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ABSTRACT 
Topological crossovers are a class of representation-independent 
operators that are well-defined once a notion of distance over the 
solution space is defined. In this paper we explore how the 
topological framework applies to the permutation representation 
and in particular analyze the consequences of having more than 
one notion of distance available. Also, we study the interactions 
among distances and build a rational picture in which pre-existing 
recombination/crossover operators for permutation fit naturally. 
Lastly, we also analyze the application of topological crossover to 
TSP. 

Categories and Subject Descriptors 
F.2 [Theory of Computation]: Analysis of algorithms and 
problem complexity 

General Terms 
Algorithms, Design, Theory 

Keywords 
Crossover, permutations, theory 

1. INTRODUCTION 
The permutation representation (see [7] for an introduction 
to the topic) is one of the most-frequently used 
representations in evolutionary algorithms. Many 
combinatorial optimization problems, including TSP and 
scheduling problems, are naturally cast using permutations. 
The success of the permutation representation is largely due 
to its flexibility.  

When applied to permutations, the traditional crossover 
operators used for binary strings can produce invalid 
offspring. So, researchers have come up with a variety of 
operators specifically designed for permutations. They 

range from general-purpose operators working reasonably 
well on a wide spectrum of problems, such as the partially 
matched crossover (PMX), to specialized operators that 
work best on a specific class of problems [5], such as edge 
recombination crossover (ERX), which works really well on 
TSP. 

Topological crossovers [9] are a class of representation-
independent operators that are well-defined once a notion 
of distance over the solution set is defined. Simply stated, 
the offspring they produce are between their parents. This 
simple definition has surprising implications, including a 
powerful way to do crossover design for any representation 
and the potential for the development of a general theory of 
evolutionary algorithms encompassing all representations. 

In previous work [9] we have shown how topological 
crossover generalizes the notion of crossover for binary 
strings. Differently from the binary string case, for which a 
single natural distance (the Hamming distance) is defined, 
permutations allow for various notions of distance that are 
all equally natural. In this paper, we explore how our 
topological framework applies to the permutation 
representation and in particular analyze the consequences of 
having more than one notion of distance available. We 
study the interactions among distances and we build a 
rational picture in which pre-existing 
recombination/crossover operators fit naturally. As an 
important example, we also analyze in detail the application 
of topological crossover to TSP. 

In section 2, we introduce the topological framework. 
Section 3 introduces various notions of distance for 
permutations. Section 4 focuses on distances based on 
permutation interpretation and discusses the difficulty with 
topological crossovers based on such distances. Section 5 
introduces various edit distances and show that topological 
crossover is naturally suited to edit distances. Section 6 
draws a parallel between “interpretation” distances and edit 
distances and suggest that topological crossovers defined 
over edit distances can be thought as topological crossovers 
defined over the corresponding interpretation distances. In 
section 7, we suggest that many pre-existing recombination 
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operators for permutations are in fact topological 
crossovers under different edit distances. Section 8 gives an 
analysis of topological crossover for the TSP problem, 
discussing problems in its applicability and solutions. In 
section 9 we present our conclusions.   

2. TOPOLOGICAL FRAMEWORK 
A configuration space C is a pair (G, Nhd) where G is a set 
of syntactic configurations (syntactic objects or genotypes) 
and GGNhd 2: →  is a syntactic neighborhood function 
which maps every configuration in C to the set of all its 
neighbor configurations in C which can be obtained by 
applying any unitary edit move from a pre-specified set. 
The neighborhood function must be symmetric 
( )()( yNhdxxNhdy ∈⇔∈ , which is to say edit moves 
are reversible) and connected (any configuration can be 
transformed into any other in a finite number of moves). A 
configuration set may lead to more than one configuration 
space if multiple syntactic neighborhood functions are 
available. 

A configuration space C=(G, Nhd) is said to be a space 
endowed with a neighborhood structure. This is induced by 
the syntax of the configurations and the particular syntactic 
neighborhood function adopted. Such a neighborhood 
structure can be associated with an undirected 
neighborhood graph W= (V, E), where V is the set of 
vertices representing configurations and E is the set of 
edges representing the relationship of neighborhood 
between configurations.  

Since the neighborhood structure is symmetric and 
connected, this space is also a metric space provided with a 
distance function d induced by the neighborhood function. 
Both Nhd and d identify univocally the structure of the 
space, so we can equivalently write C=(G, Nhd) or C=(G, 
d). Distances arising from graphs are known as graphic 
distances. 

A fitness landscape F is a pair (C, f) where C=(G, d) is a 
configuration space and RGf →:  is a fitness function 
mapping a syntactic configuration to its fitness value.  

In [9] we have defined two classes of representation-
independent operators using the notion of distance 
associated to the landscape: topological mutation and 
topological crossover. We give the main definitions and 
properties for topological crossover below since these are 
the starting point for the work on permutations reported in 
this paper.  

In a metric space ),( dS  a line segment is the set of the 
form )},(),(),(|{];[ yxdyzdzxdSzyx =+∈=  
where Syx ∈, are called extremes of the segment.  

A g-ary genetic operator OP takes g parents gppp ,..., 21  

and produces one offspring c according to a given 
conditional probability distribution: 

),...,|(}),...,(Pr{ 2121 gOPg pppcfcpppOP ==  

Definition: The image set of a genetic operator OP is the 
set of all possible offspring produced by OP when the 
parents are gppp ,..., 21  with non-zero probability: 

}0),...,|(|{)],...,(Im[ 2121 >∈= gOPg pppcfScpppOP  

Definition: A binary operator CX is a topological 
crossover if ];[)],(Im[ 2121 ppppCX ⊆ . 

This simply means that in a topological crossover offspring 
lay between parents.  

Definition: Topological uniform crossover UX is a 
topological crossover where all z laying between parents x 
and y have the same probability of being the offspring: 

|],[|
]),[(

}2,1|Pr{),|(
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yxz
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∈===== δ

],[}0),|(|{)],(Im[ yxyxzfSzyxUX UX =>∈=  

where δ is a function which returns 1 if the argument is 
true , 0 otherwise.  
Theorem: The structure over the configuration space C 
can equivalently be defined by the set G of the syntactic 
configurations and one of the following objects: 1. the 
neighbourhood function Nhd, 2. the neighbourhood graph 
W= (V, E), 3. the graphic distance function d, 4. uniform 
topological crossover UX, 5. the set of all segments H. 
Corollary: Given a structure of the configuration search 
space in terms of neighbourhood function or graphic 
distance function, UX is unique.  
Corollary: Given a representation, there are as many UX 
operators as notions of graphic/syntactic distance for the 
representation. 
The following two properties apply to binary strings. 

Theorem: All mask-based crossover operators for binary 
strings are topological crossovers. 
Theorem: The topological uniform crossover for the 
configuration space of binary strings endowed with 
Hamming distance is the traditional uniform crossover. 

3. DISTANCES BETWEEN 
PERMUTATIONS 
Differently from binary strings where a single, natural 
definition of distance, the Hamming distance, is normally 
used, for permutations many notions of distance are equally 
natural. This situation is further complicated by the fact that 
such distances relate to each others in various ways with 
subtle dependencies. Further complication arises from the 



fact that permutations and circular permutations (and also 
permutations with repetitions to a lesser extent) are treated 
as if they were the same representation, which is incorrect. 
Indeed, although they are connected, they are different 
representations and they allow for different notions of 
distance. For a survey on metrics on permutations see [4]. 

Distances for permutations may have different origins: 

a) Notions of distance arising from the interpretation of 
permutations: these measure the distance between the 
objects represented by two permutations.  

b) Notions of distance directly connected with the syntax: 
these distances measure how two permutations differ in 
their syntax. 

c) Notions of distance connected with the notion of 
mutation or edit distance: these distances measure the 
minimum number of moves necessary to transform a 
permutation into another by the application of a syntax 
modification operator. 

These three types of distances are interdependent. For 
example, an edit distance is also a syntactic distance but a 
syntactic distance is not necessarily an edit distance (one 
can define a measure of syntactic similarity that is not 
defined on edit moves). Also, an edit distance is also a 
graphic distance (see section 2), but a graphic distance is 
not necessarily an edit distance1. In the following three 
sections, we study the connections between these 3 notions 
of distance and their suitability as bases for topological 
crossover. 

In principle, given any notion of distance over the solution 
set, the corresponding topological crossover and 
topological mutation operators are well-defined. What is a 
good distance then? A good distance is one that (i) makes a 
given landscape (i.e. a solution set with its fitness function 
plus a notion of distance) easy to search for the specific 
search operator employed and that (ii) allows such operator 
to be implemented efficiently. The first point connects with 
landscape design, the second with distance duality. Here 
we concentrate on the latter. 

Topological crossover and mutation are well-defined for 
any notion of distance (whether based on syntax or not). So, 
operators are well-defined independently from the 
underlying representation. In practice, however, the genetic 
operators have to be implemented. If they are not based on 
a notion of edit distance that links them tightly to the 
solution representation, they become difficult or even 
impossible to implement efficiently. To understand the 
reasons for this we need to stress the geometric nature of 

                                                                 
1 It can be argued that any graphic distance is an edit distance 

under an arbitrary set of edit operations. However we consider 
“simple” edit distances based on a small set of moves with a 
compact syntactic definition.  

these operators and of the geometric interpretation of the 
landscape coming with them, and we need to introduce the 
notion of distance duality. The notion of edit distance 
arising from the syntax of configurations has a natural dual 
interpretation: 

a) seen in the configuration space, it is a measure of 
similarity (or dissimilarity) between  two syntactic 
objects 

b) seen in the neighbourhood graph, it is the length of the 
shortest path connecting two vertices and, therefore, it 
is a measure of spatial remoteness between points 
when interpreting such a structure in a geometric sense. 

For each representation and edit move definitions, this 
duality manifests itself in a different way. In the case of 
permutations the duality implies that picking elements in 
the segment (shortest path) is equivalent to picking 
elements on a minimal sorting trajectory from one parent 
permutation to the other. This connection between the 
geometric notion of “belonging to a segment” and its 
syntactic dual of “being on a minimal sorting trajectory” is 
ultimately what allows topological crossover to be actually 
implemented in an efficient way. So, even if a topological 
crossover is representation-independent, when dealing with 
its implementation the specific representation used makes 
indeed the difference between an efficient operator and an 
inefficient one. 

4. PERMUTATION INTERPRETATIONS 
AND RELATED DISTANCES 
Permutations can be used to represent solutions to different 
types of problems for which different relations among the 
elements in the permutation are relevant. There are three 
major interpretations of a permutation [1]. For example, in 
TSP permutations represent tours and the relevant 
information is the adjacency relation among the elements 
of a permutation. In resource scheduling problems 
permutations represent priority lists and the relevant 
information in this case is the relative order of the elements 
of a permutation. In other problems, the important 
characteristic is the absolute position of the elements in the 
permutation.  

Let us consider the permutation (C D E B F A). If the 
adjacency is important then the fact that the elements D and 
E are adjacent is relevant as well as the fact that the 
elements C and B are not adjacent. If the important aspect 
is the relative order then what is relevant is the fact that D 
precedes E and that C precedes B. If the absolute order is 
important then the relevant point is that C is in position 1, D 
in position 2, etc. 

For each interpretation of permutation, it is possible to 
write a binary matrix that represents the actual relation 
among elements in the permutation. So, we can have a 
relative order matrix, an absolute position matrix and an 



adjacency matrix. For example, for the permutation (C D E 
B F A) we have the following matrices: 
 

relative order matrix: 
 A B C D E F 
A 0 0 0 0 0 0 
B 1 0 0 0 0 1 
C 1 1 0 1 1 1 
D 1 1 0 0 1 1 
E 1 1 0 0 0 1 
F 1 0 0 0 0 0 

 

absolute position matrix: 
 A B C D E F 
Pos1 0 0 1 0 0 0 
Pos2 0 0 0 1 0 0 
Pos3 0 0 0 0 1 0 
Pos4 0 1 0 0 0 0 
Pos5 0 0 0 0 0 1 
Pos6 1 0 0 0 0 0 

 

adjacency matrix: 
 A B C D E F 
A 0 0 0 0 0 1 
B 0 0 0 0 1 1 
C 0 0 0 1 0 0 
D 0 0 1 0 1 0 
E 0 1 0 1 0 0 
F 1 1 0 0 0 0 

 

It is possible to define three distance functions for 
permutations based in the corresponding relative order 
matrices, absolute position matrices and adjacency 
matrices. The distance between two permutations is then the 
Hamming distance between their corresponding matrices in 
the three interpretations. We refer to these distances as 
relative order distance (ROD), absolute position distance 
(APD) and adjacency distance (AD). 

For example, the segments between two permutations under 
ROD include all the well-formed permutations (not any 
arbitrary string) where the relative order relation of the 
parent permutations is transmitted perfectly. 

In principle, topological operators can be defined using 
these notions of distance. So we can define rigorously 
relative order topological crossover (ROX) and mutation 
(ROM), absolute position topological crossover (APX) and 
mutation (APM), and adjacency topological crossover (AX) 
and mutation (MX). However, ROD, APD and AD are not 
straightforwardly connected with edit distances for 
permutations and therefore ROX, APX and AX may result 
difficult, if not impossible, to implement exactly in an 
efficient way. 

Each interpretation distance is also connected with a notion 
of syntactic distance between permutations that is not 
necessarily an edit distance. ROD is connected with the 

offset distance that sums for each element the number of 
positions away is in the two permutations. APD is 
connected with the Hamming distance for permutations 
that, analogously to the Hamming distance for strings, is the 
number of mismatches at corresponding positions when the 
two permutations are aligned. AD is connected with the 
breakpoint distance that counts the occurrences of two 
elements being adjacent in a permutation and non-adjacent 
in the other. Topological operators in principle can be 
defined using these notions of syntactic distance but then 
and again, since these are non-edit distances, the 
corresponding genetic operators are hard to implement. 

5. CLASSICAL MUTATIONS, EDIT 
DISTANCES AND TOPOLOGICAL 
CROSSOVER 
A number of mutation operators are defined for 
permutations. The most common are [1]: 

Inversion or 2-change (block-reversal): The inversion or 2-
change operator selects two points along the string then 
reverses the segment between the points. This operator is 
particularly well-suited for the TSP and for all the problems 
that naturally admit a permutation representation in which 
adjacency among elements plays an important role.   

Insert and block-transposition: This operator selects one 
element and inserts it at some other position in the 
permutation. There is a non-reversible variant: one selects 
two elements and then moves the second element before the 
first. These operators have been used for scheduling 
problems in which relative order of elements is important.  

Swap and adjacent swap (two-element swap): The swap 
operator selects two elements and swaps their positions. 
The adjacent swap operator swaps two contiguous 
elements.  

Scramble: This operator selects a sub-list and randomly 
reorders the elements while leaving the other elements in 
the permutation in the same absolute position.  

Each notion of mutation is connected with a notion of edit 
distance for permutations. Therefore, we can talk of 
reversal distance, transposition distance, swap distance, 
adjacent swap distance, scramble distance and so on. 
Notice that there are a number of variations for each of 
these distances which result from imposing constraints on 
the edit move.  

For each notion of edit distance there is a corresponding 
notion of topological crossover. So we can define many 
possible crossovers for permutations, each induced from a 
corresponding mutation. Since these are crossovers based 
on similar, but not identical, neighborhood structures, they 
will tend to have similar behaviors. So, what are the 
important topological crossovers then? We propose an 
initial answer to this question in the next section. However, 



not all topological crossovers based on edit distances have 
efficient implementations. Indeed, constraints on edit 
moves transform the complexity of crossover from 
polynomial to NP-hard [13].   

Because of the distance duality, a point on a segment 
between two permutations, under a given edit distance, is 
on a minimal sorting trajectory connecting the two 
permutations. This allows to actually implementing such 
crossovers by sorting algorithms. Some edit distances give 
rise to a crossover that can be implemented exactly and 
efficiently. Other edit distances give rise to crossovers that 
are possible to implement efficiently (in polynomial time) 
only in an approximated way. Quite interestingly, bubble 
sort and insertion sort fit the definition of topological 
crossover for, respectively, the adjacent swap distance and 
the swap distance. So, ordinary sorting algorithms can 
actually be used as crossovers!   

6. RELATIONSHIP BETWEEN EDIT 
DISTANCES AND INTERPRETATION 
DISTANCES 
Depending on the interpretation of the permutation, the 
same mutation operator can be seen as a small change or a 
major change. For example, the inversion operator does a 
minimal change when one thinks of a permutation in terms 
of adjacency, but a major change when the same 
permutation is seen as a priority list (relative order).  

A single mutation should represent a minimal change [10] 
[11]. According to this principle, there are three mutation 
operators that do a different minimal change in a 
permutation, one for each interpretation. When the 
permutation is thought as an adjacency relation then the 
minimal mutation operator is the inversion operator: while 
reversing the order of a sub-list, only two adjacency links 
(edges) are changed. When the permutation represents a 
relative order the minimal mutation operator is the adjacent 
swap operator that affects only the relative order of a pair of 
elements. Finally, when the absolute position of elements in 
the permutation is relevant, the minimal mutation operator 
is the swap operator that changes the absolute positions of 
only two elements.  

A neighborhood function (see section 2) induced by the 
syntax must be symmetric and connected. The inversion 
operator is symmetric (re-reversing the same sub-list 
produces the original permutation) and connected (by 
repeated reversions it is possible to reach any permutation 
from any other permutation). Also the adjacent swap 
operator is symmetric and connected (bubble sort based on 
adjacent swap is able to sort any permutation of elements). 
The same holds for the swap operator. 

The adjacent swap operator can be seen as a special case of 
swap as well as a two-element sub-list inversion operator. 

Its neighborhood is the intersection of the other two 
operators’ neighborhoods. 

7. EXISTING CROSSOVERS AND 
PERMUTATION INTERPRETATIONS 
There are a number of crossover operators defined for 
permutation (for a good overview, see [1][2]). Most of them 
were devised with a specific interpretation of the 
permutation in mind. This is reflected in their names. So, 
for example, Davis’s order crossover emphasizes the fact 
that a permutation is seen as a relative order, cycle 
crossover preserves absolute positions, and edge 
recombination crossover focuses on the adjacency relation 
of the elements in the permutation.  

Some crossovers achieve their goals of transmitting a 
specific relationship among elements from the parents to 
the children perfectly (perfect crossovers), others achieve 
their goals only approximately (imperfect crossovers). For 
example cycle crossover transmits perfectly the common 
positional information of parents to children and so is a 
perfect crossover; both Davis’s order crossover and edge 
recombination are imperfect crossovers in that they are not 
able to transmit perfectly, respectively, the common relative 
order of the parents and the adjacency relation. However, 
the common relative order is much easier to transmit 
perfectly than the adjacency relation. Indeed, another 
crossover, the merge crossover, perfectly transmits the 
relative order of parents to children.  

Some crossover operator is deliberately designed to be a 
trade-off, transmitting part of the relative order, part of the 
absolute position and part of the adjacency relation present 
in the parent permutations to the offspring permutations 
(hybrid crossovers). This is indeed possible since the three 
relations have subtle interdependencies. One of such 
crossover operators is the partially matched crossover. 
Hybrid crossovers have the advantage to work reasonably 
well independently from the specific interpretation of the 
permutation. However when hybrid crossovers are 
compared with perfect crossovers for a specific 
interpretation of the permutation on a problem in which this 
interpretation is relevant, the hybrid ones perform much 
worse than the perfect ones. 

8. TOPOLOGICAL CROSSOVER FOR TSP 
Edge recombination is an operator expressly designed for 
TSP. It considers a solution as a tour of cities and, 
therefore, rather than being defined for permutations is 
defined over circular permutations. In its various 
improvements its stated objective is to greedily recombine 
parent tours in order to transmit as much as possible the 
adjacency relation, introducing in the offspring tours the 
minimum number of “foreign” edges not present in either 
parent [1].  



As in the linear case, also for circular permutations it is 
possible to write an adjacency matrix. Again, the segment 
between the parent circular permutations (under Hamming 
distance for the adjacency relation matrix) contains all the 
feasible offspring circular permutations that perfectly 
respect the adjacency relation of their parents. The 
topological crossover for circular permutations under this 
notion of distance is well-defined and actually achieves 
what edge recombination can only aspire to. 

However, the notion of distance based on adjacency matrix 
is not an edit distance and, therefore, the corresponding 
crossover operator is hard or impossible to implement 
efficiently. In the case of circular permutations, the block-
reversal move is the notion of edit distance closest to the 
adjacency matrix distance. In a single application to a tour, 
this does the minimal change to the adjacency relation 
among elements in the permutation. This move is the well-
known 2-change move, and it is the basis for successful 
local search algorithms for TSP [6]. Figure 1 shows the 
possible offspring (the segment) between two circular 
(parent) permutations under topological crossover. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example of topological crossover between two circular 
permutations 

Analogously to the linear case, the circular permutations in 
the segment under reversal distance are those laying in a 
minimal sorting trajectory from a parent circular 
permutation to the other. Sorting circular permutations by 
reversals is NP-hard [12]. So, the topological crossover 

under this notion of distance cannot be implemented 
efficiently. 

Sorting circular permutations by reversals is tightly 
connected with the problem of sorting linear permutations 
by reversals. So all the algorithms developed for the latter 
task can be used with minor modifications also for the 
former [12]. Sorting linear permutations by reversals is NP-
hard too [3]. However a number of approximation 
algorithms exist to solve this problem within a bounded 
error from the optimum [8]. This allows implementing 
approximate crossovers whose image set is a super-set of 
that of the exact crossover.  

9. CONCLUSIONS  
Topological crossover and mutation are well-defined once 
one has a notion of distance over the solution set. The 
permutation representation allows for three notions of non-
edit distances connected with the permutation 
interpretations. Three topological crossovers based on the 
permutation interpretations are therefore well-defined. 
However, such topological crossovers are hard or even 
impossible to implement efficiently, in that they are based 
on non-edit distances.  

Most of the pre-existing crossover operators for 
permutations are designed around interpretations. We have 
shown that they fit, some exactly and some imperfectly, the 
topological crossover definitions connected with 
permutations interpretations. The permutation 
representation also allows for a number of edit distances 
connected with various notions of mutation. Each notion of 
edit distance induces a notion of topological crossover. 
Because of the distance duality, under a given edit distance 
a point on a segment between two permutations is on a 
minimal sorting trajectory connecting the two permutations. 
This allows implementing such crossovers using sorting 
algorithms. Some edit distances give rise to crossovers that 
can be implemented exactly and efficiently. Other edit 
distances give rise to crossovers can be implemented 
efficiently (in polynomial time) only in an approximated 
way.  

The three topological crossovers induced by permutation 
interpretations are tightly connected with three topological 
crossovers based on edit distances. The connection relies on 
the principle of “minimal change”. In future research we 
will investigate this connection in greater depth.   

Circular permutations are tightly connected to traditional 
permutations but they do not coincide. We have shown how 
to apply topological crossover to TSP that is naturally 
defined over circular permutations. In future work we will 
implement topological crossover for TSP. 
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