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ABSTRACT

In this paper, a formulation that enables ant colony optimization
(ACO) algorithms to be applied to the power plant maintenance
scheduling optimization (PPMSO) problem is developed and
tested on a 21-unit case study. A heuristic formulation is
introduced and its effectiveness in solving the problem is
investigated. The results obtained indicate that the performance
of ACO algorithms is significantly better than that of a number
of other metaheuristics, such as genetic algorithms and
simulated annealing, which have been applied to the same case
study previously.

Categories and Subject Descriptors
1.2.8 [Artificial Intelligence]: Problem Solving, Control
methods, and Search — heuristics methods, scheduling.

1.2.11  [Artificial Intelligence]: Distributed Artificial
Intelligence — intelligent agents, multiagent systems.

General Terms
Algorithms; Management; Performance; Experimentation.

Keywords

Ant Colony Optimization; power plant maintenance scheduling;
heuristics; Max-Min Ant System; Genetic Algorithm; Simulated
Annealing.

1. APPLICATION OF ACO TO POWER
PLANT MAINTENANCE SCHEDULING
OPTIMIZATION

The objective of this study is to introduce a formulation that
enables ACO to be applied to the power plant maintenance sche-
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duling optimization (PPMSO) problem, including the
development of a formulation for heuristic information, which is
used as part of the decision policy at each decision point. In the
PPMSO problem, decisions have to be made with regard to the
timing of the maintenance periods of each of the machines
(units) used for power generation. Generally, the duration of the
maintenance period for each machine is fixed, and the decision
variable is the maintenance start time. The aim of the
optimization procedure is to obtain a maintenance schedule that
minimizes the objective function subject to a number of
constraints. The objectives generally include cost minimization,
system reliability maximization, or both [7]. The most
commonly used constraints are load constraints, resources
constraints and the window of time during which maintenance
can be carried out.

Before the PPMSO problem can be optimized using ACO, it
has to be expressed in terms of a set of points at which decisions
have to be made (D = {d,, where n=1,2,...N}) and the set of
options that is available at each decision point (F = {l,;, where
d,eD, j=1.2,..., k,}) [5]. The decision points consist of the N
units at which maintenance needs to be carried out and the
corresponding decisions are the k, potential commencement
times for maintenance (Figure 1.1).
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Figure 1.1: ACO algorithm applied to the PPMSO problem

As part of the ACO algorithm, ants generate trial
maintenance  schedules by choosing a maintenance
commencement date for each of the units to be maintained. The
probability that a particular commencement date will be chosen
from the set of available options at a particular decision point is
a function of the pheromone and the local desirability of that
option based on heuristic information (generally referred to as
the heuristic), as shown in Eq. 1.1.
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where p,j(t) is the probability that start time 1, is chosen for
maintenance of unit d, in iteration t; 1,i(t) is the pheromone
intensity deposited on start time l,; for unit d, in iteration t; 1,
is the heuristic for start time 1,,; for unit dy; k,, is the total number
of start time periods available for unit d,; o is the relative
importance of pheromone intensity; 3 is the relative importance
of the heuristic.

The pheromone level associated with a particular option (i.e.
maintenance commencement date for a particular unit) is a
reflection of the quality of the maintenance schedules that have
been generated that contain this particular option. The heuristic
associated with a particular option is related to the likely quality
of a solution that contains this option based on some heuristic
information. It can be seen from Eq. 1.1 that during the early
stages of an ACO run, before pheromone trails are significantly
distinct, heuristic information is the dominant factor affecting
the selection of decision paths. In other words, the heuristic
plays a crucial role in defining the region in a solution search
space in which the ACO algorithm commences its search. As the
way in which heuristic information is represented
mathematically is problem specific [4], the transformation of
any heuristic information into a formulation to be used in the
ACO algorithm is an important task.

As ACO has not been previously applied to the PPMSO
problem, a heuristic formulation (Eq. 1.2) is introduced for a
typical PPMSO problem in this paper. Furthermore, the
following variables are defined:

e J,i={ 1l < k <1+ dur, — 1} is the set of time periods k
such that if the maintenance of unit d, starts at period I,
that unit will be in maintenance during period k.

®  Yumanvig—o is switched to 1 if there is no personpower
violation in time period k. Otherwise it is switched to 0.

®  Yiouvi—o is switched to 1 if there is no load violation in
time period k. Otherwise it is switched to 0.
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where m,; is the heuristic value of unit d, to start
maintenance at time period l,j; dur, is the outage duration
required for unit d,; Myj(k) is the prospective personpower
available in reserve in time period k if unit d, is maintained
starting at period 1l,j;; Cyj(k) is the prospective generation
capacity available in reserve in time period k if unit d, is
maintained starting at period 1.

It can be seen from Eq. 1.2 that the heuristic formulation
comprises personpower-related heuristics, nn,jM and load-related
heuristics, nn,jc. nn,jM is designed to direct the optimization
algorithm to regions in the search space where there are fewer

personpower  constraint  violations. This is achieved
mathematically by making the probability of a start time being
chosen for any machine unit directly proportional to the
prospective personpower available in reserve and inversely
proportional to the amount of personpower shortfall. The same
applies to nn,jc, where start times at which no tasks are
scheduled are preferred to avoid violation of load constraints. It
should be noted that where personpower and load constraints are
casily satisfied inherently in a problem, the two heuristics are
expected to evenly distribute maintenance tasks over the entire
planning horizon, which potentially maximizes the overall
reliability of a power system. In order to implement the
heuristic, each ant is provided with a memory matrix on
personpower reserve and another matrix on generation capacity
reserve prior to construction of a trial solution, which is updated
every time a unit maintenance commencement time is added to
the partially completed schedule.

Once a trial maintenance schedule has been constructed by
choosing a maintenance commencement time at each decision
point (i.e. for each machine to be maintained), taking into
account pheromone levels and the heuristic information
introduced above, one ant-cycle has been completed (Figure
1.1). After r ant-cycles, where r equals the number of ants used,
the ACO algorithm enters the iteration-cycle (Figure 1.1).
During this stage, the quality of the r trial solutions is evaluated
using a simulation model, as part of which the objective function
values, such as maintenance cost and power system reliability,
are calculated and violations of any constraints are identified.
The objective function values (OFVs) of these trial solutions are
then determined by an evaluation function, which is the
weighted sum of the objective function values and penalty costs
associated with constraint violations. It should be noted that
some constraint violations can only be identified once a
complete trial solution has been constructed, and hence these
constraints cannot be accounted for explicitly, necessitating the
use of penalty functions.

Next, pheromone is updated in a way that reinforces good
solutions. The general form of the pheromone update equation
is given by:

Tyt 1) = pory j(D) F ATy (D) (Eq. 1.3)

where 1,; (t+1) is the pheromone intensity of decision path
l,j in iteration (t+1); (I1-p) is the pheromone evaporation rate;
ATyj(t) is the pheromone awarded to decision path l,; in
iteration t.

The way the change in pheromone, ATt,j(t), is calculated can
vary depending on the particular ACO algorithm used. In this
study, the MMAS algorithm is adopted due to its superior
performance in [6]. MMAS uses information from the best
performing ant in the pheromone updating process (Eq. 1.4), but
imposes upper and lower bounds (Tp,, and T,,) on the
pheromone intensities in order to prevent premature
convergence and greater exploration of the solution surface.

Q e
———— ifn best ant
At j(t) =1 OFV, (1) e (Eq. 1.4)
0 otherwise

where Q is the reward factor.



The Ty, and Ty, values are given by:
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where ppeg iS the probability that the paths of the current
iteration-best-solution, OF Vi an(t), Will be selected, given that
non-iteration best-options have a pheromone level of T,,,(t) and
all iteration-best options have a pheromone level of Tpyay(t).
The algorithm terminates when either the number of
iterations specified is met or a stagnation of the evaluation
function value is encountered.

2. CASE STUDY

The case study considered in this research is the 21-unit
power plant maintenance problem investigated by [1], [2] and
[3] using a number of metaheuristics. This case study is a
modified version of the 21-unit problem introduced by [7], and
consists of 21 generating facilities, of which 20 units are thermal
and one is hydropower. The system details can be obtained from
[2]. The objective of the problem is to even out reserve
generation capacity over the planning horizon, which can be
achieved by minimizing the sum of squares of the reserve (SSR)
generation capacity in each week. A single peak load, 4739
MW, and a limit of 20 maintenance staff are used as demand
and manpower constraints, respectively.

2.1 Mathematical Formulation

The specification of this maintenance scheduling
optimization problem can be represented by mathematical
equations using binary (1-0) variables, which indicate the state
of a unit in a given time period. In the case study under
consideration, a time period of one week has been adopted. X, ;
can be switched to 1 to indicate that unit d, is scheduled to be
maintained during period t. Otherwise, X, is switched to a
value of 0. Furthermore, the following sets of variables need to
be defined:

e T,={teT: ear, <t < lat, — dur, + 1} for each unit d,,
which is the set of periods when maintenance of unit d,
may start.

o Sp;={keT:t-dur, +1 < k < t} is the set of start time
periods k, such that if the maintenance of unit d, starts at
period k, that unit will be in maintenance during period t.

e D, = {n:teT,} is the set of units which is considered for
maintenance in period t.

where t is the index of periods; T is the set of indices of
periods in the planning horizon; d, is the index of generating
units; ear, is the earliest period for maintenance of unit d, to
begin; lat, is the latest period for maintenance of unit d, to end;
dur, is the duration of maintenance for unit d,.

In the case study considered, the number of units to be
maintained, N is 21. Consequently, the set of decision points is
given by D = {dy d; _dz}. In addition, set F can be defined
such that F = {d,e D, jeT;: 1,;}. For example, unit 8 is allowed
to undergo maintenance within the second half of the year,
which must be completed by Week 52. Since a maintenance job
for this unit takes 6 days, the earliest and latest date for Unit 8 to
start its maintenance are Weeks 26 and 47, respectively. Hence,
the decision paths associated with decision point dg are {lIg;=26,
ls2=27...., ls p=47}. Mathematically, this optimization problem

can be defined as the determination of maintenance schedule(s)
such that SSR, which is defined as the sum of square of reserve
generation capacity within the planning horizon, is minimized
(Eq. 2.1) without violating the personpower and load constraints
(Egs. 2.2 & 2.3).
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where L, is the ant1c1pated load demand for period t; P, is the
generating capacity of unit d,.; M, is the personpower needed
by unit d, at period k.

Upon completion of an ant-cycle, the maintenance schedule
generated is assessed by a simulation model (Figure 1.1) that
returns an overall quality of the schedule. The quality of a
maintenance schedule in this problem is given by an objective
function value (OFV), which is a function of the value of SSR
and the total violation of both constraints (Eq. 2.4). The
calculations of constraint violations are given in Eq. 2.5 to 2.8.

OFV =ci . SSR + ¢y . ManVio,, + ¢ . LoadVioy,  (Eq. 2.4)

where SSR is the sum of squares of reserve generation
capacity; cg is the relative weight of SSR; ManVioy, is the total
personpower violation; ¢y, is the relative weight of personpower
violation; LoadVioy, is the total load violation; cris the relative
weight of the load violation.

For a proposed maintenance schedule, the total personpower
violation, ManVio,y, is given by summation of the personpower
shortage in all periods within the planning horizon, such that

ManVio,, = Z [ z z Xn,an,k —AMt] (Eq.2.5)
teT, ,meDkeS |
where Tygy is the periods where personpower constraints are
violated (Eq. 2.6).

Tyy = ( > 2 Xn My x >AMJ (Eq. 2.6)
ne D keS o
where AM, is the available personpower at period t.
The total load violation, LoadVio,, is the summation of load
shortfall in all periods within the planning horizon. The
calculation of this value may be represented by:

GZ [ZP ‘n;kZ X, Pnj (Eq. 2.7)

where Try is the perlods where load constramts are violated,
and is given by:

Ty = (t:ZPn— DY XaxPa< LJ (Eq. 2.8)

ne D‘k < SM

LoadVio,,, =

2.2 Analysis Conducted

The ACO formulation introduced in Section 1 was used to
solve the 21-unit case problem. For the heuristic information in
Eq. 1.1, the heuristics given in Eq. 1.2 was used. Due to the
probabilistic nature of ACO methods, 30 runs with different
random starting conditions were conducted. A total of 150
iterations, which is equivalent to the construction of 30,000 trial



solutions in each run, was chosen as the termination criterion of
all runs to provide a basis for direct comparison between the
performance of ACO and that of other metaheuristics used for
the same case study. It should be noted that the values of the
parameters controlling the behaviour of the ACO algorithms
used (Table 2.1) were chosen based on preliminary sensitivity
analysis.
Table 2.1 Chosen values of ACO parameters

r p o B Cr wl
200 0.7 1 1 1 7
Pbest Q To L ‘™ w2
0.7 5x10° 1,000 | 200 | 1x10° 1

2.3 Results & Discussion

The results obtained are presented in Table 2.2 in terms of
best, average and worst objective function values (referred to as
OFVs hereafter) as well as the standard deviation of the OFVs.
It should be noted that the various statistics were calculated for
results with the same (‘standard”) ACO parameters, but with 30
different random starting positions in objective function space,
as described previously. It can be seen that the optimization
outcome has been improved greatly by the inclusion of the
heuristic formulation introduced in this paper, and the
improvement is highly significant when tested with a two-tailed,
unmatched t-test. It can also be seen from Figure 2.1 that the
results obtained by MMAS are better than those obtained using
the algorithms that have been applied to this case study
previously. However, the information provided about these
studies in the literature is insufficient for statistical analysis.

Table 2.2: Results given by Max-Min Ant System (MMAS)
[% deviation from best-found OFV]

Best OFV | Average OFV (Worst OFV| Std dev.
(x10%) (x10%) (x10%) (x10%)
INo 138.81 145.79 154.44 376
heuristics [1.58] [6.69] [13.01] )
With 136.65 136.88 137.26 0.14
heuristics [0] [0.17] [0.45] )
155.05
155
OBest
150 BAverage
148.31 148.31
g ] 146.71
= 146.02
%’145
2]
140
137.91 137.91
|—| 136.65 136.88
SA Inoculated GA SSGA GNGA Simple GA  ACO (MMAS)

Figure 2.1 Comparison between the best result given by other
optimization methods and MMAS

3. SUMMARY & CONCLUSION

In this paper, a formulation for applying Ant Colony
Optimization (ACO) to power plant maintenance scheduling
optimization (PPMSO) has been developed and successfully

tested on a 21-unit power plant case study to which other
metaheuristics had been applied previously. The results
obtained indicate that ACO can be applied successfully to the
PPMSO problem, as it performed better than any of the other
optimization algorithms that had been applied to the case study
considered previously.

4. FUTURE WORKS

Encouraged by the results, we are currently working on a
similar ACO formulation for solving multi-objective power
plant maintenance optimization problems. The 21-unit case
problem is slightly modified by converting the manpower
constraint into an objective. The relative importance of total
manpower violation in the objective function, as well as the
relative importance of the two terms in heuristic formulation are
varied throughout an optimization run. The outcome of the
multi-objective optimization run is a best-TMV SSR curve,
which consists of the best sum of square reserve (SSR)-values
obtained for different levels of total manpower violation (TMV).
In addition, the option of coupling local search with the current
ACO formulation will be investigated.

The proposed formulation is also currently being applied to
a cut-down hydropower system, which is a part of the Hydro
Tasmania hydropower system. Options of shortening outage
duration and deferring maintenance tasks are added into the
formulation. Ultimately, all proposed formulations would be
applied to the optimization of maintenance scheduling of the
real Hydro Tasmania system, which consists of 68 generating
units.
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