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ABSTRACT 
Genetic Programming uses trees to represent chromosomes.  The 
user defines the representation space by defining the set of 
functions and terminals to label the nodes in the trees. The 
sufficiency principle requires that the set be sufficient to label the 
desired solution trees, often forcing the user to enlarge the set, 
thus also enlarging the search space. Structure-preserving 
crossover, STGP, CGP, and CFG-based GP give the user the 
power to reduce the space by specifying rules for valid tree 
construction, based on types, syntax, and heuristics. These rules 
in effect change the representation. However, in general the user 
may not be aware of the best representation, including heuristics, 
to solve a particular problem. Last year, ACGP methodology was 
introduced for extracting local problem-specific heuristics, that is 
for learning a local model of the problem domain. ACGP 
discovers representation, in the space of probabilistic 
representations, one that improves the search itself and that 
provides the user with heuristics about the domain. This paper 
discusses and illustrates the probabilistic representation.  

Categories and Subject Descriptors 
I.2.4 [Artificial Intelligence]: Knowledge Representation 
Formalisms and Methods   

I.2.6 [Artificial Intelligence]: Learning  

I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search  

General Terms 
Design, Experimentation. 
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1. INTRODUCTION 
Evolutionary computation techniques solve a problem by utilizing 
a population of solutions evolving under limited resources. The 
solution chromosomes are evaluated by a problem-specific user-

defined evaluation method. They compete for survival based on 
this fitness, and they undergo simulated evolution by means of 
crossover and mutation operators. 

Genetic Programming (GP), introduced by Koza [12] differs from 
other evolutionary methods by mainly using trees to represent 
potential solutions. Trees provide rich representation that is 
sufficient to represent computer programs, analytical functions, 
variable length structures, even computer hardware [1][12].  The 
user defines the representation space by defining the set of 
functions and terminals labeling the nodes of the trees. One of the 
foremost principles is that of sufficiency [12], which states that the 
function and terminal sets must be sufficient to express a solution 
to a problem. The reason is obvious: every solution will be in the 
form of a tree, labeled only with the user-defined elements. 
Sufficiency usually forces the user to enlarge the sets of functions 
and terminals, to ensure the inclusion of the necessary atomic 
labels. This unfortunately bloats the representation and increases 
the search space. 

GP representation does not place any preferences on any specific 
tree that can be instantiated. Selection forces the search to diverge 
into better payoff regions. Then, GP searches the space in 
genotype neighborhoods of these regions. However, some regions 
are better than others. McPhee with Hopper [14], and Burke [3] 
analyzed the effect of the root node selection on GP, which in fact 
amounts to selection of specific subspace. Hall and Soule [5] have 
studied the phenomenon more extensively and have concluded 
that the choice of the root node has a very significant impact on 
the solutions generated, and that fixing the root node properly 
amounts to limiting the search space needed to be searched. Daida 
has shown that later GP generations introduce little variation into 
the structure of the generated trees [4], indicating that these later 
generations search a smaller subspace of the search space. 
Langdon has shown that GP typically searches only a well 
defined region of the potential search space [13]. Thus, GP itself 
selects better genotype regions, or can be forced to do so. 
However, very little research has been devoted to such design 
issues beyond the root node. Heuristics can be used for the 
purpose. Global heuristics, such as the choice of the root, provide 
for coarse level subspace preference, while local heuristics 
provide to finer preferences. There are two kinds of heuristics that 
can be available in a problem domain: weak and strong. Strong 
heuristics are in fact constraints, that is they impose specific rules. 
Weak constraints are, on the other hand, stochastic preferences. 
Using such heuristics amounts to changing the otherwise uniform 
GP representation.  
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Processing arbitrary heuristics is a very complex issue. Some 
methods have been developed over the years. Structure-
preserving crossover was introduced as the first attempt [12], with 



the primary initial intention to preserve structural constraints 
imposed by automatic modules ADFs. It was capable of 
processing very limited forms of strong constraints. In the 
nineties, three independent more generic methodologies have 
been developed to allow problem-independent constraints on the 
tree construction. Strongly Typed GP (STGP) [15] processes 
strong constraints based on data types, along with overloaded 
functions. Context-free based GP (CFG-GP) [17] allows 
processing strong context-free constraints, that is syntax rules.  
Some more recent research allows processing  and even 
generating weak constraints [2].  
Constrained GP (CGP) allows the same, that is processing both 
strong and weak constraints, on arbitrary trees rather than syntax 
trees, along with overloaded functions [6][11]. In 2003, a new 
methodology, Adaptable CGP (ACGP) was introduced, which 
allows automatic extraction of problem-specific heuristics. At 
present ACGP works only with local-level heuristics, so called 
first-order [8][9]. However, even these limited heuristics have 
been shown to improve GP search properties quite substantially 
[8][9][10]. 
In section 2 we discuss the GP representation, and in section 3 we 
discuss how weak and strong constraints affect it. In section 4 we 
present some illustrations of ACGP heuristics and their effect on 
GP problem solving.  

2. GP REPRESENTATION AND SEARCH 
SPACE 
The search space of GP is a 2-dimensional space, theoretically 
unbounded but practically bounded in both dimensions. First, 
there is the space of unlabeled (uninstantiated) tree structures. 
Placing the structures into equivalence classes by size, and 
ordering them by the number of nodes, gives the first unbounded 
dimension. However, GP usually imposes some restriction on the 
number of nodes (directly, or indirectly by depth limits). This 
creates a bound. Second, a particular unlabeled tree structure can 
be instantiated in a number of ways. This is again unbounded if 
terminals include ephemeral constants. However, given computer 
representation, even this dimension is bounded. This is illustrated 
in figure 1. The bounded area is the search space, spanned by the 
given representation (functions and terminals). 

In GAs, where the choice of genetic operators is much richer, the 
question of representation cannot be discussed without reference 
to operators, because two representations, given some specific 
properties, can produce equivalent search given some relationship 

between the operators [7]. However, most GP systems use the 
same operators of reproduction, crossover, and mutation/uniform 
mutation. Therefore, the question of representation becomes much 
more important. 
The representation space spanned as in figure 1 is uniform. That 
is, a given node can be labeled with any arity-consistent function 
or terminal. This is not always desirable, beneficial, or even valid. 
During evolution GP “learns” to adjust the uniform space, by 
searching more profitable regions due to selection. However, 
mutation always labels its subtree using the same label set as used 
in the initial random population, thus disregards this information 
completely. Crossover does better as it only selects subtrees from 
the more profitable regions, but because it takes the subtrees out 
of context it often leads to subspaces already disregarded by 
selection. Thus, both operators can take a tree from the better 
payoff region and produce a tree outside the region.  
Figure 2 illustrates the behavior of GP – the mutation and 
crossover do not use nor learn any information (crossover only 
partially utilizes selection information). 

 
Figure 2. GP in action. 
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As mentioned in section 1, some techniques have been developed 
to impose strong constraints on GP, including STGP, CFG-based 
GP, and CGP. They all use different means for imposing the 
constraints, but the end result is the same – they impose local or 
global constraint on possible instantiations of GP trees (indirectly 
they may also limit the number of uninstantiated tree structures). 
Therefore, the representation changes. For example, assume that 
functions and terminals are F={f1,f2} (both unary)  and 
T={t1,t2}. Suppose we want to prevent f1 from using t1 as its 
child, a strong constraint. We may ensure that no initial trees 
invalidate this constraint. Or selection can discover this 
constraint, if indeed beneficial, by removing trees which use f1-

Figure 1. GP 2-D search space spanned by given functions 
and terminals. 

Figure 3. GP 2-D search space pruned by some strong 
constraints. 
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>t1 subtrees. However, as stated before, mutation can easily 
produce a tree with the f1->t1 subtree. Moreover even in the 
absence of mutation, and the absence of trees with f1->t1 
subtrees, crossover can move a t1 leaf to become a child of a node 
labeled f1, again generating the undesired f1->t1 subtree. The 
above mentioned methodologies prevent this from happening, 
thus effectively removing chunks of the search space of figure 1. 
The resulting GP search space as illustrated in figure 3.  
CGP provides the same potentials with strong constraints, by 
types or by explicit listings. However, it also allows the weak 
local constraints (plus weak root constraints). CGP can change the 
genotype representation space by stating that the root node can be 
labeled with f1 or f2 with probability of 80% and 20%, 
respectively. Or it can also state that f2 cannot use f1 (strong 
constraint) and it can use t1 or t2 with probability of 70% and 
30%. This probabilistic representation changes the white search 
space, of figure 3, to non-uniform density space (some trees more 
likely than others). These weak heuristics, in the first-order form 
(on the root and between any parent-child), are used to initialize 
the population, and to drive mutation and crossover.  
However, both these operators still disregard what GP “learns” 
from selection, but instead they use user preferences. The weak 
heuristics cause probabilistic differentiation between GP 
representations spanned over its function and terminal set. This is 
illustrated in figure 4. 

 
Figure 4. CGP in action. 

CGP allows the representations to take probabilistic nature [11]. 
Using such heuristics to change the effective representation has 
been shown effective [6][10]. CGP can also use data types as the 
basis for its heuristics, and it supports type-overloaded functions 
[9]. Its processing power is illustrated in figure 5, which compares 
its solving capabilities against those of GP, using the multiplexer 
function [10][12]. The figure shows the average (out of 10 
independent runs) learning curve for GP, and for two cases of 
CGP when fed with two kinds of heuristics. CGP1 uses the 
simple heuristic that the if function should only test addresses, 
straight or negated. CGP2 extends this heuristic by dropping all 
functions except not and if, and by allowing only data or recursive 
if in the action parts of if. For more examples of useful heuristics 
for the multiplexer, see [6][7][8]. 

One of may ask about the complexity of processing the heuristics. 
It turns out that due to minimal overhead [6], smaller trees,  and 
the reduction in the search space, CGP1 and CGP2 actually 
complete the 50 generations (no stopping on termination) much 
faster, as illustrated in figure 4 (Total time for the 10 runs). When 
we measure only the time needed for the best of the 10 runs to 
find the solution, when executed concurrently (Until solved), the 
difference is much more pronounced (none of the 10 GP runs 

solved the problem). For illustration of the effects of strong 
constraints on GP while solving the Santa Fe trail problem, see 
[10]. 
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Figure 5. GP and CGP on the multiplexer: quality. 
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Figure 6. GP and CGP on the multiplexer: timing. 

4. LEARNING THE REPRESENTATION 
THROUGH HEURISTICS 
In CGP, the user must specify the representation to solve a 
problem, either uniform or probabilistic. However, what is the 
user doesn’t know? ACGP was developed to extract first-order 
heuristics. ACGP works as CGP for a number of generations, 
after which it analyzes the distribution of the first-order heuristics 
in the population, uses this information to update the heuristics, 
reinitializes the population if needed, and starts all over. Thus, the 
information learned by selection is fed back into initialization, 
mutation, and crossover [8][9]. This is illustrated in figure 7. 
We have demonstrated the capacity of the system using the 
multiplexer problem in [6][8][9], and we have illustrated it on the 
Santa Fe trail [10]. Figure 8  compares the average learning curve 
for GP (base) and ACGP runs. The dips in ACGP’s performance 
correspond to reinitialization the population from scratch after 
learning new problem representation. 
 
 



 
Figure 7. Off-line ACGP in action.   

 

Figure 8. Learning curves on the Santa Fe trail. 

5. CONCLUSIONS 
We have discussed the effect of strong and weak heuristics on GP 
representation, and we illustrated the effect of such modified 
representation on problem solving capability and efficiency. 
Strong constraints reduce the search space, while additional weak 
constraints make the remaining search space non-uniform. We 
have also demonstrated the ACGP system, which learns the 
probabilistic representation most suitable for solving a problem, 
by analyzing the genotype subspace identified by selection, and 
feeding this information into CGP. All discussed constraints are 
of local and global first-order form, that is only on local parent-
child relationship and globally on the root node. ACGP is 
presently being extended to deal with richer local heuristics as 
well as more extensive global heuristics. 
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