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ABSTRACT
We describe a generator for hierarchical problems called the
Hierarchical Problem Generator (HPG). Hierarchical prob-
lems are of interest since they constitute a class of problems
that can be addressed efficiently, even though high-order
dependencies between variables may exist. The generator
spans a wide ranges of hierarchical problems, and is limited
to producing hierarchical problems. It is therefore expected
to be useful in the study of hierarchical methods, as has al-
ready been demonstrated in experiments. The generator is
freely available for research use.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
General

General Terms
Algorithms, Theory, Experimentation, Performance

Keywords
Modularity, hierarchy, hierarchical problems, hierarchical prob-
lem generator, scalability, representation development

1. INTRODUCTION
Evolutionary algorithms research aims to address discrete

optimization problems efficiently. Without any information
or assumptions about the problem that will be addressed,
finding a solution in a reasonable amount of time cannot
be guaranteed in general, as the size of the search space is
exponential in the number of variables.

An important class of problems that can be solved effi-
ciently is that for which the dependencies between variables
are limited to some small order k. Two variables are inter-
dependent if the fitness contribution of one variable depends
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on the setting of the other, and independent otherwise. The
order of the dependencies is the largest number of interde-
pendent variables.

Problems limited to low order dependencies are efficiently
solved by competent genetic algorithms (Goldberg, 2002);
examples include the fast messy GA (Goldberg, Deb, Kar-
gupta, & Harik, 1993), the gene expression messy GA (Kar-
gupta, 1996), the linkage learning GA (Harik, 1997), the ex-
tended compact GA (Harik, 1999), the Bayesian Optimiza-
tion Algorithm (BOA) (Pelikan, Goldberg, & Cantu-Paz,
1999), LFDA (Mühlenbein & Mahnig, 1999), and EBNA
(Etxeberria & Larrañaga, 1999). However, the assumption
that all interactions are limited to a small order may not
hold in large problems of practical interest. An sensible
question therefore is whether certain problems with higher
order dependencies can also be addressed.

In the past few years, several hierarchical problems have
been identified that can be addressed efficiently by meth-
ods able to exploit hierarchical structure, such as Hierar-
chical If and only IF (HIFF) (Watson, Hornby, & Pollack,
1998) and the Hierarchical Trap function (H-Trap) (Pelikan
& Goldberg, 2001). Several methods have been introduced
that are able to address hierarchical problems: SEAM (Wat-
son & Pollack, 2000), Hiearchical BOA (H-BOA) (Pelikan &
Goldberg, 2001), Compact Genetic Codes (Toussaint, 2005),
and the Hierarchical Genetic Algorithm (HGA) (De Jong,
Thierens, & Watson, 2004; De Jong, Watson, & Thierens,
2005).

In hierarchical problems, many or even all variables may
be interdependent, but the dependencies are limited such
that efficient problem solving is possible. Hierarchical struc-
ture is exploited in many human pursuits such as engineering
and the organization of information (Simon, 1968); the abil-
ity to address hierarchical problems is therefore expected to
bear relevance to significant real-world problems.

The first examples of hierarchical problems already pro-
vide an indication of the class of hierarchical problems, and
an extensive discussion of the significance of hierarchy can be
found in (Watson, 2002). A precise delineation of the class of
hierarchical problems, excluding non-hierarchical problems,
was first given in (De Jong et al., 2004). The same work
gives an analysis of problem features that affect the compu-
tational requirements for hierarchical problem solving.

To study the behavior of algorithms on hierarchical prob-
lems, and the dependence of this behavior on problem fea-
tures, it is essential to have a collection of hierarchical prob-



lems with different problem features. Two generators ex-
ist that can produce hierarchical problems (Watson et al.,
1998; Pelikan & Goldberg, 2000), but these generators are
not limited to producing hierarchical problems. A generator
that can produce hierarchical problems and only produces
such problems would therefore be a useful tool in analyz-
ing hierarchical methods. In this paper, we present such a
generator.

The structure of this paper is as follows. First, in Section
2 we briefly describe what we mean by hierarchical prob-
lems. Section 3 discusses related work. Section 4 discusses
how a generator can be limited to constructing hierarchical
problems. In Section 5, we present the generator; an exam-
ple of the problems it generates is described in Section 6.
Finally, Section 7 concludes.

2. HIERARCHICAL PROBLEMS
Informally, the idea behind module formation is to iden-

tify sets of variables for which only some settings need to be
considered, while the remaining settings can be safely disre-
garded for the remainder of the search. A hierarchical prob-
lem is characterized by a hierarchy of modules; each module
consists of a number of smaller, non-overlapping modules,
and smallest modules at the bottom of the hierarchy are the
variables of the problem. By recursively combining small
modules into larger modules, a hierarchical problem can be
addressed efficiently, even though it can feature high order
dependencies.

In the following, we describe the notion of modularity and
hierarchy more precisely. For formal definitions and a more
detailed discussion, the reader is referred to (De Jong et al.,
2004).

Definition (Primitive Module): Any variable in the
problem is a primitive module. The possible settings for a
primitive module are given by the alphabet of the problem,
e.g. {0, 1} for binary problems.

Definition (Context): The context of a module is its
complement, i.e. the set of variables that are not part of the
module.

Definition (Context-optimal settings): A setting for
a module is context-optimal if this setting yields the highest
fitness achievable given the setting of the context.

Definition (Possible settings): The possible settings
for a module combination are given by the product of the
context-optimal settings of its components. Using this con-
cept, the notion of a composite module is defined recursively
as follows.

Definition (Composite Module): A combination of k

modules is a composite module if and only if the number of
context-optimal settings for the combination is lower than
its number of possible settings, and no subset of the module
combination establishes such a reduction.

Definition (Modularity): Both primitive modules and
composite modules are modules. A problem is called modu-
lar if it contains at least one composite module.

Definition (Hierarchy): A problem is called hierarchi-
cal if there is at least one composite module that contains
another composite module.

2.1 Example: HIFF
As an example, we consider a 4-bit instance of the HIFF

problem introduced in (Watson et al., 1998), and show it is
hierarchical according to the above definitions. HIFF defines
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Figure 1: Settings conferring fitness contributions

in HIFF.
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Figure 2: Context-optimality: a setting is context-

optimal if it maximizes fitness given the context.

a number of blocks, each of which confers a fitness contri-
bution when present in the individual; see Figure 1. As an
example, the individual 0011 receives a fitness contribution
of 1 for each of the individual variables, and 2 for the 00 and
11 blocks at positions 1,2 and 3,4, but no size-4 blocks are
present that confer fitness. This results in a total fitness of
4+2+2=8. The two global optima are 0000 and 1111, both
receiving a fitness of 16.

We now show that this problem is hierarchical. First, all
four variables are primitive modules. For each variable, both
settings are context-optimal; for example, for x1, the opti-
mal setting in the context ·000 is 0, while the optimal setting
for context ·111 is 1. For the module combination x1x2, the
possible settings are therefore given by all four possible set-
tings for two binary variables. The context-optimal settings
for this module combination however are 00 and 11. Thus,
the number of context-optimal settings for this module com-
bination (2) is lower than the number of possible settings (4),
which implies the module combination is a module; likewise
for the module combination x3x4. For x2x3 however, no
similar reduction can be made, as all four combinations are
optimal in some context. Finally, by the same principle,
the two modules x1x2 and x3x4 form a composite module
x1x2x3x4. Since this composite module contains composite
modules, the problem is hierarchical.

Figures 2 and 3 exemplify the notions of context-optimality
and modularity, based on the example.

3. RELATED WORK
In (Watson et al., 1998), a construction that can pro-

duce hierarchical problems is defined as follows. A trans-
form function accepts a set of module settings, and returns
a single scalar value representing the setting for the com-
bination of the modules concerned; thus, the combination
can be seen as a new higher order variable. In the HIFF
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example, 00 translates to 0 and 11 to 1, but the remaining,
non-context-optimal settings (all other combinations of 0,
1, and ’-’) translate to a ’-’. The fitness function is defined
as a function over the module settings thus obtained; only
combinations of all zeroes or all ones transform to a 0 or
a 1, indicating these settings contribute to the fitness. In
(Pelikan & Goldberg, 2000), a similar construction is de-
fined, with the difference that different transformations are
permitted at different places, and that modules can differ in
size.

While both constructions can be used to specify hierarchi-
cal problems, they are not limited to producing hierarchical
problems. For example, a one-max problem can be defined
by transforming combinations of all ones to a 1, and any
other combinations to ’-’. For each variable in a one-max
problem, the only context-optimal setting is 1. Thus, no fur-
ther reductions of the number of context-optimal settings is
possible by combining variables into modules, and the prob-
lem is clearly not hierarchical. In fact, both constructions
can generate any given GA problem. An important ques-
tion therefore is how a generator can be constructed that
produces hierarchical problems only. We will consider this
question in the following section.

4. GENERATING HIERARCHICAL PROB-
LEMS

A hierarchical problem is defined by a hierarchy of mod-
ules, each of which has a number of context-optimal settings
that is smaller than its number of possible settings, where
the latter is given by the product of the context-optimal set-
tings of the module’s components. To generate hierarchical
problems therefore, we would like to be able to choose which
combinations of variables will form modules in a problem,
and which settings are context-optimal for these modules.
This encompasses three goals that must be satisfied:

• Every chosen combination of variables forms a module

• No other combination of variables forms a module

• The selected settings for each chosen combination are
context-optimal, and no other settings are context-
optimal

The first condition can be satisfied by choosing the context-
optimal settings for each module such that their number is
less than the product of the number of context-optimal set-

tings of the components of the module. Before considering
the second condition, we first discuss the third condition.

The chosen settings for a module M at level l in the tree
of modules are context-optimal if the following conditions
hold:

• When considering all fitness contributions up to level
l, the selected settings confer a higher fitness contribu-
tion than the remaining settings. This can be achieved
by assigning sufficiently high fitness contributions to
the selected settings of M .

• Fitness contributions at levels above l are chosen such
that the selected settings are still context-optimal. This
can be achieved by ensuring that each chosen setting
at level l forms part of at least one context-optimal
setting at level l + 1; in this manner, the selected set-
tings are propagated up to higher levels, and as a result
the selected settings at the lowest level are guaranteed
to form part of context-optimal settings at the high-
est level, thus ensuring their context-optimal status is
maintained throughout the hierarchy.

The remaining second requirement is to ensure that no
unintended combinations of variables should form modules.
Thus, for any combination of modules not intended to form
a module, all possible settings should be context-optimal.
First, we consider the case where the number of compo-
nents per module k = 2 and the number of context-optimal
settings per module M equals the arity of the alphabet s.

For any unintended combination of two modules M1 and
M2, let A be the smallest true module containing M1 and
let B be the smallest module containing M2. A consists
of two modules, a1 and a2, and B consists of b1 and b2.
Without loss of generality, we will assume M1 = a1 and
M2 = b1.

Both a1 and a2 have m context-optimal settings, and
these all occur in some context-optimal setting of A. Since
A itself has only m context-optimal settings, each context-
optimal setting of a2 is uniquely associated with one context-
optimal setting for a1, and vice-versa. For any context-
optimal setting of a1 therefore, we can select a setting for
a2 such that a1’s setting is context-optimal. Likewise, for
any setting of b1, we can select a setting for b2 such that b1’s
setting is context-optimal. Since the fitness contributions of
A and B are independent, this means that for any combi-
nation of context-optimal settings for a1 and b1, a setting
for a2b2 exists such that a1b1’s setting is context-optimal.
Thus, the number of context-optimal settings for a1b1 equals
the number of possible settings, and the combination is not a
module. For the lowest level, the above requires that s = m.

The above shows that for k = 2 and s = m, no unintended
combination of modules forms a module. For higher values
of k, ensuring that no unintended modules arise becomes
more complicated. For the case of k = 3 for example, for
any size two subset of an unintended module, all m2 com-
binations of context-optimal settings must form part of a
context-optimal setting. In the binary case (s = 2) for exam-
ple, this means that for all three two-variable combinations
in a level one module, all four combinations (00,01,10,11)
must form part of context-optimal settings. This requires
m ≥ 4, with the following context-optimal settings as an
example: 000, 101, 110, 011. While it is technically possi-
ble to ensure that no unintended modules arise, this would



HPG()
1 level = 0;
2 modules[0]= [x0, x1, . . . , xn]
3 while |modules[level]| <= kmin

4 do

5 todo = modules[level]
6 level++;
7 while |todo| >= kmin

8 do

9 M = new module();
10 [M.parts, todo] = choose − parts();
11 m = rand(mmin, mmax);
12 M.values = use − previous − layer();
13 if nosettings < m

14 then

15 options = create − options(M);
16 M.values = [M.values |
17 select − options(options, M)];
18
19 modules[level] = [modules[level]|M ];
20
21 modules[level] = [modules[level]|todo];
22
23 assign − fitness();
24

Figure 4: Outline of the Hierarchical Problem Gen-

erator.

substantially complicate the design of a problem generation
algorithm. Instead, we choose to use the principles for gen-
erating modules that have been described. This approach
guarantees that the intended modules will indeed be mod-
ules, while for certain combinations of parameters additional
modules may exist. These do not jeopardize the hierarchical
status of the problems that are generated, as reductions at
all selected levels of the hierarchy are guaranteed.

5. THE HIERARCHICAL PROBLEM GEN-
ERATOR

The Hierarchical Problem Generator accepts the follow-
ing parameters: a range from which the size of each mod-
ule is randomly drawn [kmin, kmax], a range from which the
number of context-optimal settings of a module is drawn
[mmin, mmax], the arity s of the alphabet, and the number
of variables n.

The algorithm operates as follows. First, the set of mod-
ules is initialized to the set of primitive modules, which
equals the set of variables in the problem. This set provides
the first layer of modules. The outer loop of the algorithm
(see Figure 4) constructs the different levels of modules as-
cending order. The inner loop constructs the next layer
of modules given the current layer. This is done by first
combining the modules into module combinations, using
the function choose-parts, and next choosing the context-
optimal settings for these modules.
choose-parts randomly chooses k′ selected modules, where

k′ is selected randomly from [kmin, kmax], and removes these
from todo. Choosing the context-optimal settings for a
module works as follows. First, for each component mod-
ule, all context-optimal settings must be used at least once.

x1 x2 x3 x4 x5 x6 x7 x8

Level 3 0 1 1 1 1 0 1 0
1 0 0 0 0 1 0 1

Level 2 1 1 1 1
0 0 0 0

1 0 1 1
0 1 0 0

Level 1 1 1
0 0

0 1
1 0

1 1
0 0

0 0
1 1

Table 1: Modules and their context-optimal settings

for an example problem generated by the HPG.

Therefore, UsePreviousLayer randomly selects an unused
context-optimal setting from each component module (if
possible, and a randomly chosen context-optimal setting
otherwise) and combines these into a context-optimal set-
ting for the module combination until all context-optimal
settings have been used at least once. m is selected randomly
from [mmin, mmax]. In a balanced hierarchical problem with
fixed m, each component module contains m context-optimal
settings, so this will produce precisely m context-optimal
settings for the module combination. If m is higher than the
m′ at the previous level, additional settings may need to be
selected. To this end, create-options generates all combi-
nations of context-optimal setting of the components of the
module combination. Next, select-options removes from
these the settings that were already generated by combining
m′ randomly selected context-optimal component settings.
The remaining m − m′ settings are chosen randomly from
the remaining settings. Finally, assign-fitness assigns a
fitness to each module that equals the number of variables
in the module.

The above describes the default operation of the gener-
ator. Two additional options are available. By default,
module combinations are formed by combining randomly
selected modules. If the randomorder parameter is set to
false, the modules are formed by selecting consecutive mod-
ules; this can be useful in analyzing the results of a method
on a problem. Furthermore, by default, the fitness contri-
bution of a module equals its number of variables. If the
fixedfitnesscontribution parameter is set to true, the
context-optimal module settings are instead assigned a con-
stant value (one).

It is interesting to note that for s = m, the problems
produced by the generator are equivalent, up to a relabeling
of the context-optimal settings, to the H-EQUAL problem
described in (Watson & Pollack, 1999), which can be viewed
as a generalized version of H-IFF.

6. RESULTS
In the following, we describe an example problem pro-

duced by the generator; see Tables 1 and 2. The parameters
used were n = 8 and kmin = kmax = mmin = mmax = s =
2. At the lowest level, all variables are primitive modules,
and have both settings (0 and 1) as context-optimal settings;



Example x1 x2 x3 x4 x5 x6 x7 x8 Fitness
1 0 1 0 0 1 1 0 1 14
2 1 0 0 1 1 0 0 0 12
3 0 0 0 1 1 1 0 1 10
4 0 1 1 1 1 0 0 1 12
5 1 1 0 1 1 0 1 0 12
6 0 1 1 0 0 1 0 1 10
7 1 1 1 1 0 1 0 1 10
8 1 1 0 0 1 1 0 1 20
8 1 0 1 0 1 0 0 0 8
10 0 0 1 0 0 1 0 0 14

Table 2: Example evaluations for the problem shown

in Table 1.

for space considerations, these are not shown. At the first
level, four modules exist: x1x8, x2x5, x4x6, and x3x7. Since
the m context-optimal settings of the lowest, single-variable
level all feature in precisely one context-optimal setting at
this first level, all modules either have optimal settings 00
and 11 or 01 and 10. At the second level, modules are formed
by randomly combining two first-level modules. The possi-
ble settings for these modules are given by all four combina-
tions of the two context-optimal settings for each constituent
level one module. Again, two out of these four combinations
are selected to form the context-optimal settings at the sec-
ond level. Analogously, the third level represents two size
eight modules, each contributing an additional fitness value
of eight when present in an individual. As an example, ta-
ble 2 shows fitness evaluations for ten randomly generated
individuals.

The use of the HPG is demonstrated in a paper at this
conference (De Jong et al., 2005). There, the Hierarchical
Genetic Algorithm (HGA) is tested by applying it to dif-
ferent ranges of randomly generated hierarchical problems.
The experiments empirically validate the scalability analy-
sis of the algorithm by measuring the effect of the different
problem parameters (k, m, and m) on performance. These
experiments demonstrate the value of the Hierarchical Prob-
lem Generator as a tool in evaluating hierarchical methods.

7. CONCLUSIONS
A generator for hierarchical problems has been presented.

The generator can produce a wide range of hierarchical prob-
lems, and is limited to producing such problems. It is there-
fore valuable in the study of hierarchical algorithms, as demon-
strated in related work (De Jong et al., 2005).

The generator accepts several parameters: the number
of variables in the problem, the number of components per
module, the number of context-optimal settings per module,
and the alphabet size. These parameters span a wide space
of problems. As a possible extension, intermediate problems
can be generated for which one or more of the latter three
properties vary per module.

Availability
The Hierarchical Problem Generator is freely available for
research use from the homepage of the first author:
http://www.cs.uu.nl/~dejong/hpg.
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