transmap such that for
some set K and some β : G → K, Dω is (β, ω)-preserving.
Let Eω = (Dω, f, s) be a (β, ω)-preserving EM, and let
{ ωpt

G}t≥0 be the genotype distribution sequence of Eω.
For any t ∈ Z+

0 , and any ω ∈ [0, 1], let ωpt
K ∈ ΛK be

the projection of the genotype distribution { ωpt
G}t≥0 to the

theme set K, i.e.

ωpt
K = Ξβ( ωpt

G) (3)

For any t ∈ Z+
0 , any ω ∈ [0, 1] and any theme k ∈ K

such that ωpt
K(k) > 0, let ωpt

〈k〉 ∈ Λ〈k〉 be the β-conditional

distribution of ωpt
G given k, i.e.

ωpt
〈k〉(g) =

ωpt
G(g)

ωpt
K(k)

(4)

6.1 Analysis forω =1
In this subsection our analysis will focus on the se-

quences { ωpt
K}t≥0 and the family of sequences {{ ωpt

〈k〉}t≥0 :
k ∈ K} when ω is 1. When ω = 1 we will drop the su-
perscript 1 that precedes the p in our notion for probability
distributions. Thus, for example we will denote 1pt

G as pt
G.

For any t ∈ Z+
0 , k ∈ K, by the definition of projection

in (def 6.1) we get

pt+1
K (k) =

X
g∈〈k〉

pt+1
G (g)

By definitions of the genotype distribution sequence of an
EM and the evolution epoch operator, (defs 5.6 and 5.5),
and using the fact that ω = 1,

pt+1
K (k) =

X
g∈〈k〉

X
g′∈G

MP (g|g′)(Sf◦gpt
G)(g′)

=
X
g′∈G

(Sf◦φpt
G)(g′)

X
g∈〈k〉

MP (g|g′)

For any k ∈ K any g ∈ 〈k〉, and any g′ 6∈ 〈k〉, by definition of
a Preserving Transmission Function in (def 3.2), MP (g|g′) =
0. So,

pt+1
K (k) =

X
g′∈〈k〉

(Sf◦φpt
G)(g′)

X
g∈〈k〉

MP (g|g′)



By proposition 3.1,

pt+1
K (k) =

X
g′∈〈k〉

(Sf◦φpt
G)(g′)

By definition of the Selection Operator in terms of the Ex-
pected Fitness Operator in (remark 3),

pt+1
K (k) =

X
g′∈〈k〉

f ◦ φ(g′) · pt
G(g′)

Ef◦φ(pt
G)

We examine the following two cases, case i: k such that
pt

K(k) = 0. This implies that for all g ∈ 〈k〉, pt
G(g) = 0, so

using the equation above, pt+1
K (k) = 0.

case ii: k such that pt
K(k) > 0. Using (4) in the

numerator

pt+1
K (k) =

X
g′∈〈k〉

f ◦ φ(g′)pt
K(k)pt

〈k〉(g
′)

Ef◦φ(pt
G)

=
pt

K(k)
P

g′∈〈k〉 f ◦ φ(g′)pt
〈k〉(g

′)

Ef◦φ(pt
G)

=
pt

K(k)
P

g′∈〈k〉 f ◦ φ|〈k〉(g′)pt
〈k〉(g

′)

Ef◦φ(pt
G)

where the last equation follows from the definition of restric-
tion. Using the Expected Fitness Operator defined in (def
5.3) to express the numerator,

pt+1
K (k) =

pt
K(k)Ef◦φ|〈k〉(p

t
〈k〉)

Ef◦φ(pt
G)

(5)

By expansion of the Expected Fitness Operator in the de-
nominator using (def 5.3),

pt+1
K (k) =

pt
K(k)Ef◦φ|〈k〉(p

t
〈k〉)P

g′∈G f ◦ φ(g′)pt
G(g′)

Using (4) and (3) in the denominator,

pt+1
K (k) =

pt
K(k)Ef◦φ|〈k〉(p

t
〈k〉)P

k′∈K

P
g′∈〈k′〉 f ◦ φ(g′)pt

K(k′)pt
〈k′〉(g

′)

=
pt

K(k)Ef◦φ|〈k〉(p
t
〈k〉)P

k′∈K pt
K(k′)

P
g′∈〈k′〉 f ◦ φ(g′)pt

〈k′〉(g
′)

Using the Expected Fitness Operator defined in (def 5.3) to
express the denominator,

pt+1
K (k) =

pt
K(k)Ef◦φ|〈k〉(p

t
〈k〉)P

k′∈K pt
K(k′)Ef◦φ|〈k′〉

(pt
〈k′〉(g

′))

Hence for all k ∈ K, using the definition of the Theme Fit-
ness Function in (def 6.3),

pt+1
K (k) =

pt
K(k) βFt

E1(k)P
k′∈K pt

K(k′) βFt
E1(k′)

Using the definition of the Selection Operator (def 5.2), we
obtain the following result

pt+1
K = S βFt

E1
(pt

K) (6)

Equation (6) is our first important result. It shows that the
EM E1 performs meta-selection on the instantiated themes

in each generation, i.e. the probability mass of a some in-
stantiated theme in the next generation is proportional to
its theme fitness in the current generation. We shall call (6)
the Theme Meta-Selection Equation.

For any t ∈ Z+
0 , any k ∈ K s.t. pt

K(k) > 0, and any
g ∈ 〈k〉 we now analyze pt

〈k〉. By (4),

pt+1
〈k〉 (g) =

pt+1
G (g)

pt+1
K (k)

Using the definitions of the genotype distribution sequence
of an EM and the evolution epoch operator, (defs 5.6 and
5.5) in the numerator,

pt+1
〈k〉 (g) =

P
g′∈G MP (g|g′)(Sf◦φpt

G)(g′)

pt+1
K (k)

Expanding the Selection Operator in the numerator using
(remark 3),

pt+1
〈k〉 (g) =

P
g′∈G MP (g|g′)f ◦ φ(g′)pt

G(g′)

Ef◦φ(pt
G)pt+1

K (k)

By definition of a Preserving Transmission Function in (def
3.2),

pt+1
〈k〉 (g) =

P
g′∈〈k〉 MP (g|g′)f ◦ φ(g′)pt

G(g′)

Ef◦φ(pt
G)pt+1

K (k)

Using (4) and (3) in the numerator,

pt+1
〈k〉 (g) =

P
g′∈〈k〉 MP (g|g′)f ◦ φ(g′)pt

K(k)pt
〈k〉(g

′)

Ef◦φ(pt
G)pt+1

K (k)

=
pt

K(k)
P

g′∈〈k〉 MP (g|g′)f ◦ φ(g′)pt
〈k〉(g

′)

Ef◦φ(pt
G)pt+1

K (k)

Expanding pt+1
K (k) in the denominator using (5),

pt+1
〈k〉 (g) =

pt
K(k)

P
g′∈〈k〉 MP (g|g′)f ◦ φ(g′)pt

〈k〉(g
′)

Ef◦φ(pt
G)

×

Ef◦φ(pt
G)

pt
K(k)Ef◦φ(pt

〈k〉)

Cancelling terms and consolidating yields

pt+1
〈k〉 (g) =

P
g′∈〈k〉 MP (g|g′)f ◦ φ(g′)pt

〈k〉(g
′)

Ef◦φ(pt
〈k〉)

=

P
g′∈〈k〉 MP |〈k〉(g|g′)f ◦ φ|〈k〉(g′)pt

〈k〉(g
′)

Ef◦φ|〈k〉(p
t
〈k〉)

where the last equation follows from the definition of restric-
tion. Using the definition of the Selection Operator in (def
5.2),

pt+1
〈k〉 (g) = (TMP |〈k〉Sf◦φ|〈k〉p

t
〈k〉)(g)

As MP is theme preserving, by (prop 4.1),
(〈k〉, P, MP |〈k〉, φ|〈k〉) is a transmap. Hence, using the
definition of the Evolution Epoch Operator in (def 5.5),

pt+1
〈k〉 = G((〈k〉,P,MP |〈k〉,φ|〈k〉),f)p

t
〈k〉

But (〈k〉, P, MP |〈k〉, φ|〈k〉) = (G, P, MP , φ)|〈k〉 = D1|〈k〉. So,

pt+1
〈k〉 = G(D1|〈k〉,f)p

t
〈k〉 (7)



Equation (7) is our second important result. Note that for
any k ∈ K such that pt

K(k) > 0, {pt
〈k〉}t≥0 is the genotype

distribution sequence of the EM Ek = (D1|〈k〉, f, p0
〈k〉). Let

us call such an EM a (β, k)-subEM of E1, let us call the geno-
type distribution sequence of E1 the evolutionary process of
E1 and for any k ∈ K, let us call the genotype distribu-
tion sequence of Ek the evolutionary thread of Ek. Then,
the evolutionary process of E1 is composed of the evolu-
tionary threads of subEMs of E1. For any k ∈ K such that
pt

K(k) > 0, the (β, k)-subEM uses the (β, k)-subtransmap
of D1. Thus there is a correspondence between instanti-
ated themes and evolutionary threads. Each thread can be
thought to evolve the non-thematic parts of all genotypes
which share some common theme. For these reasons we will
call equation (7) the theme-thread correspondence equation.

For any theme k ∈ K such that pt
K(k) > 0, and any

timestep t ∈ Z+
0 , let us associate the theme probability mass

of k at timestep t, given by pt
K(k), with the evolutionary

thread of Ek at timestep t. Then, the only way that the evo-
lutionary threads interact is by the transfer of theme proba-
bility mass between threads in each generation as described
by the theme meta-selection equation (6). Since each evo-
lutionary thread uses a different subtransmap, we will refer
to the equations (6) and (7) together as the subtransmap-
selecting multithreaded evolution equations.

6.2 Analysis forω ≈1
In this subsection we will show that the subtransmap-

selecting multithreaded evolution equations hold approxi-
mately in each generation of Eω when ω ≈ 1. In the ap-
pendix we define a metric called the distribution distance
that measures distances between probability distributions.
Using this metric, we prove a theorem that shows that for
all t ∈ Z+

0 , ωpt
K varies continuously with ω, and for any

ω∗ ∈ [0, 1] and for all k ∈ K such that ω∗pt
K(k) > 0, ωpt

〈k〉 is
a continuous function of ω at ω∗. Specifically, the distribu-
tion distance metric is defined as:

Definition 6.4. (Distribution Distance) Let X be
some countable set. We define the distribution distance
d : ΛX × ΛX → R+

0 as follows:

d(p, q) =
X
x∈X

|p(x)− q(x)|

and the continuity theorem that we prove is as follows:

Theorem 6.1. For all ω ∈ [0, 1], let Dω = (G, P, φ, M)
be a transmap such that for some set K and some β : G →
K, Dω is (β, ω)-preserving. Let Eω = (Dω, f, s) be a (β, ω)-
preserving EM, and let { ωpt

G}t≥0 be the genotype distribution
sequence of Eω. For all t ∈ Z+

0 , let ωpt
K be the β-projection

of ωpt
G, then ∀ω∗ ∈ [0, 1] and for any ε > 0,

∃δ > 0, ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
K , ω∗

pt
K) < ε

i.e. ω → ω∗ ⇒ ωpt
K → ω∗

pt
K

Furthermore, for any ω∗ ∈ [0, 1], and for all k ∈ K such

that ω∗pt
K(k) > 0, let ωpt

〈k〉 be the β-conditional distribution

of ωpt
G given k, then for and any ε > 0,

∃δ > 0, ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
〈k〉,

ω∗
pt
〈k〉) < ε

i.e. ω → ω∗ ⇒ ωpt
〈k〉 → ω∗

pt
〈k〉

Fix some ω ∈ [0, 1] and some t ∈ Z+
0 . For all η ∈ [0, 1],

let Qη = (Dη, f, ωpt
G), and let { ηqτ

G}τ≥0 be the genotype
distribution sequence of Qη. For all τ ∈ Z+

0 , let ηqτ
K be the

β-projection of ηqτ
G, and for all k ∈ K such that ηqτ

K(k) > 0,
let ηqτ

〈k〉 be the β-conditional distribution of ηqτ
G given k.

Note that ∀τ ∈ Z+
0 , ωpt+τ

G = ωqτ
G. So,

ωpt+τ
K = ωqτ

K , and ∀k s.t. ηqτ
K(k) > 0, ωpt+τ

〈k〉 = ωqτ
〈k〉 (8)

Note that for all η ∈ [0, 1]

βFt
Eω = βF0

Qη , ωpt
K = ηq0

K , and

∀k s.t. ηq0
K(k) > 0, ωpt

〈k〉 = ηq0
〈k〉 (9)

Using the result we obtained in (6),

1q1
K = S βF0

Q1
( 1q0

K)

As ω → 1, using Theorem 1 we get that

ωq1
K → S βF0

Q1
( 1q0

K)

Now, by (9) βF0
Q1 = βFt

Eω , and 1q0
K = ωpt

K , and by (8)
ωq1

K = ωpt+1
K . So, making these three substitutions in the

equation above, we get that for any t ∈ Z+
0 , as ω → 1,

ωpt+1
K → S βFt

Eω
( ωpt

K) (10)

Using the result we obtained in (7), for all k ∈ K,

1q1
〈k〉 = G(D1|〈k〉,f)(

1q0
〈k〉)

By an argument similar to the one used in the deriva-
tion of (10) we get that for all t ∈ Z+

0 and for all k ∈ K such
that ωpt

K(k) > 0, as ω → 1,

ωpt+1
〈k〉 → G(D1|〈k〉,f)(

ωpt
〈k〉) (11)

The results that we have proved in this and the pre-
vious subsection are stated succinctly below in the central
theorem of this paper.

Theorem 6.2 (Theme Preservation Theorem).
For all ω ∈ [0, 1], let Dω = (G, P, φ, M) be a transmap such
that for some set K and some β : G → K, Dω is (β, ω)-
preserving. Let Eω = (Dω, f, s) be a (β, ω)-preserving EM,
and let { ωpt

G}t≥0 be the genotype distribution sequence of
Eω. For all t ∈ Z+

0 , let ωpt
K be the β-projection of ωpt

G.
For all k ∈ K such that ωpt

K(k) > 0, let ωpt
〈k〉 be the

β-conditional distribution of ωpt
G given k. Then, for all

t ∈ Z+
0 , as ω → 1,

ωpt+1
K → S βFt

Eω
( ωpt

K)

and for all k ∈ K such that ωpt
K(k) > 0, as ω → 1,

ωpt+1
〈k〉 → G(D1|〈k〉,f)(

ωpt
〈k〉)

In both cases, equality follows when ω = 1.

A corollary of the theme preservation theorem is that
the subtransmap-selecting multithreaded evolution equa-
tions hold approximately in each generation of Eω when
ω ≈ 1.
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Figure 1: Schematic depiction of the behavior of a
(β, 1)-preserving bfpEA

7. DISCUSSION
In the previous section we analyzed the behavior

of a (β, ω)-preserving EM which is a model for a (β, ω)-
preserving bfpEA. In this section we interpret these theo-
retical results to infer qualitative and quantitative aspects
about the behavior of a (β, ω)-preserving bfpEA. Let Bω be
a (β, ω)-preserving bfpEA and let Eω be a (β, ω)-preserving
EM that models Bω. We will first focus on the behavior
of Bω when ω = 1. This behavior is shown schematically
in (fig. 1). The function β partitions the genotype set into
theme classes. A shaded region within some theme class 〈k〉
depicts a subpopulation of k-themed genotypes at some time
t 3 The initial population of B1 is comprised of the union
of subpopulations in different theme classes. Some themes
may not be present at all in the initial population of B1.
This is depicted by the empty theme classes in the figure.

The sizes of the subpopulations of B1 vary from gen-
eration to generation as evolution proceeds. This is depicted
as a change in the sizes of the shaded regions depicting sub-
populations. Let n be the fixed total population size of B1.
For any t ∈ Z+

0 , let F t
k be the total fitness of all the indi-

viduals in some k-themed subpopulation at time t. Then by
the theme-meta selection equation the size of the k-themed
sub-population in generation t+1, denoted by nt+1

k , is given

by nt+1
k ≈ n

F t
kP

k′∈K F t
k′

.

From the theme-thread correspondence equation we
can infer that apart from the change in the size of the
subpopulations in each generation (as described above),
the evolution of any k-themed subpopulation proceeds in-
dependently of the evolution of other subpopulations. If
R is the representation that is used by B1, then we can
think of each k-themed subpopulation as evolving within a
separate variable-population-size bfpEA that uses a (β, k)-
subrepresentation of R; let us call this a (β, k)-sub-bfpEA
of B1.

For any theme k and any generation t, the value F t
k

can be thought of as the fitness of the (β, k)-sub-bfpEA in
generation t. In each generation t ∈ Z+

0 , the population size
of the (β, k)-sub-bfpEA is given by nt

k. If one thinks of the
population size of a sub-bfpEA in some generation as the
amount of search resources allocated to its representation

3While interpreting this figure and (fig. 2) the reader should
bear in mind that while subpopulations are depicted as sets
in truth they are multi-sets. We nevertheless use the size
of a shaded area to depict the size of some sub-population
some theme class.
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Figure 2: Schematic depiction of the behavior of a
(β, ω)-preserving bfpEA when ω ≈ 1

in that generation, then in each generation B1 reallocates
its search resources amongst the subrepresentations of its
sub-bfpEAs in proportion to the fitness of the populations
of the sub-bfpEAs. We call this behavior Subrepresentation
selecting multithreaded evolution (SSME).

Note that when ω = 1, if some theme k′ is not instan-
tiated by some genotype of the initial generation of Bω, then
k′ will never be present in any of the genotypes in any sub-
sequent generations. Thus the (β, k′)-subrepresentation of
Dω will never be explored. So, in each generation, Bω will
only perform subrepresentation selection on the subrepre-
sentations that are already present in the initial generation.

When ω ≈ 1 we say that the bfpEA Bω is mostly-
theme-preserving. By the corollary to theorem 6.2, the sub-
transmap selecting multithreaded evolution equations ap-
proximately hold for Eω. Therefore, we infer that Bω ap-
proximately implements subrepresentation selecting multi-
threaded evolution. The key qualitative difference between
the SSME behavior of B1 and the behavior of Bω is the re-
sult of the small number of theme altering mutations in each
generation of Bω. Figuratively speaking, the child genotypes
produced by such mutation jump over the theme class parti-
tions as shown in (fig. 2) and land in theme classes that are
different from those of their parents. Thus in each genera-
tion of Bω new themes may be instantiated which were not
present in previous generations. When ω ≈ 1 themes corre-
spond approximately to the subrepresentations used by sub-
bfpEAs, so another way of saying the above is that in each
generation sub-bfpEAs with new subrepresentations may be
generated by Bω. As Bω approximately implements SSME,
these new subrepresentations will be subject to subrepresen-
tation selection in subsequent generations. Since Bω gener-
ates new subrepresentations in addition to approximately
performing SSME, we call its behavior Subrepresentation
evolving multithreaded evolution (SEME).

8. RELATED WORK
Our study of (β, ω)-preserving bfpEAs was inspired by

a desire to understand the significance of the different fre-
quencies with which theme altering and theme preserving
mutation is applied to genotypes in the self adapting evolu-
tionary algorithms described in [7] and [8]. The genotypes in
these algorithms are seeded L-systems like those described
in example 3 of section 3.1. These genotypes are subject
to two kinds of mutation - type 1 and type 2. Type 1 mu-
tation preserves genotypic themes that are similar to those
shown in the last column and last row of table 1; type 2



mutation alters these themes. In the experimental systems
in [7] and [8], parent genotypes are subjected to type 1 mu-
tation much more frequently than type 2 mutation. These
experimental systems are not quite bfpEAs because they use
(µ, λ)-selection [5]. Nevertheless, the work in this paper ex-
plains the role that the low probability of theme alteration
plays in the behavior of these systems, namely that the low
probability of theme altering mutation induces evolutionary
behavior that is qualitatively similar to SEME.

The experimental systems in [7] and [8] were con-
structed in order to study the effects of neutral mutations.
In addition to being theme altering, type 2 mutations are
also neutral (with high probability), i.e. they preserve phe-
notypes. It is instructive to understand the effect of neu-
tral theme altering mutation using the theory developed in
this paper. When theme altering mutation is not neutral it
amounts to a “blind” jump” from a parent genotype in some
subrepresentation to a child genotype in a different subrep-
resentation. When it is neutral the jump is not blind i.e.
the phenotype of the parent genotype is preserved.

It is also instructive to compare and contrast the
SEME behavior of a mostly-theme-preserving bfpEA with
the behavior of a mutation-only island model . An island
model (briefly described in [11]) maintains several subpop-
ulations with fixed and typically equal sizes. These subpop-
ulations evolve mostly independently of each other; they
are said to be located on different islands to evoke the no-
tion of separation. Periodically, a fraction of the individ-
uals on each island will migrate to other islands. Mostly-
theme-preserving bfpEAs and island models are analogous
in that the themes of the bfpEA correspond with the islands
in an island model, theme preserving mutation corresponds
to regular mutation on each of the islands, and theme alter-
ing mutation corresponds to migrations between the islands.
The differences between a mostly-theme-preserving bfpEA
and an island model are as follows: firstly, for any theme
k, the subpopulation of k-themed genotypes is variable, and
is determined in each generation by theme meta-selection,
whereas the subpopulation size of each island is typically
fixed. Secondly, the evolutionary thread corresponding to
each theme uses a different representation, whereas (with
the exception of the island models studied in [6]) the rep-
resentation used by each island is the same. And thirdly,
a mostly-theme-preserving bfpEA may discover new themes
which were not previously instantiated in the population
and may thus spawn new evolutionary threads, whereas the
number of islands in an island model is fixed.

9. CONCLUSION
In this paper, we introduced the abstract yet simple

concept of a genotypic theme and distinguished it from the
concepts of a forma [4], and a scheme [3]. We used this idea
of a theme, and the ideas of theme preserving and theme
altering mutation to define a (β, ω)-preserving EM which
preserves genotypic β-themes with probability ω and alters
them with probability (1 − ω). Our analysis of a (β, ω)-
preserving EM in section 6 yielded the Theme Preservation
Theorem which is the central theoretical result of this paper.
We interpreted this result in section 7 to gain insight into
the behaviour of a (β, ω)-preserving bfpEA when ω ≈ 1

The fascinating conclusions that we reached about a
(β, ω)-preserving bfpEA for the case when ω ≈ 1 are as
follows: Firstly, genotypic themes correspond to separate

evolutionary threads (with distinct subrepresentations) in
which the non-thematic parts of genotypes evolve. Secondly,
in each generation the (β, ω)-preserving bfpEA performs se-
lection of subrepresentation by reallocating its search re-
sources to the subrepresentations of evolutionary threads
with fitter populations. And thirdly, in each generation new
evolutionary threads with new subrepresentations may be
spawned. These new subrepresentations are then subject to
subrepresentation selection in subsequent generations. Thus
a (β, ω)-preserving bfpEA performs second-order search over
the a space of subrepresentations and in each generation ex-
ploits promising subrepresentations for first-order evolution-
ary search.
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E. Cantú-Paz, J. A. Foster, K. Deb, D. Davis, R. Roy,
U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall,
S. Wilson, M. Harman, J. Wegener, D. Dasgupta,
M. A. Potter, A. C. Schultz, K. Dowsland, N. Jonoska,
and J. Miller, Eds., Springer-Verlag, pp. 86–97.

[8] Toussaint, M. The Evolution of Genetic
Representations and Modular Neural Adaptation. PhD
thesis, Institut fr Neuroinformatik,
Ruhr-Universit-Bochum, Germany, 2003.

[9] Vose, M. D. The simple genetic algorithm:
foundations and theory. MIT Press, Cambridge, MA,
1999.



[10] Wagner, G. P., and Altenberg, L. Complex
adaptations and the evolution of evolvability.
Evolution (1996), In press.

[11] Whitley, D. A genetic algorithm tutorial. Statistics
and Computing 4 (1994), 65–85.

APPENDIX
Definition 1. (Distribution Distance) Let X be

some countable set. We define the distribution distance
d : ΛX × ΛX → R+

0 as follows:

d(p, q) =
X
x∈X

|p(x)− q(x)|

Proposition 1. Let X be some countable set. Then the
distribution distance d : ΛX × ΛX → R+

0 is always bounded
from above by 2, i.e. for any p, q ∈ ΛX , d(p, q) ≤ 2

Proof. See that

d(p, q) =
X
x∈X

|p(x)− q(x)|

=

 X
{x∈X|p(x)

>q(x)}

p(x)− q(x)

!
+

 X
{x∈X|q(x)

>p(x)}

q(x)− p(x)

!

≤

 X
{x∈X|p(x)

>q(x)}

p(x)− 0

!
+

 X
{x∈X|q(x)

>p(x)}

q(x)− 0

!

≤
�X

x∈X

p(x)

�
+

�X
x∈X

q(x)

�

= 2

Observe that the summands in (def 1) are non-
negative, and from the proposition above the summation
in (def 1) is bounded. Hence for any set X, d is always
convergent. The next proposition states that d is a metric.

Proposition 2. For any countable set X, the distribu-
tion distance d is a metric over the set ΛX .

Proof. For any p, q, r ∈ ΛX , it is easily seen that d(p, q) ≥
0, d(p, p) = 0, d(p, q) = 0 ⇒ p = q, and d(p, q) = d(q, p). We
now prove the triangle inequality. See that ∀x ∈ X, |p(x)−
q(x)|+|q(x)−r(x)| ≥ |p(x)−r(x)| because the absolute value
of differences is simply the 1-d Euclidean metric. HenceP

x∈X |p(x)− q(x)|+ |q(x)− r(x)| ≥
P

x∈X |p(x)− r(x)|, so
(
P

x∈X |p(x)−q(x)|)+(
P

x∈X |q(x)−r(x)|) ≥
P

x∈X |p(x)−
r(x)|, which gives us our result.

Lemma 1. For any x∗ ∈ [0, 1], let f : [0, 1] → [0, 1] be
a function such that f is continuous at x∗ and f(x∗) > 0.
Then ∀ε > 0, ∃δ > 0 such that

|x− x∗| < δ ⇒ |f(x)− f(x∗)| < εf(x∗)

Proof. Note that ∀x∗ ∈ [0, 1] s.t. f(x∗) > 0, and ∀ε > 0,
|f(x) − f(x∗)| < εf(x∗) when x = x∗. Also see that f(x∗)
is constant w.r.t. x. As f is continuous at x∗, f(x)− f(x∗)
is continuous at x∗, which implies that |f(x) − f(x∗)| is
continuous at x∗. Hence ∃δ > 0 s.t. |x− x∗| < δ ⇒ |f(x)−
f(x∗)| < ε.f(x∗).

Lemma 2. For any ω ∈ [0, 1], any countable set X and
any parameterized distribution pω : ΛX → ΛX , let us define
the function qx : [0, 1] → [0, 1] as follows: ∀ω ∈ [0, 1],∀x ∈
X qx(ω) = pω(x). Let ω∗ ∈ [0, 1] be such that ∀x ∈ X, qx

is continuous at ω∗, then ∀ε > 0,∃δ such that ∀ω ∈ [0, 1]

|ω − ω∗| < δ ⇒ d(pω, pω∗) < ε

Proof.X
x∈X

pω∗(x)− pω(x) = 0

⇒
X

x∈X s.t.
pω∗ (x)>

pω(x)

pω∗(x)− pω(x)−
X

x∈X s.t.
pω(x)>
pω∗ (x)

pω(x)− pω∗(x) = 0

⇒
X

x∈X s.t.
pω∗ (x)>

pω(x)

pω∗(x)− pω(x) =
X

x∈X s.t.
pω(x)>
pω∗ (x)

pω(x)− pω∗(x)

(12)
Now, sinceX

x∈X s.t.
pω∗ (x)>

pω(x)

pω∗(x)− pω(x) =
X

x∈X s.t.
pω∗ (x)>

pω(x)

|pω∗(x)− pω(x)|

(13)
and X

x∈X s.t.
pω(x)>
pω∗ (x)

pω(x)− pω∗(x) =
X

x∈X s.t.
pω(x)>
pω∗ (x)

|pω(x)− pω∗(x)|

therefore,X
x∈X s.t.
pω∗ (x)>

pω(x)

|pω∗(x)− pω(x)| =
X

x∈X s.t.
pω(x)>
pω∗ (x)

|pω(x)− pω∗(x)|

(14)

By lemma 1, ∀ε ∈ [0, 1], ∃δ > 0 s.t. ∀ω s.t. |ω − ω∗| < δ,X
x∈X s.t.
pω∗ (x)>

pω(x)

|qx(ω∗)− qx(ω)| <
X

x∈X s.t.
pω∗ (x)>

pω(x)

ε

2
.qx(ω∗)

⇒
X

x∈X s.t.
p∗ω(x)>
pω(x)

|qx(ω∗)− qx(ω)| < ε

2

⇒
X

x∈X s.t.
pω∗ (x)>

pω(x)

|pω∗(x)− pω(x)| < ε

2
(15)

and by (14) and (15) ∀ω s.t. |ω − ω∗| < δ,X
x∈X s.t.
pω(x)>
pω∗ (x)

|pω(x)− pω∗(x)| < ε

2

so, ∀ω s.t. |ω − ω∗| < δX
x∈X

|pω∗(x)− pω(x)| < ε



Theorem 1. For all ω ∈ [0, 1], let Dω = (G, P, φ, M) be
a transmap such that for some set K and some β : G → K,
Dω is (β, ω)-preserving. Let Eω = (Dω, f, s) be a (β, ω)-
preserving EM, and let { ωpt

G}t≥0 be the genotype distribution
sequence of Eω. For all t ∈ Z+

0 , let ωpt
K be the β-projection

of ωpt
G, then ∀ω∗ ∈ [0, 1] and for any ε > 0,

∃δ > 0, ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
K , ω∗

pt
K) < ε

i.e. ω → ω∗ ⇒ ωpt
K → ω∗

pt
K

Furthermore, for any ω∗ ∈ [0, 1], and for all k ∈ K such

that ω∗pt
K(k) > 0, let ωpt

〈k〉 be the β-conditional distribution

of ωpt
G given k, then for and any ε > 0,

∃δ > 0, ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
〈k〉,

ω∗
pt
〈k〉) < ε

i.e. ω → ω∗ ⇒ ωpt
〈k〉 → ω∗

pt
〈k〉

Claim 1. For all t ∈ Z+
0 and all g ∈ G, let gqt

G : [0, 1] →
[0, 1] be defined as follows: gqt

G(ω) = ωpt
G(g). Then gqt

G is
continuous.

We prove claim 1 by induction on t. For all g ∈ G,
gq0

G(ω) is a constant function of ω, hence gq0
G is continuous.

This proves our base case. For some t ∈ Z+
0 , we now assume

that for all g ∈ G, gqt
G is continuous and prove that for all

g ∈ G, gqt+1
G is continuous. ∀g ∈ G,

ωpt+1
G (g) =

X
g′∈G

(ωMP (g|g′) + (1− ω)MA(g|g′)) ×

Sf◦φ
ωpt

G(g′)

=
X
g′∈G

(ωMP (g|g′) + (1− ω)MA(g|g′)) ×

f ◦ φ(g′) ωpt(g′)P
g′′∈G f ◦ φ(g′′) ωpt(g′′)

So,

gqt+1
G (ω) =

X
g′∈G

(ωMP (g|g′) + (1− ω)MA(g|g′)) ×

f ◦ φ(g′) g′qt
G(ω)P

g′′∈G f ◦ φ(g′′) g′′qt
G(ω)

Note that the right side of this equation is the sum, product
and non-zero quotient of constant or continuous functions
w.r.t ω (we are using our inductive hypothesis in this
statement). Hence, gqt+1

G is continuous. This completes the
proof of claim 1.

Claim 2. For all t ∈ Z+
0 , all k ∈ K, let kqt

K : [0, 1] →
[0, 1] be defined as follows: kqt

K(ω) = ωpt
K(k). Then, kqt

K is
continuous

The proof of claim 2 is as follows: For any t ∈ Z+
0 and any

k ∈ K,

kqt
K(ω) =

X
g∈〈k〉

ωpt
G(g)

=
X

g∈〈k〉

gqt
G(ω)

By claim 1, the right hand side of this equation is the sum
of continuous functions w.r.t ω. Hence kqt

K is continuous.
This completes the proof of claim 2. By claim 2 and lemma
2, for all t ∈ Z+

0 , any ω∗ ∈ [0, 1] and for any ε > 0,

∃δ > 0 s.t. ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
K , ω∗

pt
K) < ε

i.e. ω → ω∗ ⇒ ωpt
K → ω∗

pt
K

Claim 3. For all t ∈ Z+
0 , all ω∗ ∈ [0, 1], all k ∈ K such

that ω∗
pt(k) > 0, and all g ∈ 〈k〉, let gqt

〈k〉 : [0, 1] → [0, 1] be

defined as follows gqt
〈k〉(ω) = ωpt

〈k〉(g). Then gqt
〈k〉 is contin-

uous at ω∗.

The proof of claim 3 is as follows: for all t ∈ Z+
0 , all ω∗ ∈

[0, 1] and all k ∈ K such that ω∗
pt(k) > 0, kqt

K(ω∗) = ω∗
pt(k)

so, kqt
K(ω∗) > 0. Furthermore, for all g ∈ 〈k〉

gqt
〈k〉(ω

∗) =
ω∗

pt
G(g)

ω∗pt
K(k)

=
gqt

G(ω∗)
kqt

K(ω∗)

By claim 1, and claim 2, the right hand side of this equation
is the division of two functions that are continuous at ω∗.
Also, by our earlier comment, the denominator is non-zero.
Hence, gqt

〈k〉 is continuous at ω∗. This completes the proof
of claim 3. By claim 3 and lemma 2, for any ω∗ ∈ [0, 1], for

all k ∈ K such that ω∗pt
K(k) > 0, and for and any ε > 0,

∃δ > 0, ∀ω ∈ [0, 1], |ω − ω∗| < δ ⇒ d( ωpt
〈k〉,

ω∗
pt
〈k〉) < ε

i.e. ω → ω∗ ⇒ ωpt
〈k〉 → ω∗

pt
〈k〉


